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We present a thorough investigation of the phenomena of frozen and time-invariant quantum discord for two-

qubit systems independently interacting with local reservoirs. Our work takes into account several significant

effects present in decoherence models, which have not been yet explored in the context of time-invariant quan-

tum discord, but which in fact must be typically considered in almost all realistic models. Firstly, we study the

combined influence of dephasing, dissipation and heating reservoirs at finite temperature. Contrarily to previous

claims in the literature, we show the existence of time-invariant discord at high temperature limit in the weak

coupling regime, and also examine the effect of thermal photons on the dynamical behaviour of frozen discord.

Secondly, we explore the consequences of having initial correlations between the dephasing reservoirs. We

demonstrate in detail how the time-invariant discord is modified depending on the relevant system parameters

such as the strength of the initial amount of entanglement between the reservoirs.

PACS numbers: 03.65.Yz, 42.50.Lc, 03.65.Ud, 05.30.Rt

I. INTRODUCTION

Quantum theory is undoubtedly a cornerstone of modern

physics and one of the pillars of all natural sciences. Even

though it is a century old, some of its counter intuitive fea-

tures have been started to be exploited on a fundamental level,

only for the last two decades, with the emergence of the quan-

tum information science and quantum computation theory [1].

Quantum algorithms and quantum communication protocols

have the potential to offer tremendous advantage over their

corresponding classical counter parts. Genuine quantum cor-

relations among the constituents of quantum systems are con-

sidered as the main resource for quantum technologies. Al-

though the concept of quantum entanglement has been the

only resource for almost all known quantum information tasks

for many years [2], several other quantifiers of genuine quan-

tum correlations have been introduced in recent years. Among

them, quantum discord has stood out and been extensively

studied in the recent literature for its role as a significant alter-

native resource for quantum technologies [3]. However, quan-

tum systems are extremely fragile in real world conditions as

they tend to rapidly lose their characteristic quantum features,

such as quantum correlations, and become classical by uncon-

trollably interacting with their environment [4].

Therefore, one of the major challenges for the practical im-

plementation of quantum technologies is the development of

reliable methods to retaliate or avoid the destructive effects of

this unavoidable system-environment interaction. One way

of protecting the precious quantum correlations in the sys-

tem is to actively modify the properties of quantum processes,

through the use of various methods such as dynamical decou-
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pling techniques, to counter the effects of decoherence [5–

7]. On the other hand, an alternative strategy is to initiate our

system in an appropriate state depending on the properties of

the system-environment interaction such that quantum corre-

lations in the system become frozen for a certain time interval

despite the detrimental effects of the environment. It has been

demonstrated both theoretically [8] and experimentally [9, 10]

that, under a suitable setting, quantum correlations quantified

by quantum discord might become frozen while classical cor-

relations keep decaying until a critical time is reached. At

this point, a sudden transition takes place, classical correla-

tions freeze and quantum discord begins to diminish, giving

rise to a curious phenomenon known as the sudden transition

between classical and quantum decoherence.

Frozen quantum discord has been first shown to occur in

a Markovian pure dephasing model, where a bipartite system

interacts with two independent environments, for a family of

Bell-diagonal initial states [8]. Later on, it has been found out

that multiple intervals of frozen discord can emerge during

the dynamics under a non-Markovian random telegraph noise

setting [11]. Even more remarkably, it has been revealed for

a dephasing model with an ohmic type spectral density that

quantum discord can in fact become forever frozen throughout

the time evolution of the system, that is, no sudden transition

point exists and discord becomes time-invariant, remaining

constant at its initial value at all times [12]. The existence of

time-invariant discord is known to be inherently related with

the emergence of non-Markovian memory effects.

Even though a lot of effort has put into the exploration of

frozen and time-invariant discord phenomena, possible effects

of a general non-Markovian noise setting, including the influ-

ences of dephasing, dissipation and heating channels, has not

been investigated in the literature. Another unexplored prob-

lem is related to the consequences of having initial correla-

tions between the environments for the occurrence of frozen

and time-invariant discord. In other words, the main questions

http://arxiv.org/abs/1703.09404v1
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that we aim to answer in this work are the following: How are

the properties of frozen discord affected by the presence of

thermal reservoirs and what is the influence of thermal pho-

tons on this phenomenon? How is the frozen behaviour of

quantum discord modified in case we initially have correla-

tions between the environments? Specifically, here we will

consider bipartite quantum systems initially prepared in Bell-

diagonal states. Studying two different decoherence mod-

els, i.e., firstly a quite general combination of independent

non-Markovian two-qubit dephasing, dissipation and heating

channels at the high temperature limit, and secondly a two-

qubit dephasing channel with initial environmental correla-

tions, we will extensively explore the characteristics of the

frozen and time-invariant discord phenomena. Our results in-

deed reveal the actual behaviour of time-invariant and frozen

discord in decoherence models having realistic effects.

This paper is structured as follows. The concept of quan-

tum discord is introduced in Sec. II. The time-invariant dis-

cord is investigated in the high temperature limit in Sec. III

and the effects of various parameters of the environment on

its existence is discussed. Sev. IV deals with the possible in-

fluences of initial environmental correlations on the behaviour

of time-invariant discord. Sec. V includes the summary of our

outcomes and our conclusion.

