Skip to main content
Log in

On the effect of memory in a quantum prisoner’s dilemma cellular automaton

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The disrupting effect of quantum memory on the dynamics of a spatial quantum formulation of the iterated prisoner’s dilemma game with variable entangling is studied. The game is played within a cellular automata framework, i.e., with local and synchronous interactions. The main findings of this work refer to the shrinking effect of memory on the disruption induced by noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. \(\gamma ^\star _{0.0,0.0}\!=\!\arcsin \left( \sqrt{\frac{P-S}{\mathfrak {T}-S}=\frac{1}{4}}\right) =\frac{\pi }{6} \simeq 0.524, \gamma ^\bullet _{0.0,0.0}\!=\!\arcsin \left( \sqrt{\frac{\mathfrak {T}-R}{\mathfrak {T}-S}=\frac{2}{4}}\right) =\frac{\pi }{4}\!\simeq 0.785\).

  2. \(\gamma ^\star _{0.5,0.0}\!=\!2\arcsin \left( \sqrt{\frac{P-S}{2(\mathfrak {T}-S)}\!=\!\frac{1}{8}}\right) \!\simeq \!0.723, \gamma ^\bullet _{0.5,0.0}\!=\!2\arcsin \left( \sqrt{\frac{\mathfrak {T}-R}{2(\mathfrak {T}-S)}\!=\!\frac{2}{8}}\right) \!=\! \frac{\pi }{3} \simeq 1.047\).

  3. From Eq. (6), it is \(p_B^{ \mathcal Q,\mathcal D(u)}(0)=\mathfrak {T}\cos ^2\gamma + S\sin ^2\gamma \) and \(p_{A,B}^{\mathcal Q,\mathcal C(u)}(0)=R\cos ^2\gamma + P\sin ^2\gamma \), whose equalization leads to \(\gamma ^\bullet _{0.0,0.0}=\arcsin \left( \sqrt{\frac{\mathfrak {T}-R}{\mathfrak {T}+P-R-S}}\right) = \arcsin \left( \sqrt{\frac{2}{3}}\right) \simeq 0.955\). In this scenario, it is \(\gamma ^\bullet _{0.5,0.0}=2\arcsin \left( \sqrt{\frac{P-S}{\mathfrak {T}+P-R-S}=\frac{1}{3}}\right) \simeq 1.231\).

  4. It is \(\Pi ^{\hat{\mathcal M},\hat{U}(\theta _B, 0)}_{u}(0)\!=\!\displaystyle \frac{1}{2} \left( \begin{matrix} 0 &{} 0\\ 1-\sin \theta _B &{} 1+\sin \theta _B \end{matrix}\right) \), which renders \(p^{\hat{\mathcal M},\hat{U}(\theta _B, 0) }_{\left\{ \!\begin{array}{c}\!A\!\\ \!B \!\end{array}\!\right\} } (0, 0) =\displaystyle \frac{1}{2}\left[ \left\{ \!\begin{array}{c}\!\mathfrak {T}\\ \!S\end{array}\!\right\} (1-\sin \theta _B) +P(1+\sin \theta _B)\right] \). Consequently, \(p^{\hat{\mathcal M},\hat{U}(\theta _B, 0)}_{\left\{ \!\begin{array}{c}\!A\!\\ \!B \!\end{array}\!\right\} }(0,0)=P\) for \(\theta _B=\pi /2.\)

  5. \(p^{\hat{\mathcal W},\hat{U}(\pi /2, 0)}_A(0,0)=\frac{1}{4}\left[ 11+\frac{3}{4}(2+\sqrt{2})\sin ^2\gamma -3\sqrt{2+\sqrt{2}}\sin \gamma \right] \), and \(p^{\hat{\mathcal W},\hat{U}(\pi /2, 0)}_B(0,0)=\frac{1}{4}\left[ 11-\frac{5}{4}(2+\sqrt{2})\sin ^2\gamma + \sqrt{2+\sqrt{2}}\sin \gamma \right] \). These payoffs are structurally similar to those generated by the \(\{\hat{\mathcal M},\hat{U}(\pi /2, 0)\}\) pair from \(\Pi ^{\hat{\mathcal M},\hat{U}(\pi /2, 0)} _u (0,0) =\frac{1}{4} \left( \begin{array}{cc}\cos ^2\gamma &{}\cos ^2\gamma \\ (\cos \frac{\gamma }{2}-\sin \frac{\gamma }{2})^4 &{} (\cos \frac{\gamma }{2}+\sin \frac{\gamma }{2})^4 \end{array}\right) \), which are equal to \(p^{\hat{\mathcal M},\hat{U}(\pi /2, 0)}_A(0,0)\!=\!\frac{1}{4}(11+ 3\sin ^2\gamma - 6\sin \gamma )\), and \(p^{\hat{\mathcal M},\hat{U}(\pi /2, 0)}_B(0,0)\!=\!\frac{1}{4}(11 - 5\sin ^2\gamma + 2\sin \gamma )\). In both games it is \(p_A^{\hat{\mathcal M},\hat{U}(\pi /2, 0)}(0,0)=p_B^{\hat{\mathcal M},\hat{U}(\pi /2, 0)}(0,0)=11/4\) at \(\gamma =0\), and \(p_B^{\hat{\mathcal M},\hat{U}(\pi /2, 0)}(0,0)>p_A^{\hat{\mathcal M},\hat{U}(\pi /2, 0)}(0,0)\), even for \(\gamma =\pi /2\) in the \(\{\hat{\mathcal W},\hat{U}(\pi /2, 0)\}\) game, whereas \(p_A^{\hat{\mathcal M},\hat{U}(\pi /2, 0)}(0,0)=p_B^{\hat{\mathcal M},\hat{U}(\pi /2, 0)}(0,0)=2\) in the \(\{\hat{\mathcal M},\hat{U}(\pi /2, 0)\}\) game.

