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Abstract

We begin by investigating relationships between two forms of Hilbert-Schmidt two-rebit and

two-qubit “separability functions”–those recently advanced by Lovas and Andai (J. Phys. A 50

[2017] 295303), and those earlier presented by Slater (J. Phys. A 40 [2007] 14279). In the Lovas-

Andai framework, the independent variable ε ∈ [0, 1] is the ratio σ(V ) of the singular values of

the 2× 2 matrix V = D
1/2
2 D

−1/2
1 formed from the two 2× 2 diagonal blocks (D1, D2) of a 4× 4

density matrix D = ‖ρij‖. In the Slater setting, the independent variable µ is the diagonal-entry

ratio
√

ρ11ρ44
ρ22ρ33

–with, of central importance, µ = ε or µ = 1
ε when both D1 and D2 are themselves

diagonal. Lovas and Andai established that their two-rebit “separability function” χ̃1(ε) (≈ ε)

yields the previously conjectured Hilbert-Schmidt separability probability of 29
64 . We are able,

in the Slater framework (using cylindrical algebraic decompositions [CAD] to enforce positivity

constraints), to reproduce this result. Further, we newly find its two-qubit, two-quater[nionic]-bit

and “two-octo[nionic]-bit” counterparts, χ̃2(ε) = 1
3ε

2
(
4− ε2

)
, χ̃4(ε) = 1

35ε
4
(
15ε4 − 64ε2 + 84

)
and χ̃8(ε) = 1

1287ε
8
(
1155ε8 − 7680ε6 + 20160ε4 − 25088ε2 + 12740

)
. These immediately lead to

predictions of Hilbert-Schmidt separability/PPT-probabilities of 8
33 , 26

323 and 44482
4091349 , in full agree-

ment with those of the “concise formula” (J. Phys. A 46 [2013] 445302), and, additionally,

of a “specialized induced measure” formula. Then, we find a Lovas-Andai “master formula”,

χ̃d(ε) =
εdΓ(d+1)3 3F̃2(− d

2
, d
2
,d; d

2
+1, 3d

2
+1;ε2)

Γ( d
2

+1)
2 , encompassing both even and odd values of d. Remarkably,

we are able to obtain the χ̃d(ε) formulas, d = 1, 2, 4, applicable to full (9-, 15-, 27-) dimensional sets

of density matrices, by analyzing (6-, 9, 15-) dimensional sets, with not only diagonal D1 and D2,

but also an additional pair of nullified entries. Nullification of a further pair still, leads to X-matrices,

for which a distinctly different, simple Dyson-index phenomenon is noted. C. Koutschan, then,

using his HolonomicFunctions program, develops an order-4 recurrence satisfied by the predictions

of the several formulas, establishing their equivalence. A two-qubit separability probability of

1− 256
27π2 is obtained based on the operator monotone function

√
x, with the use of χ̃2(ε).

PACS numbers: Valid PACS 03.67.Mn, 02.50.Cw, 02.40.Ft, 02.10.Yn, 03.65.-w
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I. INTRODUCTION AND INITIAL ANALYSES

To begin our investigations, focusing on interesting recent work of Lovas and Andai [1],

we examined a certain possibility–motivated by a number of previous studies (e.g. [2–5]) and

the apparent strong relevance there of the Dyson-index vantage upon random matrix theory

[6]. More specifically, we ask whether the sought Lovas-Andai “separability function” χ̃2(ε)

for the standard (complex) two-qubit systems might be simply proportional (or even equal)

to the square of their successfully constructed two-rebit separability function [1, eq. (9)],

χ̃1(ε) = 1− 4

π2

1∫
ε

(
s+

1

s
− 1

2

(
s− 1

s

)2

log

(
1 + s

1− s

))
1

s
ds (1)

=
4

π2

ε∫
0

(
s+

1

s
− 1

2

(
s− 1

s

)2

log

(
1 + s

1− s

))
1

s
ds.

Let us note that χ̃1(ε) has a closed form,

2
(
ε2 (4Li2(ε)− Li2 (ε2)) + ε4

(
− tanh−1(ε)

)
+ ε3 − ε+ tanh−1(ε)

)
π2ε2

, (2)

where the polylogarithmic function is defined by the infinite sum

Lis(z) =
∞∑
k=1

zk

ks
,

for arbitrary complex s and for all complex arguments z with |z| < 1. Let us further observe

that in the proof of (1), the authors were able to formulate the problem of finding χ̃1(ε)

4



rather concisely in terms of a “defect function” [1, App. A],

∆(δ) =
2π2

3
− χ̃1(e−δ) =

16

3

∫ δ

0

cosh(t)− sinh(t)2t log(
et + 1

et − 1
)dt. (3)

We will be able in sec. IV A 1 to obtain the formula (2) for χ̃1(ε) by alternative (cylindrical

algebraic decomposition [7]) means. Further, in sec. IV B 1, we will apply the same basic

methodology to obtain (the much simpler) polynomial formula (42) for χ̃2(ε). Then, we will

be able (sec. VII) to develop a general procedure for finding χ̃d(ε) for integer d > 0. The

(rational) separability/PPT-probabilities predicted using these functions will–as extensive

symbolic and numerical testing reveals–be identically the same as those yielded by the

“concise” formula reported in [8, eqs. (1)-(3)],

Psep/PPT (α) = Σ∞i=0f(α + i), (4)

where

f(α) = Psep/PPT (α)− Psep/PPT (α + 1) =
q(α)2−4α−6Γ(3α + 5

2
)Γ(5α + 2)

3Γ(α + 1)Γ(2α + 3)Γ(5α + 13
2

)
, (5)

and

q(α) = 185000α5 + 779750α4 + 1289125α3 + 1042015α2 + 410694α + 63000 = (6)

α

(
5α
(

25α
(
2α(740α + 3119) + 10313

)
+ 208403

)
+ 410694

)
+ 63000.