II. QUANTUM DISCORD

Before investigating some of the remarkable dynamical

properties of quantum discord under decoherence channels,

let us first briefly introduce its definition. The sum of classical

and quantum correlations present in a bipartite quantum state

can be measured with the help of quantum mutual information

I(ρAB) = S(ρA) + S(ρB)− S(ρAB), (1)

where ρk (k = A,B) and ρAB are respectively the reduced

density matrices of the subsystems and the total system, with

S(ρ) = −Tr(ρlog2ρ) being the von-Neumann entropy. Clas-

sical correlations in a bipartite quantum system, on the other

hand, can be quantified as [13]

C(ρAB) = sup
{Πk}

(S(ρA)− S(ρ|{Πk})), (2)

where the optimization is evaluated over all projective mea-

surements {Πk}, performed locally on the subsystem B. The

quantum conditional entropy with respect to this measurement

is then given by S(ρ|{Πk}) =
∑

k PkS(ρk), where the con-

ditional density operator ρk associated with the measurement

result k can be written as

ρk =
(I ⊗Πk)ρ(I ⊗Πk)

PK
(3)

with the probability Pk = Tr[(I ⊗ Πk)ρ(I ⊗ Πk)]. The

amount of genuine quantum correlations quantified by the

quantum discord can then be expressed as [14]

D(ρAB) = I(ρAB)− C(ρAB). (4)

Although it can be in general a very difficult task to ana-

lytically calculate quantum discord, for the bipartite quantum

states that we will consider in this work, analytical expres-

sions are available. In particular, assuming we have a bipartite

density matrix in the following X-shaped form

ρ =







a 0 0 d
0 b w 0
0 w b 0
d 0 0 d






, (5)

where the off-diagonal terms are real numbers, quantum dis-

cord can be evaluated analytically [15]. It is given by

D(ρ) = min{D1, D2}, (6)

where the minimum is simply calculated for the terms

D1 =S(ρA)− S(ρAB)− a log2(
a

a+ b
)− b log2(

b

a+ b
)

−b log2(
b

d+ b
)− d log2(

d

d+ b
),

D2 =S(ρA)− S(ρAB)−∆+log2∆+ −∆−log2∆−,

where ∆± = 1
2 (1±M) and M2 = (a− d)2 + 4(|z|+ |w|)2.

III. TIME-INVARIANT DISCORD AT THE HIGH

TEMPERATURE LIMIT

We commence this section by introducing a heuristic model

where a qubit is coupled to a composite reservoir including the

effects of dephasing, dissipation and heating [16, 17]. Let us

consider the following time-local master equation

dρ

dt
=

−i
2
(ω + h(t))[σz , ρ] +

γz(t)

2
[σzρσz − ρ]

+
γ1(t)

2
(σ+ρσ− − 1

2
{σ−σ+, ρ})

+
γ2(t)

2
(σ−ρσ+ − 1

2
{σ+σ−, ρ}), (7)

with σ± being the raising and lowering operators of the qubit,

σz the Pauli spin operator in the z-direction, ω the transition

frequency of the qubit, h(t) a time-dependent frequency shift,

and γ1,2,z time-dependent decay rates. While the first term de-

scribes the Lamb shift corrections to the free Hamiltonian, the

second, third and the fourth terms describe dephasing, heat-

ing, and dissipation, respectively. The state of the qubit at

time t can then be written as ρ(t) = Λω(t)ρ(0), where ρ(0) is

the initial state and Λω(t) is given by

Λω(t) =







1 0 0 0
0 η⊥(t) cos(φ(t)) −η⊥(t) sin(φ(t)) 0
0 η⊥(t) sin(φ(t)) η⊥(t) cos(φ(t)) 0
κ(t) 0 0 η‖(t)






,

(8)
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where the elements of the above matrix Λω(t) read

φ(t) = ωt+ θ(t),

η‖ = e−Γ(t),

η⊥ = e−Γ(t)/2−Γz(t),

κ(t) = −e−Γ(t)(1 + 2G(t)) + 1, (9)

and the four terms appearing in Eq. (9) are expressed as

θ(t) =

∫ t

0

dt′h(t′),

Γ(t) =

∫ t

0

dt′ (γ1(t
′) + γ2(t

′))/2,

Γz(t) =

∫ t

0

dt′ γz(t
′),

G(t) =

∫ t

0

dt′ eΓ(t
′)γ2(t

′)/2. (10)

In this work, we ignore the effect of the first term in Eq.

