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In this paper, by utilizing the idea of stabilizer codes, we give some relationships between one local

unitary representation of braid group in N-qubit tensor space and the corresponding entanglement prop-

erties of the N-qubit pure state |Ψ〉, where the N-qubit state |Ψ〉 is obtained by applying the braiding

operation on the natural basis. Specifically, we show that the separability of |Ψ〉 = B|0〉⊗N is closely

related to the diagrammatic version of the braid operator B. This may provide us more insights about

the topological entanglement and quantum entanglement.

I. INTRODUCTION

Braid operators have been widely used for quantum infor-

mation and computation. Especially in topological quantum

computation, the processes of braiding anyons, usually related

to the unitary Jones representation of braids, act as the role

of unitary quantum gates that are immune to local errors[1–

3]. On the other hand, the local unitary representations of

braids[4], which are different from the Jones representation,

have been also well connected to the quantum information and

quantum computation[5–8]. In terms of the relationships be-

tween braid and quantum entanglement, one of the simplest

examples is that a special 4 × 4 braid matrix generates Bell

basis from the 2-qubit natural basis[6], where Bell basis rep-

resents the maximal entangled 2-qubit pure state. This inter-

esting result has made a well connections between the braid

operators and quantum entanglement. After that, a series of

generalized works have been made[7, 9–12]. One significant

generalization is that the parametrized form of the braid re-

lation, Yang-Baxter equation, has been used for describing

the entangled degree of pure states, such as 2-qubit[9] and

3-qubit[13]. Besides that, other further investigations associ-

ated with Yang-Baxter equation and generalized Yang-Baxter

equation are also made to generate specific N-qudit entangled

states[14, 15]. Based on the previous progresses in generating

multipartite entanglements, we then come up with a natural

question: Are there any general relationships between braid

and quantum entanglement?

In this paper, based on the local unitary representation of

braid group associated with Ising theory[3, 4], we discuss the

general relationship between the local unitary representation

of N-strand braid group in tensor product space (C2)⊗N and

the entanglement of N-qubit final state obtained by applying

braid operators on the initial tensor product state. Our results

show that the entangled parties of the final state generated

by braiding operation depend only on the permutations of the

strands in the diagrammatic version. In other words, only the

permutation group, as a quotient group of the braid group, en-

tangles the qubit sites.
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Here we adopt the idea that if the initial state is stabilized

by a stabilizer set S, then the final state after braiding opera-

tion B is also stabilized by the final stabilizer set S ′ = BSB†.

Bravyi’s paper [16] shows that for the Majorana representa-

tion of braid group in Ising anyon theory, the final stabilizer

set after braiding is just a permutation of the site number of

the Majorana operators in the initial stabilizer set. Because

of the equivalence between our Pauli version of braid repre-

sentation and the Majorana version, we can utilize the similar

properties of the Majorana stabilizer set to our case.

Now we briefly introduce the logic of the proof. Firstly,

we have local unitary representation of braids expressed by

Pauli matrices and an initial state |Ψ0〉 in tensor product space

(C2)⊗N . Secondly, we transform the braid representation of

Pauli version into the equivalent Majorana version by using

Jordan-Wigner transformation. Then, we choose stabilizer

set S including N independent stabilizers for the initial state

|Ψ0〉. Applying braiding operation B on state |Ψ0〉, the final

state |Ψ〉 = B|Ψ0〉 is also stabilized by the final stabilizer set

S ′ = BSB†. At last, we use the final stabilizer set S ′ to clas-

sify the entangled parties of the final state |Ψ〉. In this paper,

we call a state entangled if it cannot be separated into any two

parties. The paper is organized as follows. In Sec. II, we in-

troduce the local unitary representation of braids in Pauli ver-

sion and the equivalent Majorana version. In Sec. III, we give

some examples and detailed explanations about the braiding

operation and qubit entanglement. In Sec. IV we discuss a

general case of braiding and entanglement including arbitrary

number of qubits. In the last section, we make conclusions

and discussions.