(Here, α = d
2
. This set of relationships was developed with the [high-precision] use of a

probability distribution reconstruction method [9], using formulas for the moments of the

determinants of density matrices and of their partial transposes. This was followed by an

application by Qing-Hu Hou of “Zeilberger’s algorithm” (“creative telescoping”) [10] to the

large hypergeometric-based expression so-obtained, displayed in Fig. 3 of [8]. See also (84),

for a quite distinct, but–as will eventually be shown here–equivalent formula [Fig 24].)

As part of their analysis, Lovas and Andai assert [1, p. 13] that

Psep(R) =

1∫
−1

x∫
−1

χ̃1

(√
1−x
1+x

/√
1−y
1+y

)
(1− x2)(1− y2)(x− y)dydx

1∫
−1

x∫
−1

(1− x2)(1− y2)(x− y)dydx

, (7)

with the denominator evaluating to 16
35

. Here, Psep(R) is the Hilbert-Schmidt separability

probability for the nine-dimensional convex set of two-rebit states [11]. With the indicated

5



use of χ̃1(ε) this probability evaluates to 29
64

(the numerator of (7) equalling 16
35
− 1

4
= 29

140
,

with 29
64

=
29
140
16
35

), a result that had been strongly anticipated by prior analyses [8, 12, 13].

If the (Dyson-index) proportionality relationship

χ̃2(ε) ∝ χ̃2
1(ε) (8)

held, we would have

Psep(C) ∝

1∫
−1

x∫
−1

χ̃2
1

(√
1−x
1+x

/√
1−y
1+y

)
(1− x2)2(1− y2)2(x− y)2dydx

1∫
−1

x∫
−1

(1− x2)2(1− y2)2(x− y)2dydx

. (9)

Here, Psep(C) is–in the Lovas-Andai framework–the Hilbert-Schmidt separability probability

for the fifteen-dimensional convex set of the (standard/complex) two-qubit states [14]. They

expressed hope that they too would be able to demonstrate that Psep(C) = 8
33

, as also has

been strongly indicated is, in fact, the case [8, 12, 13, 15, 16]. (”It is interesting whether this

observation has some deep background or is an accidental fact only” [17].) We generalized

(from α = 1
2
) the denominator of the ratio (9) to

1∫
−1

x∫
−1

(1− x2)2α(1− y2)2α(x− y)2αdydx =
π26α+13−3ααΓ(3α)Γ(2α + 1)2

Γ
(
α + 5

6

)
Γ
(
α + 7

6

)
Γ(5α + 2)

. (10)

Our Dyson-index-based ansatz, then, is that

1∫
−1

x∫
−1

χ̃2α

(√
1−x
1+x

/√
1−y
1+y

)
(1− x2)2α(1− y2)2α(x− y)2αdydx

1∫
−1

x∫
−1

(1− x2)2α(1− y2)2α(x− y)2αdydx

(11)

gives the generalized (α-th) Hilbert-Schmidt separability probability. For α = 1
2
, we recover

the two-rebit formula (7), while for α = 1, under the ansatz, we would conjecturally obtain

the two-qubit value of 8
33

, while for α = 2, the two-quater[nionic]bit value of 26
323

would be

gotten, and similarly, for α = 4, the (presumably) two-octo[nionic]bit value of 44482
4091349

[18].

(The volume forms listed in [1, Table 1] for the sets of self-adjoint matrices Msa
2,R, Msa

2,C, are

|x−y|√
2

in the α = 1
2

case, and (x−y)2 sinφ
2

in the α = 1 case, respectively. Our calculations of

the term det(1− Y 2)d appearing in the several Lovas-Andai volume formulas [1, pp. 10, 12],

6



such as this one for the volume of separable states,

Vol
(
Ds{4,K}(D)

)
=

det(D)4d− d2

2

26d

×
∫
E2,K

det(I − Y 2)d × χd ◦ σ

(√
I − Y
I + Y

)
dλd+2(Y ),

(12)

[the function σ(V ) = ε being the ratio of the two singular values of the 2 × 2 matrix V ]

appear to be consistent with the use of the (1− x2)2α(1− y2)2α terms in the ansatz (11).)

The values α = 1
2
, 1, 2, 4 themselves correspond to the real, complex, quaternionic and

octonionic division algebras. We can, further, look at the other nonnegative (non-division

algebra) integral values of α. So, for α = 3, we have the formal prediction [13, 19] of 2999
103385

.

In this context, let us first note that for the denominator of (9), corresponding to

α = 1, we obtain 256
1575

(a result we later importantly employ (43)). Using high-precision

numerical integration (https://mathematica.stackexchange.com/q/133556/29989) for

the corresponding numerator of (9), we obtained 0.0358226206958479506059638010848. The

resultant ratio (dividing by 256
1575

) is 0.220393076546720789860910104330, within 90% of

0.242424. However, somewhat disappointingly, it was not readily apparent as to what exact

values these figures might correspond.

The analogous numerator-denominator ratio in the α = 2 (two-quaterbit) instance was

0.0534499, while the predicted separablity probability is 26
323
≈ 0.0804954. It can then be

seen that the required constant of proportionality (0.0534499
0.0804954

= 0.664013) in the α = 2 case is

not particularly close to the square of that in the α = 1 instance (0.9091062 = 0.826473).

Similarly, in the α = 4 case, the numerator-denominator ratio is 0.00319505, while the

predicted value would be 44482
4091349

= 0.0108722 (with the ratio of these two values being

0.293873). So, our ansatz (11) would not seem to extend to the sequence of constants of

proportionality themselves conforming to the Dyson-index pattern. But the analyses so far

could only address this specific issue concerning constants of proportionality.