(7) and focus on a thermal reservoir at temperature T . We

assume that the heating and the dissipation decay rates are

respectively given by γ1(t)/2 = (N)f(t) and γ2(t)/2 =
(N + 1)f(t), where N represents the mean number of pho-

tons in the modes of the thermal reservoir at temperature

T . We note that, in case of a zero temperature reservoir,

the heating rate vanishes, that is, γ1(t) = 0, and the dis-

sipation rate is simply given by γ2(t)/2 = f(t). For the

model considered in our study, the spectral density is taken as

J(ω) = γ0λ
2/2π[(ω0 −∆−ω)2 + λ2], where γ0 is an effec-

tive coupling constant which is related to the relaxation time

of the system τR ≈ 1/γ0 and λ is the width of the Lorentzian

spectrum that is connected to the reservoir correlation time

τB ≈ 1/λ. Additionally, ∆ = ω − νc is the detuning of ω
and νc is the centeral frequency of the thermal reservoir. It is

worth noting that the effective coupling between the qubit and

its environment decreases when the value of the detuning ∆
increases [18]. Taking into account these considerations, the

function f(t) can be written in the following form [17]

f(t) = −2ℜ{ Ċ(t)
C(t)

},

C(t) = e−(λ−i∆)t/2(cosh(
dt

2
) +

λ− i∆

d
sinh(

dt

2
))C(0),

(11)

with d =
√

(λ− i∆)2 − 2γ0λ. We can also defineR = γ0/λ
in order to distinguish the strong coupling regime from the

weak coupling regime. It has been demonstrated that in the

weak coupling regime, R ≪ 1, for sufficiently large detun-

ings, the function f(t) might take on negative values within

certain time intervals, hence the dynamics of the qubit be-

comes nondivisible and non-Markovian [19].

Supposing that the dephasing reservoir is at temperature T ,

then the time-dependent dephasing rate takes the form

γz(t) =

∫

dωJ(ω) coth(~ω/2kBT )
sin(ωt)

ω
. (12)

In the high temperature limit, the above equation simply reads

γz(t) =
2kBT

~

∫

dωJ(ω)
sin(ωt)

ω2
, (13)

where ωT = kBT/~ is the thermal frequency and we assume

that the spectral density is of the ohmic type, i.e., J(ω) =
α(ωs/ωs−1

c )e−ω/ωc , with ωc being the cutoff frequency, s the

Ohmicity parameter, and α the coupling constant. In addition,

γz(t) takes temporarily negative values provided s > scrit =
3. Therefore, if we have a super-Ohmic spectral density with

s > 3, information can flow back form the environment to the

system giving rise to memory effects [12].

Consequently, with the help of Eqs. (10-13), one can obtain

the following expressions to fully describe the dynamics of a

qubit coupled to the considered reservoirs,

Γ(t) = −ℜ[ln(x(t)2N+1)],

Γz(t) = α
2kBT

~ ωc
Γ̃(−2 + s)(1 − (1 + ω2

c t
2)(−s+2)/2

× cos((−2 + s) arctan(ωc t))),

κ(t) =
−1

2N + 1
(1 − exp[−ℜ[ln(x(t)2N+1)]]), (14)

where x(t) = {C(t)/C(0)}2, Γ̃(s) is the Euler gamma func-

tion. The memory time of the dephasing environment can be

defined by ω−1
c . As a consequence, we can define β = ωc/λ

to characterize the relation between the cut-off frequency of

the dephasing environment and the width of the Lorentzian

spectrum of the thermal reservoir.

We have dealt with the description of the dynamics of a sin-

gle qubit up to this point in our paper. Let us now suppose that

we have a bipartite quantum system composed of two identi-

cal qubits, labelled as A and B, that are locally coupled to

their own environments. We also assume that the individual

environments are identical and not correlated with each other.

Hence, it is possible to obtain the time evolution of the two-

qubit system from the single qubit dynamics in a straightfor-

ward fashion as ρAB(t) = (ΛA
ω (t) ⊗ ΛB

ω (t))ρ
AB(0). In the

course of our work, we choose the initial state of the two-qubit

open system in the form of Bell-diagonal states

ρS(0) =
1

4
(I ⊗ I +

3
∑

i=0

miσi ⊗ σi), (15)

where mi are three real number such that −1 ≤ mi ≤ 1,

and σi are the Pauli spin operators in the x,y and z directions.

Therefore, the time-evolution of our system is given by

ρS(t) =







ρ11 0 0 ρ14
0 ρ22 ρ23 0
0 ρ23 ρ33 0
ρ14 0 0 ρ44






, (16)
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where the density matrix elements can be evaluated as

ρ11 =
1

4
((1 + κ(t))2 + η2‖(t)m3),

ρ22 = ρ33 =
1

4
(1− κ(t)2 − η2‖(t)m3),

ρ44 =
1

4
((1− κ(t))2 + η2‖(t)m3),

ρ23 =
m1 +m2

4
η2⊥(t),

ρ14 =
m1 −m2

4
η2⊥(t). (17)

A. Pure Dephasing

In this subsection, we will only consider the pure dephas-

ing case at the high temperature limit in the weak coupling

regime, when the two qubits interact with independent reser-

voirs. We choose the initial state of our two-qubit system from

a family of Bell-diagonal states, namely, from the states given

by Eq. (15) having the three real parameters m1 = 1 and

m2 = −m3 = m, with |m| < 1. For such initial states and

in the presence of pure dephasing dynamics, classical corre-

lations and mutual information can be written in a compact

form in the following way

C(ρAB) =
2

∑

j=1

1 + (−1)jχ(t)