II. BRAID GROUP REPRESENTATION IN PAULI

VERSION AND MAJORANA VERSION

In this section, we mainly introduce one local unitary repre-

sentation of N-strand braid group BN in N-qubit tensor prod-

uct space (C2)⊗N and its equivalent Majorana fermionic ver-

sion.

The N-strand braid group BN is presented by generators

{τi|i = 1, 2, ...N − 1} with the relations

τiτj = τjτi if |i− j| ≥ 2, (1)

τiτi+1τi = τi+1τiτi+1. (2)

http://arxiv.org/abs/1706.01225v1
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One local unitary representation of BN in N-qubit space

(C2)⊗N is

τi =
1√
2

(

I
⊗N − iI⊗i−1 ⊗ σy

i ⊗ σx
i+1 ⊗ I

⊗N−i−1
)

,

= exp
[

−i
π

4
σy
i ⊗ σx

i+1

]

,

(3)

where I represents 2D identity matrix and σ
x(y)
i represents the

usual Pauli X(Y) matrix on the i-th site. This is the Pauli ver-

sion of the local unitary braid representation, which is related

to Ising theory.

It is easy to verify that by applying τi to the initial tensor

product basis |Ψ0〉 = |0〉⊗N ,1 one obtains the entangled 2-

qubit Bell state on i-th and (i+1)-th sites[6],

τi|0〉⊗N = |0〉⊗i−1⊗
[

1√
2
(|00〉+ |11〉)

]

i,i+1

⊗|0〉⊗N−i−1.

(4)

Now we turn the Pauli version of braid representation into

the Majorana version. Majorana operators are well connected

to Pauli matrices under Jordan-Wigner transformation,

γ2j−1 =

[

j−1
∏

k=1

σz
k

]

σx
j , γ2j =

[

j−1
∏

k=1

σz
k

]

σy
j . (5)

We see from above definition that one spin site corresponds

to two Majorana sites. The Majorana operators are Hermitian

and satisfy Clifford algebra,

γi = γ†
i , {γi, γj} = 2δij . (6)

Substituting Eq. (5) into Eq. (3), one obtains the Majorana

representation of braid generators, as

τi =
1√
2
(1 + γ2i−1γ2i+1) = e

π
4 γ2i−1γ2i+1 . (7)

This braid representation, as was presented in many papers,

describes the non-Abelian statistics properties of Majorana

zero modes[17–19]. However, different from braiding nearest

Majorana zero modes as it usually appears in papers, the braid

generators that we define in Eq. (7) include only odd number

Majorana sites and transform the odd Majorana operators into

τiγ2j−1τ
†
i =











γ2j−1, if j /∈ {i, i+ 1},
− γ2i+1, if j = i,

γ2i−1, if j = i+ 1.

(8)

We find that the operations of braid generators on Majorana

operators are equivalent to exchanging two odd-nearest Majo-

rana operators(up to a sign). Let us define the braiding opera-

tion Bp,q exchanging only two Majorana operators γp and γq
with odd p and q,

Bp,qγpB
†
p,q ∝ γq, Bp,qγqB

†
p,q ∝ γp, (9)

1 |0〉 and |1〉 are two eigenvectors of Pauli Z matrix σ
z in C2, where

σ
z |0〉 = −|0〉, σz |1〉 = |1〉.

while all other Majorana operators are not exchanged except

p and q. Here symbol “∝” means that the result is up to a

sign. Bp,q represents a set of different braid operators sharing

the same property: In diagrammatic version of the set of braid

operators Bp,q , the p-th strand ends at the q-th strand site, and

the q-th strand ends at the p-th strand site, regardless of the

concrete path of the strand.

In this paper, we choose |0〉⊗N as the initial N-qubit state.