7
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II. EXPANDED ANALYSES

We, then, broadened the scope of the inquiry with the use of this particular formula of

Lovas and Andai for the Hilbert-Schmidt volume of separable states [1, p. 11],

Vol(Ds{4,K}) =

∫
D1, D2 > 0

Tr(D1 +D2) = 1

det(D1D2)df(D2D
−1
1 )dλ2d+3(D1, D2),

where

f(D2D
−1
1 ) = χd ◦ exp

(
− cosh−1

(
1

2

√
det(D1)

det(D2)
Tr
(
D2D

−1
1

)))
. (13)

Here D1 denotes the upper diagonal 2× 2 block, and D2, the lower diagonal 2× 2 block of

the 4× 4 density matrix [1, p. 3],

D =

 D1 C

C∗ D2

 .

The Lovas-Andai parameter d is defined as 1 in the two-rebit case and 2 in the standard

two-qubit case (that is, in our notation, α = d
2
). Further, the relevant division algebra K is R,

C or Q, according to d = 1, 2, 4. The exponential term in (13) corresponds to the “singular

value ratio”,

σ(V ) = exp

(
− cosh−1

(
||V ||2HS
2 det(V )

))
= exp

(
− cosh−1

(
1

2

√
det(D1)

det(D2)
Tr
(
D2D

−1
1

)))
,

(14)

of the matrix V = D
1/2
2 D

−1/2
1 , where the Hilbert-Schmidt norm is indicated. (In [20, sec. IV]

the ratio of singular values of 2× 2 “empirical polarization matrices” is investigated.)

A. Generation of random density matrices

1. Two-rebit case

Firstly, taking d = 1, we generated 687 million random (with respect to Hilbert-Schmidt

measure) 4× 4 density matrices situated in the 9-dimensional convex set of two-rebit states

[21, App. B] [11, 22]. Of these, 311,313,185 were separable (giving a sample probability

8



0.2 0.4 0.6 0.8 1.0
σ(V)

1×106

2×106

3×106

4×106

5×106

6×106

# density matrices

FIG. 1: Recorded counts by binned values of the singular value ratio σ(V ) of 687 million two-rebit

density matrices randomly generated (with respect to Hilbert-Schmidt measure), along with the

accompanying (lesser) counts of separable density matrices

of 0.453149, close to the value of 29
64
≈ 0.453125, now formally established by Lovas and

Andai). Additionally, we binned the two sets (separable and all) of density matrices into

200 subintervals of [0, 1], based on their corresponding values of σ(V ) (Fig. 1). Fig. 2 is a

plot of the estimated separability probabilities (remarkably close to linear with slope 1–as

previously observed [1, Fig. 1]), while Fig. 3 shows the result of subtracting from this curve

the very well-fitting (as we, of course, expected from the Lovas-Andai proof) function χ̃1(ε),

as given by ((1),(2)). (If one replaces χ̃1(ε) by simply its close approximant ε, then the

corresponding integrations would yield a “separability probability”, not of 29
64
≈ 0.453125,

but of 16
9
− 35π2

256
≈ 0.428418. If we similarly employ ε2 in the two-qubit case, rather than the

[previously undetermined] χ̃2(ε), the corresponding integrations yield 13
66
≈ 0.19697, and not

the presumed correct result of 8
33
≈ 0.242424.) Fig. 21 will serve as the two-qubit analogue

of Fig. 3, further validating the formula (42) for χ̃2(ε) to be obtained.

2. Two-qubit case

We, next, to test a Dyson-index ansatz, taking d = 2, generated 6,680 million random (with

respect to Hilbert-Schmidt measure) 4× 4 density matrices situated in the 15-dimensional

9



0.2 0.4 0.6 0.8 1.0
σ(V)

0.2

0.4

0.6

0.8

1.0

sep. prob.

FIG. 2: Estimated two-rebit separability probabilities (close to linear with slope 1)

0.2 0.4 0.6 0.8 1.0
σ(V)

-0.0005

0.0005

sep. prob.-χ˜1(ϵ)

FIG. 3: Result of subtracting χ̃1(ε) from the estimated two-rebit separability probability curve

(Fig. 2). Fig. 21 will be the two-qubit analogue.

convex set of (standard) two-qubit states [21, eq. (15)]. Of these, 1,619,325,156 were separable

(giving a sample probability of 0.242414, close to the conjectured, well-supported [but not yet

formally proven] value of 8
33
≈ 0.242424) (cf. [23]). We, again, binned the two sets (separable

and all) of density matrices into 200 subintervals of [0, 1], based on their corresponding

values of σ(V ) (Fig. 4). Fig. 5 is a plot (now, clearly non-linear [cf. Fig. 2]) of the estimated

10



0.2 0.4 0.6 0.8 1.0
σ(V)

2×107

4×107

6×107

8×107

# density matrices

FIG. 4: Recorded counts by binned values of the singular value ratio σ(V ) of all 6,680 million

two-qubit density matrices randomly generated (with respect to Hilbert-Schmidt measure), along

with the accompanying (lesser) counts of separable density matrices

separability probabilities, along with the quite closely fitting, but mainly slightly subordinate

χ̃2
1(ε) curve. Fig. 6 shows the result/residuals (of relatively small magnitude) of subtracting

χ̃2
1(ε) from the estimated separability probability curve. So, it would seem that the square

of the explicitly-constructed Lovas-Andai two-rebit separability function χ̃1(ε) provides, at

least, an interesting approximation to the sought two-qubit separability function χ̃2(ε).