2
log2[1 + (−1)jχ(t)], (18)

I(ρAB(t)) =

2
∑

j=1

1 + (−1)jm

2
log2[1 + (−1)jm]

+

2
∑

j=1

1 + (−1)je−2Γz(t)

2
log2[1 + (−1)je−2Γz(t)],

(19)

with χ(t) = max{e−2Γz(t),m}, and thus quantum discord

D(ρAB) can be simply evaluated from their difference. Using

these equations, one can define a transition time t̃ as

e−2Γz(t̃) = m, (20)

below which (t < t̃) quantum discord remains completely un-

affected by the noise and classical correlations decay. On the

other hand, after this critical time point (t > t̃), classical cor-

relations freeze and discord starts to decrease. Let us now

assume that α = ~ωc/2kBT in the second line of Eq. (14)

and hence Γz(t) is independent of the temperature. With this

consideration in mind, as we are working at the high temper-

ature limit, i.e., 2kBT ≫ ~ωc, the coupling between the open

system and its environment will be weak.

Dynamical behaviours of the quantum discord (dashed red

line) and the classical correlations (dotted-dashed green line)

are plotted in Figs. 1(a) and 1(b) as a function of ωct for

the ohmicity parameters s = 2.5 and s = 3.5, respectively,

where the initial state is chosen as m = 0.1. Since we work

at the high temperature limit in the weak coupling regime,

FIG. 1: (Color online) Dynamics of classical and quantum correla-

tions for independent pure dephasing environments as a function of

the scaled time ωct for the initial states having m = 0.1. (a) Marko-

vian (s = 2.5) and (b) Non-Markovian (s = 3.5) dynamics.

we consider that α = 0.01 and 2kBT/~ωc = 100. Note

that for the non-Markovian memory effects to emerge at the

high temperature limit, the ohmicity parameter should satisfy

the condition s ≥ 3. Looking at Fig. 1, we clearly see that

whereas we have frozen discord for a finite time interval in

case of Markovian dynamics, time-invariant discord can be

observed for non-Markovian evolution. In other words, while

Eq. (20) has a solution for s = 2.5, there exists no solution for

it when s = 3.5, giving rise to time-invariant discord. There-

fore, we find out that the inherent connection between the non-

Markovianity and the occurrence of time-invariant discord, as

first explained in Ref. [12], still holds at the high temperature

limit. However, contrarily to what has been claimed in Ref.

[12], there indeed exists s and m even at the high temperature

limit, such that the condition given in Eq. (20) is never sat-

isfied and the phenomenon of time-invariant discord can still

be observed. We emphasize that the key point here leading

the emergence of time-invariant discord at the high tempera-

ture limit is the fact that we are working in the weak coupling

regime as no such phenomenon would be present if the cou-

pling was strong.

In Fig. 2(a), we display the outlook of correlation dynam-

ics in the presence of independent pure dephasing reservoirs

in the s − ωct plane. From this plot, one can see the range

of values for s and ωct for which Eq. (20) has a solution

(frozen discord and sudden transition), and for which it does

not have a solution (time-invariant discord). The intersection

between the quantum and classical decoherence regions, as re-

spectively shown by pink (dark gray) and yellow (gray) areas

in the figure, correspond to the sudden transition point, after
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which point quantum discord begins to decay. Fig. 2(b) dis-

plays the asymptotic long-time limit for the transition condi-

tion given in Eq. (20). Yellow shaded (gray) region in the fig-

ure demonstrates the area defined by the values of the ohmic-

ity parameter s and the initial state parameter m for which

the phenomenon of time-invariant discord exists at the high

temperature limit. Outside the yellow shaded region one will

always see a sudden transition from classical to quantum de-

coherence and thus quantum discord can be frozen only for a

finite time interval.

B. Dissipation and Heating

This section deals with the dynamics of quantum dis-

cord for two qubits independently interacting with dissipa-

tion/heating reservoirs. Using the analytical expression given

in Eq. (6), we present a plot of the time-evolution of quan-

tum discord as a function of λt in Fig. 3. We consider the

weak coupling regime with the parameter R = 0.01 and the

initial Bell-diagonal state with m = 0.1. We also recall that

in the weak coupling regime, Markovian dynamics emerge in

FIG. 2: (Color online) (a) Landscape of correlation dynamics in the

(s − ωct) plane, for the initial state with m = 0.1 at the high tem-

perature limit. As the pink (dark gray)area denotes the quantum de-

coherence regime, the yellow (gray) area shows the classical deco-

herence regime. (b) The yellow shaded (gray) region indicates the

range of ohmicity and initial state parameters, s and m, for which

time-invariant discord exists.

FIG. 3: (Color online) Dynamics of quantum discord in the presence

of independent dissipation and heating reservoirs for the initial Bell-

diagonal state m = 0.1 as a function of scaled time λt for R = 0.01

case of sufficiently small detuning parameter, e.g., ∆ = 0. In

the figure, the dotted-dashed red line displays the case where

the dynamics is Markovian and there are no thermal photons.