Indeed, from the view point of stabilizer code, the state is sta-

bilized by a set of N independent operators with all eigenval-

ues -1,

S = {σz
1 , σ

z
2 , · · · σz

N−1, σ
z
N}

= {iγ2γ1, iγ4γ3, · · · iγ2N−2γ2N−3, iγ2Nγ2N−1}.
(10)

For the N-qubit space, if there are N independent stabilizers,

then the logical space should have dimension 2N−N = 1, i.e.,

there is only one common eigenstate |0〉⊗N for all stabilizers

in S with the same eigenvalue -1.

Applying any braid operator B to the initial state |0〉⊗N is

equivalent to changing the stabilizer set S into (up to a sign)

S ′ = BSB†

∼ {iγ2γp(1), iγ4γp(3), · · · iγ2Nγp(2N−1)},
(11)

where p stands for a permutation of the odd site number of the

Majorana operators. The final state |Ψ〉 = B|0〉⊗N is stabi-

lized by S ′ with all eigenvalues -1. In this paper, we will use

the final stabilizer set S ′ to classify the entanglement. As was

shown in Eq. (8), for the stabilizer set , the sign before the

Majorana operators is not important and can be ignored. In-

deed, for the Majorana representation, the permutation group

SN is the quotient group of braid group BN . Hence the only

useful part of the braid group in our paper is the permutation

group SN , which describes the permutation of odd number

Majorana sites.

III. SOME SIMPLE EXAMPLES OF GENERATING

ENTANGLEMENT BY BRAIDING

In this section, to give an intuitive description about the

relationship between braids and entanglement, we consider

some simple cases.

A. Permuting two Majorana operators

Let us consider the simplest example about relationships

between braiding and entanglement by exchanging only two

Majorana operators γ2a−1 and γ2b−1 that correspond to spin

sites a and b respectively. We denote the braiding exchange of

γ2a−1 and γ2b−1 by cyclic permutation P = (ab). Then the

final stabilizer set S ′ is (up to a sign)

S ′ = {iγ2γ1, · · · iγ2aγ2b−1, · · · iγ2bγ2a−1, · · · iγ2Nγ2N−1}.
(12)

Except a and b, all other spin sites in the final state |Ψ〉
must be separable with each others since only two stabilizers
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iγ2aγ2b−1 and iγ2bγ2a−1 in S ′ are different from the initial S
and the stabilized space is 2N−N = 1 dimensional. In other

words, we only need to check whether the a-th and b-th spin

sites are entangled or not in the final state |Ψ〉.
Now we prove that the a-th and b-th sites must be entangled.

We denote the 2-qubit state on a and b sites by |ϕ〉ab. Substi-

tuting Eq. (5) into two stabilizers iγ2aγ2b−1 and iγ2bγ2a−1,

one obtains (suppose a < b)

iγ2aγ2b−1 = −I⊗a−1 ⊗ σy
a ⊗ [σz ]⊗b−a−1 ⊗ σy

b ⊗ I⊗N−b,(13)

iγ2bγ2a−1 = −I⊗a−1 ⊗ σx
a ⊗ [σz ]⊗b−a−1 ⊗ σx

b ⊗ I⊗N−b.(14)

Obviously, |ϕ〉ab must be common eigenstate of σy
a ⊗ σy

b and

σx
a ⊗ σx

b due to the stabilizer condition. If |ϕ〉ab is not entan-

gled, say, |ϕ〉ab = |φ〉a ⊗ |φ〉b, |φ〉a must be common eigen-

state of σy
a and σx

a . But σy
a and σx

a cannot share the same

eigenstate. Hence, |ϕ〉ab is an entangled 2-qubit state. Hence

we conclude that only if strand a in braid diagram ends at the

position of strand b, the corresponding a and b-th spin sites

are entangled in the final state |Ψ〉.