The Dyson-index ansatz–the focus earlier in the paper–appears to hold in some triv-

ial/degenerate sense if we employ rather than the Lovas-Andai or Slater separability functions

discussed above, the “Milz-Strunz” ones [24]. Then, rather than the singular-value ratio ε

or the ratio of diagonal entries µ, one would use as the dependent/predictor variable, the

Casimir invariants of the reduced systems [25]. In these cases, the separability functions

become simply constant in nature. In the two-rebit and two-qubit cases, this invariant is

the Bloch radius (r) of one of the two reduced systems. From the arguments of Lovas and

Andai [1, Cor. 2, Thm. 2], it appears that one can assert that the Milz-Strunz form of

two-rebit separability function assumes the constant value 29
64

for r ∈ [0, 1]. Then, it would

seem that the two-qubit counterpart would be the constant value 8
33

for r ∈ [0, 1], with the

corresponding (Dyson-index ansatz) constant of proportionality being
8
33

( 29
64

)2
= 32768

27753
≈ 1.1807.

11



0.2 0.4 0.6 0.8 1.0
σ(V)

0.2

0.4

0.6

0.8

1.0

sep. prob.

FIG. 5: Estimated two-qubit separability probabilities together with the slightly subordinate curve

χ̃2
1(ε)

0.2 0.4 0.6 0.8 1.0
σ(V)

0.005

0.010

0.015

0.020

0.025

0.030

sep. prob.

FIG. 6: Result of subtracting the (slightly subordinate) χ̃2
1(ε) curve from the estimated two-qubit

separability probability curve in Fig. 5

III. RELATIONS BETWEEN ε = σ(V ) AND BLOORE/SLATER VARIABLE µ

Let us now note a quite interesting phenomenon, apparently relating the Lovas-Andai

analyses to previous ones of Slater [2]. If we perform the indicated integration in the

12



denominator of (7), following the integration-by-parts scheme adopted by Lovas and Andai

[1, p. 12], at an intermediate stage we arrive at the univariate integrand,

128t3 (5 (5t8 + 32t6 − 32t2 − 5)− 12 ((t2 + 2) (t4 + 14t2 + 8) t2 + 1) log(t))

3 (t2 − 1)8 . (15)

(Its integral over t ∈ [0, 1] equals the noted value of 16
35

, where
16
35
− 1

4
16
35

= 29
64

.) This, interestingly,

bears a very close (almost identical) structural resemblance to the jacobian/volume-element

Hreal(µ) = −µ
4 (5 (5µ8 + 32µ6 − 32µ2 − 5)− 12 ((µ2 + 2) (µ4 + 14µ2 + 8)µ2 + 1) log(µ))

1890 (µ2 − 1)9

(16)

(integrating to π2

2293760
over µ ∈ [0, 1]) reported by Slater in [2, eq. (15)] and [26, eq. (10)],

also in the context of two-rebit separability functions. (We change the notation in those

references from Jreal(ν) to Hreal(µ) here, since we have made the transformation ν → µ2, to

facilitate this comparison, and the analogous one below in the two-qubit context–with the

approach of Lovas and Andai. However, we will still note some results below in the original

[ν] framework.) To faciltate the comparison between these two functions, we set t = µ = t̃,

and then divide (15) by (16), obtaining the simple ratio

80640
(
1− t̃2

)
t̃

. (17)

But we note that in in [2] and [26]–motivated by work in a 3× 3 density matrix context of

Bloore [27]–the variable µ was taken to be the ratio
√

ρ11ρ44
ρ22ρ33

of the square root of the product

of the (1,1) and (4,4) diagonal entries of the density matrix [2, eq. (1)]

D =


ρ11 z12

√
ρ11ρ22 z13

√
ρ11ρ33 z14

√
ρ11ρ44

z12
√
ρ11ρ22 ρ22 z23

√
ρ22ρ33 z24

√
ρ22ρ44

z13
√
ρ11ρ33 z23

√
ρ22ρ33 ρ33 z34

√
ρ33ρ44

z14
√
ρ11ρ44 z24

√
ρ22ρ44 z34

√
ρ33ρ44 ρ44

 (18)

to the product of the (2,2) and (3,3) ones, while in [1], it would be the ratio σ(V ) of the

singular values of the noted 2× 2 matrix D
1/2
2 D

−1/2
1 . From [2, eq. (91)], we can deduce that

one must multiply Hreal(µ) by 1048576
π2 , so that its integral from 0 to 1 equals the Lovas-Andai

counterpart result of 16
35

. (The jacobian of the transformation to the two-rebit density matrix

parameterization (18) is (ρ11ρ22ρ33ρ44)3/2, and for the two-qubit counterpart, (ρ11ρ22ρ33ρ44)3

[26, p. 4]. These jacobians are also reported in [28].)
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In [2, eq. (93)], the two-rebit separability function Sreal(ν) was taken to be proportional to

the incomplete beta function Bν(ν,
1
2
, 2) = 2

3
(3− ν)

√
ν–an apparently much simpler function

than the Lovas-Andai counterpart (2) above. Given the just indicated scaling by 1048576
π2 , to

achieve the 29
140

separability probability numerator result of Lovas and Andai, we must take

the hypothesized separability function to be, then, 3915π2(3−ν)
√
ν

131072
.

A parallel phenomenon is observed in the two-qubit case, where [26, eq. (11)],

Hcomplex(µ) = − µ7(h1 + h2)

1801800(µ2 − 1)15
, (19)

with

h1 = (µ− 1)(µ+ 1)
(
363µ12 + 10310µ10 + 58673µ8 + 101548µ6 + 58673µ4 + 10310µ2 + 363

)
and

h2 = −140
(
µ2 + 1

) (
µ12 + 48µ10 + 393µ8 + 832µ6 + 393µ4 + 48µ2 + 1

)
log(µ).