As can be clearly seen, although discord is initially ampli-

fied, it tends to monotonically decay and vanish in the long

time limit. In fact, this behaviour can be observed for the

class of initial states such that |m| < 0.2. Moving to the non-

Markovian regime with ∆ = 50λ, still in the absence of ther-

mal photons, dotted blue line shows that, even though discord

is not actually time-invariant, it decays very slowly due to en-

ergy exchange between the system and the environment, and

for all practical purposes, it can be considered almost invari-

ant. Lastly, the effect of the thermal photons is demonstrated

by the dashed green line. We observe that in the short time

limit quantum discord is still almost time-invariant, despite

the fact that thermal photons hasten its decay in the long time

limit. It is important to notice that the sudden transition does

not exists under this type of noise.

C. Dephasing, Dissipation and Heating

In this section, we take into account the combined effect

of dephasing, dissipation/heating reservoirs which are once

again interacting with individual qubits independently. We

assume that the memory time of the dephasing and dissipa-

tion/heating environments is the same, i.e., we choose the pa-

rameter β = ωc/λ to be unity. Let us also work in the weak

coupling limit of both models and therefore take α = 0.01
and R = 0.01. At the high temperature limit of the dephasing

model with these conditions, and supposing detuning parame-

ter is taken as ∆ = 50λ, the number of the thermal photons in

dissipation/heating reservoir become approximatelyN ≈ 10.

Time evolution of the classical and quantum correlations

are shown in Fig. 4(a) and 4(b) when s = 2.5 (Marko-

vian) and s = 3.5 (non-Markovian) for the dephasing reser-

voir, respectively. We note that the effects of the dissipa-

tion/heating reservoir is also present in these plots and the

dissipation/heating dynamics is non-Markovian due to the de-

tuning parameter acquiring the value ∆ = 50λ. Thus, in Fig.

4(a), while the dephasing dynamics is Markovian, the dissipa-

tion/heating dynamics exhibit non-Markovian behaviour. We

can observe that the sudden transition still exists even in the
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presence of non-Markovian dissipative environments and con-

sequently almost time-invariant discord cannot be present. To

put it differently, comparing Fig. 3 to 4(a), one can see that the

presence of even Markovian dephasing can dominate the dy-

namics over non-Markovian dissipative reservoirs in terms of

time-invariant discord, causing a sudden transition and subse-

quent rapid decay of quantum correlations. We should stress

that the quantum (classical) correlations before (after) the sud-

den transition point here is not actually constant but rather

decay very slowly with time, which is due to the effect of

dissipative reservoirs. In Fig. 4(b), both the dephasing and

dissipation/heating dynamics are non-Markovian. This im-

plies that the occurrence of almost time-invariant discord is

exclusively related to the non-Markovian memory effects in

the purely dephasing dynamics. As can be seen in inset, it

is expected that quantum discord once again degrades very

slowly for long times and is not actually time-invariant. Fi-

nally, in Fig. 4(c), we take R = 0.001, ∆ = 0, s = 2.5,

FIG. 4: (Color online) Dynamics of classical (dotted-dashed green

line) and quantum correlations (dashed red line) for dephasing and

dissipation/heating reservoirs as a function of scaled time λt for R =
0.01, ∆ = 50λ, m = 0.1 N = 10. (a) for s = 2.5 and for (b)

s = 3.5. Insets are plotted for long time limits. In (c), we have

R = 0.001, ∆ = 0, m = 0.5, N = 10, and s = 2.5.

m = 0.5, and N = 10. In other words, here both the dephas-

ing and dissipation/heating dynamics are Markovian and there

exists no memory effects. We see that the sudden transition

takes place as a result of the Markovian dephasing dynamics.

IV. TIME-INVARIANT DISCORD IN THE PRESENCE OF

CORRELATED RESERVOIRS

In this section, we turn our attention to a different decoher-

ence model that takes into account the correlations between

the environments. In particular, we consider an open system

S that contains two qubits interacting with a composite envi-

ronment E, which itself is composed of two subsystems. We

suppose that each qubit interacts locally with one of the envi-

ronments, and S andE are initially not correlated, but the two

environments are initially in a correlated composite state. The

total Hamiltonian is given as [20]

H =H0 +Hint(t), H0 =

2
∑

i=1

(Hi
S +Hi

E),

Hi
S = ǫiσ

i
z , Hi

E =
∑

k

ωi
kb

i†
k b

i
k, (21)

with bi†k (b
i
k) being the creation (annihilation) operator of the

kth mode of environment i = 1, 2, and σi
z the Pauli matrix and

ǫi the energy gap of the ith qubit. The interaction Hamiltonian

is given byHint(t) =
∑

iH
i
int(t), in which local interactions

are specified by

Hi
int(t) = χi(t)

∑

k

σi
z ⊗ (gikb

i†
k + gi∗k b

i
k), (22)

where gik is the coupling constant between qubit i and kth

mode of its environment, gik ∈ ℜ for i = 1, 2 and all k. The

step function χi(t) is also given by

χi(t) =

{

1, t ∈ [tsi , t
f
i ]

0, otherwise
(23)

for some tfi > tsi > 0. Here, the step function controls

whether the local interaction of the qubit i at the time tsi and

tfi is switched on or off, respectively. Note that the duration

of the local interactions can be adjusted individually for both

qubits so that it is possible to study both simultaneous and

consecutive interactions. Here, we will assume that ts1 ≤ ts2.

