Skip to main content
Log in

Faithful qubit transmission in a quantum communication network with heterogeneous channels

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

A Correction to this article was published on 01 February 2020

This article has been updated

Abstract

Quantum communication networks enable long-distance qubit transmission and distributed quantum computation. In this paper, a quantum communication network with heterogeneous quantum channels is constructed. A faithful qubit transmission scheme is presented. Detailed calculations and performance analyses show that even in a low-quality quantum channel with serious decoherence, only modest number of locally prepared target qubits are required to achieve near-deterministic qubit transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

  • 01 February 2020

    The original version of this article unfortunately contained a spelling mistake in the first author’s affiliation. The university name “Shangdong University of Science and Technology” should be amended to “Shandong University of Science and Technology”. The correct affiliations are given below.

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Barz, S., Kashefi, E., Broadbent, A., et al.: Demonstration of blind quantum computing. Science 335, 303 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  3. Cirac, J.I., Zoller, P., Kimble, H.J., Mabuchi, H.: Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221 (1997)

    Article  ADS  Google Scholar 

  4. Kimble, H.J.: The quantum internet. Nature 453, 1023 (2008)

    Article  ADS  Google Scholar 

  5. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  6. Cheng, S.T., Wang, C.Y., Tao, M.H.: Quantum communication for wireless wide-area networks. IEEE J. Sel. Area Commun. 23, 1424 (2005)

    Article  Google Scholar 

  7. Zhou, N.R., Zeng, G.H., Zhu, F.C., Liu, S.Q.: The quantum synchronous communication protocol for two-army problem. J. Shanghai Jiaotong Univ. 40, 1885 (2006)

    MATH  Google Scholar 

  8. Bacinoglu, T., Gulbahar, B., Akan, O,B.: Constant fidelity entanglement flow in quantum communication networks. In: Proceedings of IEEE GLOBECOM 2010, Miami, USA (2010)

  9. Yu, X.T., Xu, J., Zhang, Z.C.: Routing protocol for wireless ad hoc quantum communication network based on quantum teleprotation. Acta Phys. Sin. 61, 220303 (2012)

    Google Scholar 

  10. Wang, K., Yu, X.T., Lu, S.L., Gong, Y.X.: Quantum wireless multihop communication based on arbitrary Bell pairs and teleportation. Phys. Rev. A 89, 022329 (2014)

    Article  ADS  Google Scholar 

  11. Yu, X.T., Xu, J., Zhang, Z.C.: Distributed wireless quanutm communication networks. Chin. Phys. B 22, 090311 (2013)

    Article  ADS  Google Scholar 

  12. Yu, X.T., Zhang, Z.C., Xu, J.: Distributed wireless quantum communication networks with partially entangled pairs. Chin. Phys. B 23, 010303 (2014)

    Article  ADS  Google Scholar 

  13. Chen, N., Quan, D.X., Pei, C.X., Yang, H.: Quantum communication for satellite-to-ground networks with partially entangled states. Chin. Phys. B 24, 020304 (2015)

    Article  ADS  Google Scholar 

  14. Sun, Q.C., Mao, Y.L., Chen, S.J., et al.: Quantum teleportation with independent sources and prior entanglement distribution over a network. Nat. Photonics 10, 671 (2016)

    Article  ADS  Google Scholar 

  15. Grosshans, F.: Quantum communications: teleportation becomes streetwise. Nat. Photonics 10, 623 (2016)

    Article  ADS  Google Scholar 

  16. Li, W.L., Li, C.F., Guo, G.C.: Probabilistic teleportation and entanglement matching. Phys. Rev. A 61, 034301 (2000)

    Article  ADS  Google Scholar 

  17. Gour, G.: Faithful teleportation with partially entangled states. Phys. Rev. A 70, 042301 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  18. Modławska, L.J., Grudka, A.: Nonmaximally entangled states can be better for multiple linear optical teleportation. Phys. Rev. Lett. 100, 110503 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  19. Rigolin, G.J.: Unity fidelity multiple teleportation using partially entangled states. J. Phys. B At. Mol. Opt. Phys. 42, 235504 (2009)

    Article  ADS  Google Scholar 

  20. Fortes, R., Rigolin, G.: Improving the efficiency of single and multiple teleportation protocols based on the direct use of partially entangled states. Ann. Phys. 336, 517 (2013)

    Article  ADS  Google Scholar 

  21. Choudhury, B.S., Dhara, A.: Probabilistically teleporting arbitrary two-qubit states. Quantum Inf. Process. 15, 5063 (2016)

    Article  ADS  Google Scholar 

  22. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  23. Bennett, C.H., Brassard, G., Popescu, S., et al.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722 (1996)

    Article  ADS  Google Scholar 

  24. Vollbrecht, K.G.H., Verstraete, F.: Interpolation of recurrence and hashing entanglement distillation protocols. Phys. Rev. A 71, 062325 (2005)

    Article  ADS  Google Scholar 

  25. Hostens, E., Dehaene, J., Moor, B.D.: Hashing protocol for distilling mulpartite Calderbank–Shor–Steane states. Phys. Rev. A 73, 042316 (2006)

    Article  ADS  Google Scholar 

  26. Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics. Phys. Rev. A 77, 062325 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grants No. 61701285), Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents (No. 2017RCJJ070).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Na Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, N., Zhang, L.X. & Pei, C.X. Faithful qubit transmission in a quantum communication network with heterogeneous channels. Quantum Inf Process 17, 79 (2018). https://doi.org/10.1007/s11128-018-1843-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1843-8

Keywords

Navigation