Setting α = 1 in the denominator formula (10), and again following the integration-by-parts

scheme of Lovas and Andai, while setting t = µ = t̃, the simple ratio (proportional to the

square of (17)) is now

210862080
(
1− t̃2

)2

t̃2
. (20)

To achieve the 256
1575

Lovas-Andai two-qubit denominator result, we must multiply Hcomplex(ν)

(19) by 328007680.

The two-qubit separability function Scomplex(ν) advanced in [2] was proportional to the

square of that–Bν(ν,
1
2
, 2) = 2

3
(3− ν)

√
ν–employed in the two-rebit context. Now, to obtain

the two-qubit numerator result of 2048
51975

necessary for the 8
33

separability probability outcome,

we took the associated separability function to simply be 6
71

(3− ν)2ν. We refer the reader to

Figure 2 in [2] (and Figs. 13 and 14 below) to see the extraordinarily good fit of this function.

(However, the two-rebit fit displayed there does not appear quite as good.)

Let us now supplement the earlier plots in [2], with some newly generated ones. (Those

2007 plots were based on quasi-Monte Carlo [“low-discrepancy” point [29]] sampling, while

the ones presented here are based on more “state-of-the-art” sampling methods [21], with

many more density matrices [but, of “higher-discrepancy”] generated.) In Figs. 7 and 8 we

show the two-rebit separability probabilities as a function, firstly, of ν = ρ11ρ44
ρ22ρ33

and, secondly,
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FIG. 7: Estimated two-rebit Hilbert-Schmidt separability probabilities, based on 687 million

randomly-generated density matrices, together with the hypothesized (slightly subordinate) separa-

bility function 3915π2(3−ν)
√
ν

131072
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FIG. 8: Estimated two-rebit Hilbert-Schmidt separability probabilities, based on 5,077 million

randomly-generated density matrices, together with the hypothesized (slightly subordinate) separa-

bility function 3915π2(3−µ2)µ
131072
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FIG. 9: Estimated two-qubit Hilbert-Schmidt separability probabilities, based on 507 million

randomly-generated density matrices, together with the (indiscernibly different) separability function

6
71(3− ν)2ν (cf. Fig. 13 and [2, Fig. 2] for the residuals from the fit)

as a function of µ =
√
ν =

√
ρ11ρ44
ρ22ρ33

, together with the curves 3915π2(3−ν)
√
ν

131072
and 3915π2(3−µ2)µ

131072
,

respectively. In Figs. 9 and 10 we show the two-qubit separability probabilities as a function,

firstly, of ν and, secondly, as a function of µ, together with the curves 6
71

(3 − ν)2ν and

6
71

(3− µ2)2µ2, respectively.

In Figs. 11, 12, 13 and 14, rather than showing the estimated separability probabilities

together with the separability functions as in the previous four figures, we show the estimated

separability probabilities minus the separability functions, that is, the residuals from this

fits.

So, at this stage, the evidence is certainly strong that the Dyson-index ansatz is at least

of some value in approximately fitting the relationships between two-rebit and two-qubit

Hilbert-Schmidt separability functions.
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FIG. 10: Estimated two-qubit Hilbert-Schmidt separability probabilities, based on 3,715 million

randomly-generated density matrices, together with the (indiscernibly different) separability function

6
71(3− µ2)2µ2
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FIG. 11: Estimated two-rebit Hilbert-Schmidt separability probabilities, based on 687 million

randomly-generated density matrices, minus the separability function 3915π2(3−ν)
√
ν

131072
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FIG. 12: Estimated two-rebit Hilbert-Schmidt separability probabilities, based on 5,077 million

randomly-generated density matrices, minus the separability function 3915π2(3−µ2)µ
131072
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FIG. 13: Estimated two-qubit Hilbert-Schmidt separability probabilities, based on 3,715 million

randomly-generated density matrices, minus the separability function 6
71(3− ν)2ν
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FIG. 14: Estimated two-qubit Hilbert-Schmidt separability probabilities, based on 3,715 randomly-

generated density matrices, minus the separability function 6
71(3− µ2)2µ2

A. Formulas linking the Lovas-Andai variable ε and the Slater/Bloore variable µ

Using the two-rebit density matrix parameterization (18), then, taking the previously

indicated relationship (13), which has the explicit form in this case of

ε = exp

(
− cosh−1

(
−µ2 + 2µz12z34 − 1

2µ
√
z2

12 − 1
√
z2

34 − 1

))
, (21)

and inverting it, we find

µ =
1

2

(
λ−
√
λ2 − 4

)
, (22)

where

λ = 2z12z34 −
√
z2

12 − 1
√
z2

34 − 1

(
1

ε2
+ 1

)
ε.

For the two-qubit counterpart, we have

ε = exp

(
− cosh−1

(
−µ2 + 2µ (y12y34 + z12z34)− 1

2µ
√
y2

12 + z2
12 − 1

√
y2

34 + z2
34 − 1

))
. (23)

The zij ’s are as in the two-rebit case (26), and the yij ’s are now the corresponding imaginary

parts in the natural extension of the two-rebit density matrix parameterization (18). A

similar inversion yields

µ =
1

2

(
λ̃−

√
λ̃2 − 4

)
, (24)
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FIG. 15: Two-rebit separability probabilities as joint function of ε and µ, based on 5,077 million

randomly-generated density matrices. Note the vacant region ε > µ.

where

λ̃ = −
(

1

ε2
+ 1

)
ε
√
y2

12 + z2
12 − 1

√
y2

34 + z2
34 − 1 + 2y12y34 + 2z12z34.