Writing the interaction Hamiltonian in the interaction picture

HI
int =

∑

j,k

χj(t)σ
j
z ⊗ (gjke

iωj

k
(t)bj†k + gj∗k e

−iωj

k
(t)bjk), (24)

with the initially factorized state

ρ(0) = ρS(0)⊗ ρE(0), (25)

the time evolution of the initial state of the qubits at time t in

the Schrödinger picture can be obtained as

ρS(t) = TrE [U(t)ρS(0)⊗ ρE(0)U
†(t)], (26)
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where the propagator is given by U(t) = e−iH0tUI(t).

The initial environmental state is assumed to be a tensor

product of identical two-mode Gaussian states ηk12 of the kth

mode of environment 1 and 2, i.e., |η12〉 =
⊗

k |ηk12〉, hence,

ρE(0) = |η12〉〈η12|. Let us suppose all two-mode Gaussian

states have identical covariance matrix in standard form as

S =







a 0 c+ 0
0 a 0 c−
c+ 0 b 0
0 c− 0 b






, (27)

and the elements of the covariance matrix are given as

a =
1

2
cosh(2r) +N1 cosh

2(r) +N2 sinh
2(r),

b =
1

2
cosh(2r) +N2 cosh

2(r) +N1 sinh
2(r),

c− =
−1

2
(1 +N1 +N2) sinh(2r) = −c+,

with r being the squeezing parameter and N1,2 the mean oc-

cupation number in environment 1 and 2, respectively. We

will here consider an ohmic type spectral density J(ω) =
α(ωs/ωs−1

c )e−ω/ωc with equal cutoff frequencies ωc but dif-

ferent coupling constants αj for the two environments.

Let us once again assume that the initial state of the two-

qubit open system can initially be described with a special

family of Bell-diagonal states given by Eq. (15) with the three

real parameters m1 = 1 and m2 = −m3 = c, with |c| < 1.

This is basically the same family of initial two-qubit states

used for our investigation in the previous section. After some

rather straightforward algebra, one can obtain the time evolu-

tion of the reduced state of the two qubits as

ρS(t) =









1+c
4 0 0 1+c

4 κ12(t)
0 1−c

4
1−c
4 Λ12(t) 0

0 1−c
4 Λ∗

12(t)
1−c
4 0

1+c
4 κ∗12(t) 0 0 1+c

4









,

(28)

where the coherence functions are given as

κ12(t) = κ1(t)κ2(t)f1(t)f2(t)f3(t)f4(t),

Λ12(t) = κ1(t)κ
∗
2(t)/(f1(t)f2(t)f3(t)f4(t)),

with

κ1(t) =e
−2iǫ1te−4aα1Γ(−1+s)[2−(1−iωct1)

1−s−(1+iωct1)
1−s],

κ2(t) =e
−2iǫ2te−4bα2Γ(−1+s)[2−(1−iωct2)

1−s−(1+iωct2)
1−s],

f1(t) = exp
[

A(1 + ω2
c (t1 + t2 + ts2)

2)−s/2×
(

cos[s× arctan(ωc(t1 + t2 + ts2)] + ωc(t1 + t2 + ts2)

sin[s× arctan(ωc(t1 + t2 + ts2))]
)]

,

f2(t) = exp
[

−A(1 + ω2
c (t1 + ts2)

2)−s/2

×
(

cos[s× arctan(ωc(t1 + ts2)] + ωc(t1 + ts2)

sin[s× arctan(ωc(t1 + ts2))]
)]

,

f3(t) = exp
[

−A(1 + ω2
c (t2 + ts2)

2)−s/2

×
(

cos[s× arctan(ωc(t2 + ts2)] + ωc(t2 + ts2)

sin[s× arctan(ωc(t2 + ts2))]
)]

,

f4(t) = exp
[

A(1 + (ωct
s
2)

2)−s/2×
(

cos[s arctan(ωct
s
2)] + ωct

s
2 sin[s× arctan(ωct

s
2)]

)]

,

where A = −8c−Γ(−1 + s)
√
α1α2, the local interaction

times are given by tj(t) =
∫ t

0 dt
′χj(t

′) , and Γ(s) is the Euler

gamma function. We set ts1 = 0 for simplicity and ts2 as the

time when the interaction of the second qubit with its environ-

ment is turned on. It is important to emphasize that the free

evolution of the system is taken into account in this model.

We now focus on a two-mode squeezed vacuum state that is

characterized byN1 = N2 = 0 and defines a symmetric two-

mode Gaussian state satisfying a = b. A squeezed vacuum

state has following representation in the Fock basis [21]

|ψu〉 =
√

1− u2
∞
∑

n=0

un|n〉 ⊗ |n〉 (29)

where u = tanh(r) and |n〉 represents the nth Fock state. No-

tice that a squeezed vacuum state is entangled if and only if

r 6= 0. Moreover, all two-mode Gaussian states which cannot

be factorized have shown to contain non-zero genuine quan-

tum correlations as quantified by quantum discord [22, 23].