B. Permuting Three Majorana operators

Now we discuss the case that three Majorana operators

γ2a−1, γ2b−1 and γ2c−1 are permuted under the braiding oper-

ation. Similar to the previous section, we denote the three Ma-

jorana operators’ permutation by cyclic notation P = (abc),
which describes strand a ends at strand position b, strand b
ends at position c, strand c ends at position a in braid dia-

gram. After the braiding operation, the stabilizer set of final

state |Ψ〉 becomes (up to a sign)

S ′ ∼ {iγ2γ1, ... iγ2aγ2b−1, ... iγ2bγ2c−1, ... iγ2cγ2a−1, ...}.
(15)

In comparison with the initial stabilizer set

S, S ′ only has three different stabilizers

{iγ2aγ2b−1, iγ2bγ2c−1, iγ2cγ2a−1}. Due to the stabi-

lizer condition, spin sites other than a, b and c must

be separable with each others. Now let us focus on

the 3-qubit subsystem final state |ϕ〉abc stabilized by

{iγ2aγ2b−1, iγ2bγ2c−1, iγ2cγ2a−1} on sites a, b and c. We

will prove that |ϕ〉abc cannot be separated into any two

parties. For 3-qubit case, we only need to prove that any

one qubit is entangled with another two. Without loss of

generality, if we suppose |ϕ〉abc = |φ1〉a ⊗ |φ2〉bc, the a-site

part of all stabilizers must commute. But it is easy to find two

stabilizers iγ2aγ2b−1 and iγ2a−1γ2aγ2b−1γ2bγ2c−1γ2c, so

that the a-site subsystem operators in them do not commute.

Concretely, in Pauli version, the a-site part of iγ2aγ2b−1 is

σ
x(y)
a (here x or y only depends on which one of a and b is

larger), while the a-site part of iγ2a−1γ2aγ2b−1γ2bγ2c−1γ2c
is σz

a. Clearly, it violates our assumption and means that

|ϕ〉abc cannot be separated into a and bc parties. Similar

constructions can also be applied to b − ac and c − ab cases.

Hence, three sites a, b and c are entangled in the final state

|Ψ〉.

C. Permuting Four Majorana operators

Now we consider the braiding operation that permutes

four Majorana operators with only 1 sub-cyclic per-

mutation P = (abcd). Then only four stabilizers

{iγ2aγ2a−1, iγ2bγ2b−1, iγ2cγ2c−1, iγ2dγ2d−1} in initial sta-

bilizer set S are changed by braiding operation nontrivially

into {iγ2aγ2b−1, iγ2bγ2c−1, iγ2cγ2d−1, iγ2dγ2a−1} in final

stabilizer set S ′. Since qubit sites other than a, b, c andd must

be separable, now we prove that the final 4-qubit state |ϕ〉abcd
on a, b, c, d sites are entangled, i.e., the 4-qubit state cannot

be separated into any 2 parties. There are two cases to be

proved. The first case is the entanglement between 1-qubit

and 3-qubit, and the second case is the entanglement between

2-qubit and 2-qubit.

Let us consider the first case. To prove a-site and bcd-

site are not separable, one only needs to find two stabilizers

from S ′ so that their corresponding a-site parts do not com-

mute. We can choose iγ2aγ2b−1 with a-site part σx
a or σy

a

and γ2a−1γ2aγ2b−1γ2bγ2c−1γ2cγ2d−1γ2d with a-site part σz
a.

Since [σ
x(y)
z , σz

a] 6= 0, a-site and bcd-site must be not separa-

ble. Similar results can also be applied to b−acd, c−abd and

d− abc cases.

Now we consider the second case. Our goal is still finding

non-commuting subsystem operators from stabilizers in S ′.