It appears to be a challenging problem, using these relations (13), (22) and (24), to

transform the ε-parameterized volume forms and separability functions in the Lovas-Andai

framework to the µ-parameterized ones in the Slater setting, and vice versa. (The presence

of the z and y variables in the formulas, undermining any immediate one-to-one relationship

between ε and µ, is a complicating factor.)

The correlation between the ε and µ variables, estimated on the basis of one million

randomly-generated (with respect to Hilbert-Schmidt measure) density matrices was 0.631937

in the two-rebit instance, and 0.496949 in the two-qubit one.

Also, in these two sets of one million cases, µ was always larger than ε. This dominance

effect (awaiting formal verification) is reflected in Figs. 15 and 16, being plots of the

separability probabilities (again based on samples of size 5,077 and 3,715 million, respectively)

as joint functions of ε and µ, with no results appearing in the regions ε > µ. It has been noted

(https://mathoverflow.net/q/262943/47134 that for a diagonal 4× 4 density matrix D

that ε = µ (inverting ratios, if necessary, so that both are less than or greater than 1). This

equality can also be observed by setting z12 = z24 = 0 (and y12 = y24 = 0) in the equations

20
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FIG. 16: Two-qubit separability probabilities as joint function of ε and µ, based on 3,715 million

randomly-generated density matrices. Note the vacant region ε > µ.

immediate above.

Let us now display three plots that support, but only approximately, the possible relevance

of the Dyson-index ansatz for two-rebit and two-qubit separability functions. In Fig. 17,

we show the ratio of the square of the two-rebit separability probabilities to the two-qubit

separability probabilities, in terms of the variable employed by Slater, µ =
√

ρ11ρ44
ρ22ρ33

. In

Fig. 18, we show the Lovas-Andai counterpart, that is, in terms of the ratio of singular

values variable, ε = σ(V ). Further, in Fig. 19 we display the ratio of the square of the

two-dimensional two-rebit plot (Fig. 15) to the two-dimensional two-qubit plot (Fig. 16).

These three figures all manifest an upward trend in the ratios as ε and/or µ increase.

IV. SCENARIOS FOR WHICH ε = µ OR ε = 1
µ

A. Seven-dimensional convex set of two-rebit states

If we set z12 = z34 = 0 in the relation (21), we obtain ε = µ or 1
µ
. So, let us try to obtain the

separability function when these null conditions are fulfilled. First, we found that the Hilbert-

Schmidt volume of the seven-dimensional convex set is equal to 1
5040
· 2π2

3
= π2

7560
≈ 0.0013055,
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FIG. 17: Ratio of the square of the estimated two-rebit separability probabilities (Fig. 8) to the

estimated two-qubit separability probabilities (Fig. 10), as a function of µ =
√

ρ11ρ44
ρ22ρ33

with a jacobian for the transformation to µ equal to

µ3 (−11µ6 − 27µ4 + 27µ2 + 6 (µ6 + 9µ4 + 9µ2 + 1) log(µ) + 11)

210 (µ2 − 1)7 . (25)

(2π2

3
is the normalization constant corresponding to χ1(ε) [1, Table 2], appearing in the

“defect function” (3), as well as the volume of the standard unit ball in the normed vector

space of 2× 2 matrices with real entries, denoted by B1(R2×2).)

We were, further, able to impose the condition that two of the principal 3× 3 minors of

the partial transpose are positive. The resultant separability function (Fig. 20) was
2
(√

µ2−1+µ2 csc−1(µ)
)

πµ2
µ > 1

2
√

1−µ2µ+2i log
(
µ+i
√

1−µ2
)

+π

π
0 < µ < 1

, (26)

with an associated separability probability of 71
105
≈ 0.67619.

We, then, sought to impose–as both necessary and sufficient for separability [30, 31]–

the positivity of the partial transpose of the density matrix. First, we found that the

associated separability function assumes the value 1 at µ = 1. For µ = 2, 3, we formu-

lated four-dimensional constrained integration problems. Mathematica reduced them to

two-dimensional integration problems, for which we were able to perform high precision
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FIG. 18: Ratio of the square of the estimated two-rebit separability probabilities (Fig. 2) to the

estimated two-qubit separability probabilities (Fig. 5), as a function of the ratio of singular values

variable, ε = σ(V )

FIG. 19: The ratio of the square of the two-dimensional two-rebit plot (Fig. 15) to the two-

dimensional two-qubit plot (Fig. 16)
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FIG. 20: Two-rebit separability probability function (26) for the seven-dimensional convex set for

which ε = µ or 1
µ , based on the positivity of two principal 3× 3 minors of the partial transpose

calculations. Remarkably, the values obtained agreed (using (2)) with those for χ̃1(1
2
) = χ̃1(2)

and χ̃1(
1
3
) = χ̃1(3) to more than twenty decimal places. The two-dimensional integrands

Mathematica yielded for µ = 2 were of the form

3

(
π
√
−4z2

13 − z2
14 + 4− 8

√
−z2

13 − z2
14 + 1 sin−1

(
z14

2
√

1−z213

)
+ 2
√
−4z2

13 − z2
14 + 4 sin−1

(
z14√
1−z213

))
8π2

(27)

for

−1 < z13 < 1 ∧ z14 +
√

1− z2
13 > 0 ∧ z14 < 0

and

3

(
π
√
−4z2

13 − z2
14 + 4 + 8

√
−z2

13 − z2
14 + 1 sin−1

(
z14

2
√

1−z213

)
− 2
√
−4z2

13 − z2
14 + 4 sin−1

(
z14√
1−z213

))
8π2

(28)

for

−1 < z13 < 1 ∧ z14 > 0 ∧
√

1− z2
13 − z14 > 0.