Here, in order to obtain the quantum discord for density

matrix in Eq. (28) we define the projectors Πk = |k〉〈k| (k =

1,2) by the orthogonal states

|1〉 = cos(θ)| ↑〉+ eiϕ sin(θ)| ↓〉,
|2〉 = sin(θ)| ↑〉 − eiϕ cos(θ)| ↓〉.

It is not difficult to find out that the classical correlations

in this case do not explicitly depend on ϕ and they are max-

imized for θ = nπ/4 with n ∈ Z . Thus, one can obtain the

analytic expression for classical correlations as

C(ρS(t)) =

2
∑

i=1

1 + (−1)iχ(t)

2
log2(1 + (−1)iχ(t)) (30)

where χ(t) = max{|c|, 1/2|(κ12(t) + Λ12(t)) + c(κ12(t) −
Λ12(t))|} and we have taken c positive for the sake of sim-



8

plicity. The quantum mutual information is also given by

I(ρS(t)) =
2

∑

i=1

1 + (−1)ic

2
log2(1 + (−1)ic)

+
1 + c

4

2
∑

i=1

(1 + (−1)i|κ12(t)|) log2(1 + (−1)i|κ12(t)|)

+
1− c

4

2
∑

i=1

(1 + (−1)i|Λ12(t)|) log2(1 + (−1)i|Λ12(t)|).

(31)

Then, quantum discord can be simply obtained by subtract-

ing the classical part of correlations C(ρS(t)) from the total

amount of correlations I(ρS(t)) quantified by the quantum

mutual information. Based on the above equations, one can

define a sudden transition time t̃ as

1/2|(κ12(t̃) + Λ12(t̃)) + c(κ12(t̃)− Λ12(t̃))| = c, (32)

below which (t < t̃) quantum discord is robust against the de-

phasing noise and classical correlations tend to decay. On the

other hand, classical correlations remain constant for t > t̃,
and quantum discord starts to diminish. This is naturally noth-

ing but the same phenomenon discussed in the previous sec-

tion. Depending on whether there exists a solution for Eq.

(32) or not, one respectively observes frozen discord accom-

panied by a sudden transition or time-invariant discord.

In the following, we will discuss the behaviour of the phe-

nomena of frozen and time-invariant discord in the presence

of initial environmental correlations between the two dephas-

ing reservoirs having ohmic-type spectral densities. We will

restrict our attention to the local interactions that are subse-

quently turned on and last for equally long times. Let us sup-

pose that the two qubits have the same energy gap ǫ1 = ǫ2 =
ǫ = 10−8ωc, and the coupling constants are taken identical,

that is, α1 = α2 = α. We recall that in Ref. [12], in the

absence of correlations between the environments, it has been

demonstrated that if two qubits locally interact with pure de-

phasing reservoirs, frozen discord and time-invariant discord

might be observed for the ohmicity parameters s = 1 (Marko-

vian dynamics) and s = 2.5 (non-Markovian dynamics), re-

spectively. In Fig. 5, we display the time evolution of the

classical and quantum correlations as a function of the scaled

time ωct. Ohmicity parameter is s = 1 for all three plots and

the second interaction is turned on at t = 20, at which point

we turn off the first interaction. Fig. 5(a) demonstrates that,

for the initial state with c = 0.1, a sudden transition occurs be-

fore the second interaction is turned on, when there exists no

entanglement between the reservoirs, corresponding to r = 0.

Before this point, discord is completely unaffected by the de-

phasing noise. We can also observe that the decay of discord

hastens when we turn on the second interaction at t = 20.

In Figs. 5(b) and 5(c), we consider the effects of environ-

mental correlations, i.e., non-zero entanglement between the

environments, as we take the squeezing parameters as r = 0.5
and r = 1, respectively. Our results indicate that as the ini-

tial amount of the entanglement between the two reservoirs

increase, sudden transition occurs earlier. Thus, we conclude

FIG. 5: (Color online) Dynamics of classical and quantum corre-

lations as a function of scaled time ωct. The dotted-dashed green

and dashed red lines represent the classical correlations and quantum

discord, respectively. We take c = 0.1, s = 1, α = 0.2, ts1 = 0,

t
f
1
= t

s
2 = 20, t

f
2
= 40, ǫ = 10−8

ωc, and (a) r = 0, (b) r = 0.5,

and (c) r = 1.

that, in case the ohmicity parameter is taken as s = 1, hav-

ing initial environmental correlations are disadvantageous for

preserving the quantum discord in the open quantum system.

We continue our study considering the case where each of

the local interactions gives rise to non-Markovian dynamics.