We first choose one stabilizer operator

γ2a−1γ2aγ2b−1γ2bγ2c−1γ2cγ2d−1γ2d ∝ σz
a ⊗ σz

b ⊗ σz
c ⊗ σz

d .
(16)

In {iγ2aγ2b−1, iγ2bγ2c−1, iγ2cγ2d−1, iγ2dγ2a−1}, each sta-

bilizer has only 2 spin sites that are not σz or I. For example,

for iγ2aγ2b−1 in Pauli version, only the operators on sites a
and b are σx or σy , while all of the other sites are σz or I. If

we want to prove that ab-site and cd-site are entangled, we can

choose iγ2dγ2a−1 with ab-site part σ
x(y)
a ⊗σz

b or σ
x(y)
a ⊗Ib to-

gether with γ2a−1γ2aγ2b−1γ2bγ2c−1γ2cγ2d−1γ2d with ab-site

part σz
a ⊗ σz

b . Then we find two non-commuting operators on

ab-sites from stabilizer sets. Hence ab-site and cd-site must

be entangled. Similar proof can be also applied to ac− bd and

ad− bc cases.

In summary, the 4-qubit sites a, b, c and d are not separable

in the final state |Ψ〉.

IV. BRAIDING AND ENTANGLEMENT FOR

MULTIQUBITS

In the previous section, we give some simple examples

about the relationship between braids and few qubits entan-

glement. Now we extend the cases to multi-qubit system. We

consider two special types of permutation. The first type in-

cludes only one sub-cyclic permutation, and the second type

includes two sub-cyclic permutations.



4

A. Permuting (r+s) Majorana operators with

P = (a1a2...ar ...ar+s)

Now we consider the braiding operation permuting (r+s)

Majorana operators with only one sub-cyclic permutation

P = (a1a2...ar...ar+s). Here r and s are arbitrary positive

integers satisfying r + s ≤ N , and {ai | i ∈ [1, r + s]}
represent arbitrary different (r + s) spin sites. As was dis-

cussed in previous sections, the spin sites not belonging to

{ai | i ∈ [1, r+s]} must be still separate with each others due

to the stabilizer condition. Let |ϕ〉a1...a(r+s)
be the subsystem

state of the final state |Ψ〉. Now we prove that |ϕ〉a1...a(r+s)
on

sites {ai | i ∈ [1, r + s]} is an entangled (r + s)-qubit state,

i.e., the state cannot be separated into any two parties.

Let us consider two parties: one party includes sites

{bj | j ∈ [1, r]}, the other party includes sites {bj | j ∈
[r+1, r+s]}, where {bj | j ∈ [1, r+s]} = {ai | i ∈ [1, r+s]}.

Here we choose the new notation {bj | j ∈ [1, r + s]} instead

of {ai | i ∈ [1, r + s]} to ensure that the entangled parties

are irrelevant to the permutation order. Due to the permut-

ing operation P = (a1a2...ar...ar+s), there must be at least

one Majorana operator γ2bm−1(m ∈ [1, r]) that is permuted

into γ2bn−1(n ∈ [r + 1, r + s]) by the braiding operation.

In other words, iγ2bmγ2bn−1 must be a stabilizer of the final

state |Ψ〉. Then the {bj | j ∈ [1, r]} party of the Pauli version

of iγ2bmγ2bn−1 can be expressed as

Γ1 = (σz
b1
)c1 ⊗ (σz

b2
)c2 ⊗ · · · ⊗ σ

x(y)
bm

⊗ · · · ⊗ (σz
br
)cr , (17)

where each ci corresponds to the power of the operator on site

bi, and {c1, ...cm−1, cm+1, ...cr} = 0 or1. Another stabi-

lizer we need is
∏r+s

i=1 (γ2bi−1γ2bi), whose {bj | j ∈ [1, r]}-

site party is

Γ2 = σz
b1

⊗ σz
b2

⊗ · · · ⊗ σz
bm

⊗ · · · ⊗ σz
br
. (18)

It is easy to check that [Γ1 Γ2] 6= 0, then the {bj | j ∈ [1, r]}
party and {bj | j ∈ [r + 1, r + s]} party must be entangled.