So, in light of this evidence, we are confident in concluding that the Lovas-Andai two-rebit

separability function χ̃1(ε) serves as both the Lovas-Andai and Slater separability functions

in this seven-dimensional setting.
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To still more formally proceed, we were able to generalize the pair of two-dimensional

integrands for the specific case µ = 2 given in (27) and (28) to µ = 1, 2, 3, . . ., obtaining

3

(
2µ
√
−µ2z2

14 − z2
13 + 1 sin−1

(
z14√
1−z213

)
− 2
√
−z2

13 − z2
14 + 1 sin−1

(
µz14√
1−z213

)
+ π
√
−z2

13 − z2
14 + 1

)
2π2

(29)

for

1 < z13 < 1 ∧ z14 > 0 ∧
√

1− z2
13 − µz14 > 0

and

3

(
−2µ

√
−µ2z2

14 − z2
13 + 1 sin−1

(
z14√
1−z213

)
+ 2
√
−z2

13 − z2
14 + 1 sin−1

(
µz14√
1−z213

)
+ π
√
−z2

13 − z2
14 + 1

)
2π2

(30)

for

−1 < z13 < 1 ∧ µz14 +
√

1− z2
13 > 0 ∧ z14 < 0.

1. Reproduction of Lovas-Andai two-rebit separability function χ̃1(ε)

Making use of these last set of relations, we were able to reproduce the Lovas-Andai

two-rebit separability function χ̃1(ε), given in (2). We accomplished this by, first, reducing

the (general for integer µ > 1) two-dimensional integrands (29) and (30) to two piecewise

one-dimensional ones of the form

4
(
µ2
√

1− s2 sin−1
(
s
µ

)
+
√
µ2 − s2 cos−1(s)

)
π2µ2

(31)

over s ∈ [0, 1] and

2π
√
µ2 − s2 − 4µ2

√
1− s2 sin−1

(
s
µ

)
+ 4
√
µ2 − s2 sin−1(s)

π2µ2
(32)

over s ∈ [−1, 0].

To obtain these one-dimensional integrands, which we then were able to explicitly evaluate,

we made the substitution z14 →
s
√

1−z213
µ

, then integrated over z13 ∈ [−1, 1], with µ ≥ 1, so

that ε = 1
µ
. Let us note that in this approach, the dependent variable (µ) appears in the

integrands, while in the Lovas-Andai derivation, the dependent variable (ε) appears as a
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limit of integration. The counterpart set of two piecewise integrands to (31) and (32) for the

reciprocal case of 0 < µ ≤ 1 are

4
(
µ2
√

1− s2 cos−1
(
s
µ

)
+
√

(µ− s)(µ+ s) sin−1(s)
)

π2µ2
(33)

over s ∈ [0, 1] with µ > s and

2µ2
√

1− s2
(

2 sin−1
(
s
µ

)
+ π
)
− 4
√

(µ− s)(µ+ s) sin−1(s)

π2µ2
(34)

over s ∈ [−1, 0] with µ > −s. The corresponding univariate integrations then directly yield

the Lovas-Andai two-rebit separability function χ̃1(ε), given in (2), now with ε = µ, rather

than ε = 1
µ
.

As an interesting aside, let us note that we can obtain ε = µ in (21), in a nontrivial

fashion (that is, not just by taking z12 = z34 = 0), by setting

z34 =
z12

(
−2 (µ3 + µ) + µ4

(
−
√
z2

12 − 1
)

+
√
z2

12 − 1
)

(µ2 − 1)2 z2
12 − (µ2 + 1)2 , (35)

leading to an eight-dimensional framework. However, this result did not seem readily

amenable to further study/analysis.

B. Eleven-dimensional convex set of two-qubit states

Let us repeat for the 15-dimensional convex set of two-qubit states, the successful form

of analysis in the preceding section, again nullifying the (1,2), (2,1), (3,4), (4,3) entries of

D, so that the two diagonal 2× 2 blocks D1, D2 are themselves diagonal. This leaves us in

an 11-dimensional setting. The associated volume we computed as 1
9979200

· π4

6
= π4

59875200
≈

1.62687 · 10−6. (Here π4

6
is the normalization constant corresponding to χ2(1) [1, Table 2], as

well as the volume of the standard unit ball in the normed vector space of 2× 2 matrices

with complex entries, denoted by B1(C2×2).) The associated jacobian for the transformation

to the µ variable is

µ5 (A(µ− 1)(µ+ 1)− 60 (6µ10 + 75µ8 + 200µ6 + 150µ4 + 30µ2 + 1) log(µ))

83160 (µ2 − 1)12 (36)

with

A = 5µ10 + 647µ8 + 4397µ6 + 6397µ4 + 2272µ2 + 142.
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The imposition of positivity for one of the 3×3 principal minors of the partial transpose yielded

a separability function of 2µ2−1
µ4

for µ > 1, with an associated bound on the true separability

probability of this set of eleven-dimensional two-qubit density matrices of 126
181
≈ 0.696133.

(This function bears an interesting resemblance to the later reported important one (41). The

insertion into (11) of it, in its 0 < µ < 1 form, µ2(2− µ2), leads to a separability probability

prediction of 1
3
.)

Again–as in the immediately preceding seven-dimensional two-rebit setting–imposing, as

both necessary and sufficient for separability [30, 31], the positivity of the partial transpose

of the density matrix, we find that the associated separability function assumes the value

1 at µ = 1. For µ = 2, our best estimate was 0.36848, which in line with the seven-

dimensional analysis, would appear to be an approximation to the previously unknown value

of χ̃2(1
2
) = χ̃2(2).