We assume that the ohmicity parameter is taken as s = 2.5. In

Fig. 6, we show the outcomes of our study for the same initial

state with c = 0.1 as in the previous case. Here, the first local

interaction is switched off and the second one is switched on

at the time ts2 = 100. Looking at Fig. 6(a), we confirm the

existence of time-invariant quantum discord in the absence of

initial entanglement between the two environments as r = 0
in this plot. We also note that the classical correlations experi-

ence a sudden transition and suffer an abrupt decay. However,

as we start to increase the amount of initial entanglement be-

tween the reservoirs in Fig. 6(b), we can observe that, even

though time-invariant discord still persists, the sudden decay

of classical correlations bring their value closer to the value
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of quantum discord. Finally, in Fig. 6(c), we see for strongly

correlated environments (r = 1) that classical correlations in-

tersect with quantum discord in a very short time interval and

time-invariant behaviour of quantum discord is lost. In fact,

in this case, switching on the second interaction at ts2 = 100
completely destroys the remaining discord, while it does not

affect the classical correlations, as shown in the inset.

Carefully analysing the Figs. 5 and 6, we understand that

the existence of initial environmental correlations are gener-

ally detrimental for protecting quantum discord in open quan-

tum systems. Specifically, as the amount of initial entangle-

ment between the two reservoirs increase, we observe that in

case we have frozen discord we can keep discord constant for

shorter time intervals, and in case we have time-invariant dis-

cord we loose time-invariance since a sudden transition takes

place. In order to gain a better understanding of how relevant

system and model parameters affect the time-invariant nature

of quantum discord, we present a detailed summary of our in-

vestigation in Fig. 7. Let us first assume that the coupling con-

stants and squeezing parameter are fixed as α = 0.2, r = 0.5.

In Fig. 7(a), we plot the region in terms s and c, where

time-invariant discord can be observed. It is clear that the

FIG. 6: (Color online) Dynamics of classical and quantum correla-

tions as a function of the scaled time ωct. The The dotted-dashed

green and dashed red lines represent the classical correlations and

quantum discord, respectively. We take c = 0.1, s = 2.5, α = 0.2,

t
s
1 = 0, t

f
1
= t

s
2 = 100, t

f
2
= 200, and ǫ = 10−8

ωc. The squeezing

parameter is taken as (a) r = 0, (b) r = 0.5, and (c) r = 1.

FIG. 7: (Color online) The orange shaded (dark-gray) regions show

the range of various different parameters for which the time-invariant

quantum discord exists. (a) α = 0.2 and r = 0.5, (b) α = 0.2 and

s = 2.5, (c) α = 0.2 and c = 0.1, and (d) s = 2.5 and r = 0.5.

non-Markovian memory effects helps maintaining the quan-

tum discord invariant throughout the dynamics since time-

invariant discord exists when 1.5 . s . 4 for the majority

of considered initial states. Now, we set s = 2.5, α = 0.2 and

display a plot for the region of time-invariant discord in terms

of the strength of the initial entanglement between the envi-

ronments r and the initial state parameter c in Fig. 7(b). As

can be seen, time-invariant discord tend to disappear for the

majority of the initial states as the initial correlations between

the reservoirs increase. In fact, there exists no time-invariant

entanglement once r > 1. Next, we fix c = 0.1, α = 0.2
in Fig. 7(c) and explore the region of time-invariant discord

in terms of r and s. It is straightforward to see that provided

r > 0.5, time-invariant discord can never be observed for any

value of the ohmicitiy parameter s. Finally, we stress that the

the shaded regions in Figs. 7(a), 7(b), and 7(c) naturally de-

pend on the coupling constant α, and in fact these regions will

be widened for smaller values of α. Fig. 7(d) shows the region

of time-invariant discord in terms of the coupling constant α
and the initial state parameter c for s = 2.5 and r = 0.5.

From this plot, we clearly see that the time-invariant discord

favours the weak coupling regime. We emphasize that, outside

the shaded regions in all plots, one always observes a sudden

transition from classical to quantum decoherence and hence

an eventual decay quantum discord.
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V. CONCLUSION

In summary, we have performed a quite detailed analysis

of the effects of some realistic features typically present in

open quantum system models on the remarkable phenomena

of frozen and time-invariant quantum discord. The motivation

in studying such a problem comes from the critical signifi-

cance of preserving the genuine quantum correlations in open

quantum systems as they serve as a resource for various tasks

in quantum information science. In particular, we have ex-

amined the consequences of dephasing, dissipation and heat-

ing reservoirs both individually and collectively for the oc-

currence of frozen and time-invariant discord. For the same

purpose, we have also explored the influence of initial corre-

lations between the two environments.

For instance, we have shown the existence of time-invariant

discord for pure dephasing reservoirs at the high temperature

limit provided we work in the weak coupling regime. More-

over, for dissipation/heating reservoirs, we have demonstrated

that no sudden transition and thus frozen discord exists, but

almost time-invariant discord can be observed with the proper

choice of the detuning parameter that gives rise to memory

effects. Also, considering a general model including the ef-

fects of both dephasing and dissipation/heating reservoirs, we

have found out that the occurrence of time-invariant discord

in this case is critically related with the existence of memory

effects in the dephasing dynamics. Lastly, taking into account

the possible initial correlations between two purely dephasing

reservoirs, we have proved with our extensive analysis that

the existence of such initial environmental correlations is in

general quite detrimental for protecting and maintaining the

genuine quantum correlations in open quantum systems.
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