Here r and s can be any positive integers satisfying r+s ≤ N ,

hence |ϕ〉a1...a(r+s)
is an entangled subsystem state of the final

state |Ψ〉.

B. Permuting (r+s) Majorana operators with

P = (a1a2 · · · ar)(b1b2 · · · bs)

Now we consider the braiding operation that permutes

Majorana operators in the case with two sub-cyclic per-

mutations P = (a1a2 · · · ar)(b1b2 · · · bs), here ai and bi
are irrelevant to the notations in previous sections. Since

the final state corresponding to permutation process P =
(a1a2 · · · ar) has been proved to be entangled, here we only

need to consider whether the two parties {ai|i ∈ [1, r]}-

site and {bi|i ∈ [1, s]}-site are entangled or not. After

braiding operation on the initial stabilizer set, the changed

stabilizers on {ai|i ∈ [1, r]} and {bi|i ∈ [1, s]} parties

are S ′
a = {iγ2a1γ2a2−1, iγ2a2γ2a3−1, ... iγ2ar

γ2a1−1} and

S ′
b = {iγ2b1γ2b2−1, iγ2b2γ2b3−1, ... iγ2bsγ2b1−1} respec-

tively. In the following discussion, we only need to consider

the changed stabilizers after braiding operation because the

unchanged stabilizers act trivially on the sites {ai|i ∈ [1, r]}
and {bi|i ∈ [1, s]}. There are totally three cases to be dis-

cussed.

1. max{ai|i ∈ [1, r]} < min{bi|i ∈ [1, s]}.

In this case, due to the condition max{ai|i ∈ [1, r]} <
min{bi|i ∈ [1, s]}, it is obvious that all the {ai|i ∈
[1, r]} party of stabilizers in S ′ commute with each oth-

ers. Hence, the {ai|i ∈ [1, r]} and {bi|i ∈ [1, s]} parties

are separable in the final state.

2. min{ai|i ∈ [1, r]} < min{bi|i ∈ [1, s]} < max{ai|i ∈
[1, r]} < max{bi|i ∈ [1, s]}.

In this case, we prove that after braiding operation,

the {ai|i ∈ [1, r]} and {bi|i ∈ [1, s]} parties are en-

tangled. We denote the permutation processing P =
(a1a2 · · ·ar)(b1b2 · · · bs) by P = Pa · Pb, where Pa =
(a1a2 · · ·ar) and Pb = (b1b2 · · · bs). In combination

with the condition min{ai|i ∈ [1, r]} < min{bi|i ∈
[1, s]} < max{ai|i ∈ [1, r]} < max{bi|i ∈ [1, s]}, to

preserve the permutation Pa and Pb, there must be two

stabilizers iγ2ap
γ2aq−1 and iγ2bjγ2bk−1 in S ′ so that

ap < bj < aq < bk, where {ap, aq} ⊆ {ai|i ∈ [1, r]},

{bj, bk} ⊆ {bi|i ∈ [1, s]},

iγ2ap
γ2aq−1

∝ I
⊗ap−1 ⊗ σx

ap
⊗ (σz)⊗aq−ap−1 ⊗ σx

aq
⊗ (I)⊗N−aq ,

(19)

iγ2bjγ2bk−1

∝ I
⊗bj−1 ⊗ σx

bj
⊗ (σz)⊗bk−bj−1 ⊗ σx

bk
⊗ (I)⊗N−bk .

