Skip to main content
Log in

An approach for quantitatively analyzing the genuine tripartite nonlocality of general three-qubit states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Nonlocality is an important resource for quantum information processing. Genuine tripartite nonlocality, which is sufficiently confirmed by the violation of Svetlichny inequality, is a kind of more precious resource than the standard one. The genuine tripartite nonlocality is usually quantified by the amount of maximal violation of Svetlichny inequality. The problem of detecting and quantifying the genuine tripartite nonlocality of quantum states is of practical significance but still open for the case of general three-qubit quantum states. In this paper, we quantitatively investigate the genuine nonlocality of three-qubit states, which not only include pure states but also include mixed states. Firstly, we derive a simplified formula for the genuine nonlocality of a general three-qubit state, which is a function of the corresponding three correlation matrices. Secondly, we develop three properties of the genuine nonlocality which can help us to analyze the genuine nonlocality of complex states and understand the nature of quantum nonlocality. Further, we get analytical results of genuine nonlocality for two classes of three-qubit states which have special correlation matrices. In particular, the genuine nonlocality of generalized three-qubit GHZ states, which is derived by Ghose et al. (Phys. Rev. Lett. 102, 250404, 2009), and that of three-qubit GHZ-symmetric states, which is derived by Paul et al. (Phys. Rev. A 94, 032101, 2016), can be easily derived by applying the strategy and properties developed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Bell, J.S.: On the Einstein Podolsky Rosen paradox. Physics 1(3), 195–200 (1964)

    Article  Google Scholar 

  2. Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V., Wehner, S.: Bell nonlocality. Rev. Mod. Phys. 86(2), 419–478 (2014)

    Article  ADS  Google Scholar 

  3. Buhrman, H., Cleve, R., Massar, S., Wolf, R.D.: Nonlocality and communication complexity. Rev. Mod. Phys. 82(1), 665–698 (2010)

    Article  ADS  Google Scholar 

  4. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bells theorem. Phys. Rev. Lett. 68(5), 557–559 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Dhara, C., Prettico, G., Acin, A.: Maximal quantum randomness in Bell tests. Phys. Rev. A 88, 052116 (2013)

    Article  ADS  Google Scholar 

  6. Barrett, J., Hardy, L., Kent, A.: No signaling and quantum key distribution. Phys. Rev. Lett. 95, 010503 (2005)

    Article  ADS  Google Scholar 

  7. Clauser, J.F., Horne, M.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23(15), 880–884 (1969)

    Article  ADS  MATH  Google Scholar 

  8. Brunner, N., Gisin, N., Scarani, V.: Entanglement and non-locality are different resources. New J. Phys. 7, 88 (2005)

    Article  ADS  Google Scholar 

  9. Gisin, N., Peres, A.: Maximal violation of Bell’s inequality for arbitrarily large spi. Phys. Lett. A 162, 15–17 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  10. Werner, R.F.: Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277–4281 (1989)

    Article  ADS  MATH  Google Scholar 

  11. Horodecki, R., Horocecki, P., Horodecki, M.: Violating Bell inequality by mixed spin-1/2 states: necessary and sufficient condition. Phys. Lett. A 200, 340–344 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Svetlichny, G.: Distinguishing three-body from two-body nonseparability by a Bell-type inequality. Phys. Rev. D 35(10), 3066–3069 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  13. Bancal, J.D., Barrett, J., Nicolas Gisin, N., Pironio, S.: Definitions of multipartite nonlocality. Phys. Rev. A 88, 014102 (2013)

    Article  ADS  Google Scholar 

  14. Lavoie, J., Kaltenbaek, R., Resch, K.J.: Experimental violation of Svetlichnys inequality. New J. Phys. 11, 073051 (2009)

    Article  ADS  Google Scholar 

  15. Ghose, S., Sinclair, N., Debnath, S., Rungta, P., Stock, R.: Tripartite entanglement versus tripartite nonlocality in three-qubit GHZ states. Phys. Rev. Lett. 102, 250404 (2009)

    Article  ADS  Google Scholar 

  16. Ajoy, A., Rungta, P.: Svetlichny’s inequality and genuine tripartite nonlocality in three-qubit pure states. Phys. Rev. A 81, 052334 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  17. Paul, B., Mukherjee, K., Sarkar, D.: Nonlocality of three-qubit Greenberger–Horne–Zeilinger-symmetric states. Phys. Rev. A 94, 032101 (2016)

    Article  ADS  Google Scholar 

  18. Li, M., Shen, S., Jing, N., Fei, S., Li-Jost, X.: Tight upper bound for the maximal quantum value of the Svetlichny operators. Phys. Rev. A 96, 042323 (2017)

    Article  ADS  Google Scholar 

  19. Su, Z.: Generating tripartite nonlocality from bipartite resources. Quantum Inf. Process. 16(2), 28 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Eltschka, C., Siewert, J.: Entanglement of three-qubit Greenberger–Horne–Zeilinger-symmetric states. Phys. Rev. Lett. 108, 020502 (2012)

    Article  ADS  Google Scholar 

  21. Siewert, J., Eltschka, C.: Quantifying tripartite entanglement of three-qubit generalized Werner states. Phys. Rev. Lett. 108, 230502 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author is delighted to thank Professor Yuan Feng for illuminating and fruitful discussions in the last four years which helps Zhaofeng to lay solid foundations for further research. This research is partially supported by National Key R&D Program of China (Grant No. 2016YFB0200602), Chinese Scholarship Council (Grant No. 201206270069), Australian Research Council (Grant No. DP160101652) and National Natural Science Foundation of China (Grant Nos. 61472452 and 61772565).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaofeng Su.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Z., Li, L. & Ling, J. An approach for quantitatively analyzing the genuine tripartite nonlocality of general three-qubit states. Quantum Inf Process 17, 85 (2018). https://doi.org/10.1007/s11128-018-1852-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1852-7

Keywords

Navigation