  6. It is \( \Pi ^{\mathcal M,\mathcal D}_u (0,0) = \frac{1}{2} \left( \begin{array}{cc} 0&{} \sin ^2\gamma \\ \cos ^2\gamma &{} 1\end{array}\right) \), which renders the payoffs \(p_{_{\texttt {A}}}^{\mathcal M,\mathcal D}(0, 0)= \frac{1}{2}\left[ (\mathfrak {T}-S)\sin ^2\gamma + P+S\right] ,\) and \(p_{_{\texttt {B}}}^{\mathcal M,\mathcal D}(0,0)= \frac{1}{2}\left[ (S-\mathfrak {T})\sin ^2\gamma + P+\mathfrak {T}\right] .\)

  7. The values of \((p_A,p_B)\) at \(\gamma =\pi /2\) in the \((\hat{\mathcal M},\hat{\mathcal D})\) two-player game, and those of \((\overline{p}_A,\overline{p}_B)\) in the CA simulations of Fig. 3 are (from top to bottom): (3.125, 2.125), (3.042, 2.181); (3.203, 1.996), (3.110, 2.071); (3.280, 1.866), (3.166, 1.944).

References

  1. Eisert, J., Wilkens, M., Lewenstein, M.: Quantum games and quantum strategies. Phys. Rev. Lett. 83(15), 3077–3080 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Alonso-Sanz, R.: On a three-parameter quantum battle of the sexes cellular automaton. Quantum Inf. Process. 12(5), 1835–1850 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Alonso-Sanz, R.: A quantum battle of the sexes cellular automaton. Proc. R. Soc. A 468, 3370–3383 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Huang, Z., Alonso-Sanz, R., Situ, H.: Quantum Samaritan’s dilemma under decoherence. Int. J. Theor. Phys. 56(3), 863–873 (2017)

    Article  MATH  Google Scholar 

  5. Alonso-Sanz, R., Situ, H.: A quantum Samaritan’s dilemma cellular automaton. R. Soc. Open Sci. 4(6), 863–160669 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ozdemir, S.K., Shimamura, J., Morikoshi, F., Imoto, N.: Dynamics of a discoordination game with classical and quantum correlations. Phys. Lett. A 333, 218–231 (2004)

    Article  ADS  MATH  Google Scholar 

  7. Du, J.F., Li, H., Xu, X., Shi, M., Wi, J., Zhou, X., Han, R.: Experimental realization of quantum games on a quantum computer. Phys. Rev. Lett. 88(13), 137902 (2002)

    Article  ADS  Google Scholar 

  8. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  9. Ramzan, M., Nawaz, A., Toor, A.H., Khan, M.K.: The effect of quantum memory on quantum games. J. Phys. A Math. Theor. 41, 055307 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Owen, G.: Game Theory. Academic Press, Cambridge (1995)

    MATH  Google Scholar 

  11. Benjamin, S.C., Hayden, P.M.: Comment on “Quantum games and quantum strategies”. Phys. Rev. Lett. 87, 069801 (2001)

    Article  ADS  Google Scholar 

  12. Benjamin, S.C., Hayden, P.M.: Multiplayer quantum games. Phys. Rev. A 64, 030301 (2001)

    Article  ADS  Google Scholar 

  13. Eisert, J., Wilkens, M., Lewenstein, M.: Comment on “Quantum games and quantum strategies”—reply. Phys. Rev. Lett. 87, 069802 (2001)

    Article  ADS  Google Scholar 

  14. Eisert, J., Wilkens, M.: Quantum games. J. Mod. Opt. 47(14–15), 2543–2556 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Alonso-Sanz, R.: Spatial correlated games. R. Soc. Open Sci. 4(6), 171361 (2017). https://doi.org/10.1098/rsos.171361