(20)

The {ai|i ∈ [1, r]} parties of Eq. (19) and Eq. (20) are

iγ2ap
γ2aq−1 −→ Γ3 :

(σz
a1
)u1 ⊗ (σz

a2
)u2 ...⊗ σx

ap
⊗ ...⊗ σx

aq
⊗ ...⊗ (σz

ar
)ur ,

(21)

iγ2bjγ2bk−1 −→ Γ4 :

(σz
a1
)v1 ⊗ (σz

a2
)v2 ...⊗ Iap

⊗ ...⊗ σz
aq

⊗ ...⊗ (σz
ar
)vr ,

(22)

where ui and vi correspond to the

power of operators on site ai, and

{u1, u2...up−1, up+1, ...uq−1, uq+1, ...ur} = 0 or1,

{v1, v2...vq−1, vq+1, ...vr} = 0 or1. We can see from

Eq. (21) and Eq. (22) that only the aq-site parties

of Γ3 and Γ4 do not commute, hence [Γ3,Γ4] 6= 0.

Hence, the {ai|i ∈ [1, r]} and {bi|i ∈ [1, s]} parties are

entangled in the final state |Ψ〉.

3. min{ai|i ∈ [1, r]} < min{bi|i ∈ [1, s]} < max{bi|i ∈
[1, s]} < max{ai|i ∈ [1, r]}.

(a) ∀aj /∈ [min{bi|i ∈ [1, s]}, max{bi|i ∈ [1, s]}] , j ∈
[1, r].

In this case, we prove that the {ai|i ∈ [1, r]}
party and {bi|i ∈ [1, s]} parties are separable.

Let us first consider the stabilizers in set S ′
a.

It is known that the stabilizers commute with
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each others, and all of the sites other than

{ai|i ∈ [1, r]} of the stabilizers in S ′
a must be

σz or I. Hence, the {ai|i ∈ [1, r]} parties of all

stabilizers in S ′
a must commute. Secondly, for the

stabilizers in set S ′
b, due to the condition ∀aj /∈

[min{bi|i ∈ [1, s]}, max{bi|i ∈ [1, s]}] , j ∈
[1, r], the {ai|i ∈ [1, r]} parties of the stabilizers

in set S ′
b must be identity. Then all of the

{ai|i ∈ [1, r]} parties of the stabilizers in set S ′

commute with each others. Hence in this case,

the {ai|i ∈ [1, r]} party and {bi|i ∈ [1, s]} parties

are separable in the final state |Ψ〉.
(b) ∃ aj ∈ [min{bi|i ∈ [1, s]}, max{bi|i ∈ [1, s]}] , j ∈

[1, r].

This case is similar to the Case 2 we mentioned

above. To preserve the permutation processing

P = Pa · Pb. we can always find at least two sta-

bilizers iγ2ap
γ2aq−1 and iγ2bjγ2bk−1 in S ′ so that

ap < bj < aq < bk or bj < ap < bk < aq, where

{ap, aq} ⊆ {ai|i ∈ [1, r]}, {bj, bk} ⊆ {bi|i ∈
[1, s]}. Then the result of Case 2 can be applied

here directly.

V. CONCLUSION AND DISCUSSION

In summary, by analyzing the properties of the final sta-

bilizer set after braiding operations, we obtain the entan-

glement properties of the final stabilized state |Ψ〉. Our

proof ends at the case including only two sub-cyclic per-

mutations. However, braiding operations permuting Ma-

jorana operators under the multi sub-cyclic permutations

P = (a1a2...ar)(b1b2...bs)(c1...ct) · · · (d1...du) can be dis-

cussed in a similar way like the two sub-cyclic case P =
(a1a2...ar)(b1b2...bs). Here we recall that an entangled state

in our paper is defined by the non-separability of the state into

any two parties. To check whether two parties are entangled or

not, one only needs to find two non-commuting operators on

the sites of one party from the final stabilizer set S ′. If there

exist two non-commuting operators, then the two parties are

entangled; If not, then the two parties must be separable due

to the dimension of the stabilized space is only 2N−N = 1.

Our results show the close relationships between quantum

entanglement and the permutation of the strands in the dia-

grammatic version under braiding operations. The results rely

on the Majorana fermionic representation of braids. Further

extension of the results may be related to the Z3 parafermionic

representation of braids [20, 21], which is also related to the

local unitary representation of the braids[4].
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