    Article  Google Scholar 

  16. Zhang, S. (2012). Quantum strategic game theory. In: Proceedings of the 3rd Innovations in Theoretical Computer Science Conference (ITCS ’12). ACM, New York. ISBN: 978-1-4503-1115-1

  17. Brunner, N., Linden, N.: Connection between nonlocality and Bayesian game theory. Nat. Commun. 4, 2057 (2013)

    ADS  Google Scholar 

  18. Pappa, A., Kumar, N., Lawson, T., Santha, M., Zhang, S., Diamanti, E., Kerenidis, I.: Nonlocality and conflicting interest games. Phys. Rev. Lett. 114, 020401 (2015)

    Article  ADS  Google Scholar 

  19. Yin, J., et al.: Satellite-based entanglement distribution over 1200 kilometers. Science 356, 1140 (2017)

    Article  Google Scholar 

  20. Schiff, J.L.: Cellular Automata: A Discrete View of the World. Wiley, London (2008)

    MATH  Google Scholar 

  21. Du, J.F., Xu, X.D., Li, H., Zhou, X., Han, R.: Entanglement playing a dominating role in quantum games. Phys. Lett. A 89(1–2), 9–15 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Du, J.F., Li, H., Xu, X.D., Zhou, X., Han, R.: Phase-transition-like behaviour of quantum games. J. Phys. A Math. Gen. 36(23), 6551–6562 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Alonso-Sanz, R.: On the effect of quantum noise in a quantum prisoner’s dilemma cellular automaton. Quantum Inf. Process. 16(6), 161 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Alonso-Sanz, R.: Variable entangling in a quantum prisoner’s dilemma cellular automaton. Quantum Inf. Process. 14(1), 147–164 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Alonso-Sanz, R.: A quantum prisoner’s dilemma cellular automaton. Proc. R. Soc. A 470, 20130793 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Flitney, A.P., Abbott, D.: Advantage of a quantum player over a classical one in \(2\times 2\) quantum games. Proc. R. Soc. Lond. A 459(2038), 2463–2474 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Flitney, A.P., Abbott, D.: Quantum games with decoherence. J. Phys. A Math. Gen. 38(2), 449 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Alonso-Sanz, R., Situ, H.: On the effect of quantum noise in a quantum relativistic prisoner’s dilemma cellular automaton. Int. J. Theor. Phys. 55(12), 5265–5279 (2016)

    Article  MATH  Google Scholar 

  29. Alonso-Sanz, R., Situ, H.: On the effect of quantum noise in a quantum relativistic battle of the sexes cellular automaton. Phys. A 468, 267–277 (2016)

    Article  MATH  Google Scholar 

  30. Alonso-Sanz, R.: Dynamical Systems with Memory. World Scientific, Singapore (2011)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

This work has been funded by the Spanish Grant MTM2015-63914-P. Part of the computations of this work were performed in EOLO, an HPC machine of the International Campus of Excellence of Moncloa, funded by the UCM and Feder Funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramón Alonso-Sanz.

Appendix

Appendix

The thresholds for a fair quantum game played with the (5, 3, 2, 1)-PD parameters and a noise strength equal to \( \mu = 0.5\) are given as a function of the memory factor \(\eta \) by

$$\begin{aligned} \gamma _{0.5,\eta }^*&= 2\arcsin \left( \frac{2}{\sqrt{18+(10\sqrt{2} - 9) \eta + \sqrt{196 + (280 \sqrt{2} -244) \eta + ( 281 - 180 \sqrt{2} ) \eta ^2}}}\right) , \\ \gamma _{0.5,\eta }^\bullet&= 2\arcsin \left( \frac{2 \sqrt{2}}{\sqrt{20+(10\sqrt{2} - 11) \eta + \sqrt{144 + 40 (6 \sqrt{2} - 7) \eta + ( 321 - 220 \sqrt{2} ) \eta ^2 }}}\right) . \end{aligned}$$
(A.1a)

For the unfair quantum versus classical case, the lowest threshold is given by Eq. (A.1a), while the largest one equals

$$\begin{aligned} \gamma _{0.5,\eta }^\bullet = 2\arcsin \left( \frac{2 \sqrt{2}}{\sqrt{16+(6\sqrt{2} - 7) \eta + \sqrt{64 + (96 \sqrt{2} - 128) \eta + ( 121 - 84 \sqrt{2} ) \eta ^2 }}}\right) . \end{aligned}$$
(A.1b)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alonso-Sanz, R., Revuelta, F. On the effect of memory in a quantum prisoner’s dilemma cellular automaton. Quantum Inf Process 17, 60 (2018). https://doi.org/10.1007/s11128-018-1823-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1823-z

Keywords

Navigation