1. Proof of the 8
33 -Two-Qubit Hilbert Schmidt Separability Probability Conjecture

We applied the Mathematica command GenericCylindricalDecomposition to an eight-

variable set (plus µ) of positivity conditions, enforcing the positive-definite nature of two-qubit

(4× 4) density matrices (with their (1,2), (2,1), (3,4) and (4,3) entries nullified) and of their

partial transposes, for µ > 1. (“GenericCylindricalDecomposition[ineqs,x1, x2, ...] finds the

full-dimensional part of the decomposition of the region represented by the inequalities ineqs

into cylindrical parts whose directions correspond to the successive xi, together with any

hypersurfaces containing the rest of the region.”)

These density matrices had their two 2× 2 diagonal blocks, themselves set diagonal in

nature. The parallel two-rebit analysis (sec. IV A) succeeded in reconstructing the Lovas-

Andai function χ̃1(ε), giving us confidence in this strategy. This pair of reduction strategies

rendered the corresponding sets of density matrices as 11-dimensional and 7-dimensional in

nature, rather than the standard full 15- and 9-dimensions, respectively.

The cylindrical algebraic decomposition (CAD)–applied to the two-qubit positivity con-

straints (expressible in terms of µ and four [real part] zij and four [imaginary part] yij

variables)–yielded three complementary solutions. One of these consisted of three further

complementary solutions. We analyzed each of the five irreducible solutions separately,

employing them to perform integrations over the same set of four (z23, y23, y24 and z24)
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of the eight variables. Then, we summed the five results, remarkably simplifying to the

four-dimensional integrand

12π2 (− (µ2 − 1) y2
14 − (µ2 − 1) z2

14 + y2
13 + z2

13 − 1) (µ2 (y2
14 + z2

14) + y2
13 + z2

13 − 1)

2π4 (1− y2
13 + z2

13)
, (37)

subject to the constraints

µ > 1 ∧ − 1

µ
< z14 <

1

µ
∧ −

√
1− µ2z2

14

µ
< y14 <

√
1− µ2z2

14

µ
(38)

∧ −
√

1− µ2 (y2
14 + z2

14) < y13 <
√

1− µ2 (y2
14 + z2

14)

∧ −
√
µ2 (− (y2

14 + z2
14))− y2

13 + 1 < z13 <
√
µ2 (− (y2

14 + z2
14))− y2

13 + 1.

The transformation to a pair of polar coordinates

{z13 → r13 cos (φ13) , z14 → r14 cos (φ14) , y13 → r13 sin (φ13) , y14 → r14 sin (φ14)} . (39)

gave us a somewhat simpler integrand

12π2r13r14 (r2
14µ

2 + r2
13 − 1) (−r2

14 (µ2 − 1) + r2
13 − 1)

2π4 (1− r2
13)

. (40)

(Note four “active” variables in the first integrand (37), and only two radial and no angular ones

in the second (40).) The integration constraints (38) now simply reduced to r2
13 + r2

14µ
2 < 1,

with µ > 1. The integration result

f(u) =
4µ2 − 1

3µ4
, (41)

immediately followed.

Now, the function that Lovai and Andai expressed hope in employing to verify the

conjecture that the Hilbert-Schmidt two-qubit separability probability is 8
33
≈ 0.242424, is

χ̃2(ε) = f(
1

ε
) =

1

3
ε2
(
4− ε2

)
. (42)

This can be seen since the denominator of the equation (9) for Psep(C) evaluates, as noted

earlier, to
1∫

−1

x∫
−1

(1− x2)2(1− y2)2(x− y)2dydx =
256

1575
, (43)
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FIG. 21: Result of subtracting χ̃2(ε) from the estimated two-qubit separability probability curve

(Fig. 5). Fig. 3 is the two-rebit analogue.

while the use of the newly-constructed χ̃2(ε) yields a numerator value of

1∫
−1

x∫
−1

χ̃2

(√
1− x
1 + x

/√
1− y
1 + y

)
(1− x2)2(1− y2)2(x− y)2dydx =

2048

51975
(44)

with the ratio giving the 8
33

result. (For the reduced 11-dimensional two-qubit setting,

making use of χ̃2(ε), we were able to compute the associated separability probability as

746149
21
− 3600π2 ≈ 0.328918. Proceeding similarly in the reduced 7-dimensional two-rebit

setting, we obtained an associated separability probability of 0.4197023.)

It is somewhat startling to compare the quite simple (polynomial) nature of χ̃2(ε) with

its two-rebit (polylogarithmic/inverse hyperbolic tangent) counterpart ((1), (2)). Let us now

present (Fig. 21) the two-qubit version of Fig. 2, showing again a random distribution of

residuals, serving as further validation/support for the newly-constructed χ̃2(ε).

Let us interestingly note that it was conjectured in 2007 [2, eqs. (93), (95); sec. 9.2] that

the “two-qubit separability function” (in the Slater framework) had the form

6

71
(3− µ2)µ2, (45)

somewhat similar in nature to (42) (cf. Fig. 10, 14).

A formidable challenge, to continue this line of research, is now to establish that the

”two-quater[nionic]bit” Hilbert-Schmidt separability probability is 26
323

. This would move us,
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first, from the original 9-dimensional two-rebit and 15-dimensional two-qubit settings to a 27-

dimensional one. But these dimensions can be reduced to 7-, 11- and 19-, using the apparently

acceptable strategy–that has given us χ̃1(ε) and χ̃2(ε)–of setting the two 2 × 2 diagonal

blocks themselves to diagonal form. In turn, this leads to cylindrical algebraic decompositions

with 4, 8 and 16 variables–with the last, quaternionic one, still seemingly computationally

unfeasible. (Theorem 3 of [28] yields π12

315071454005160652800000
= π12

215·310·55·73·112·132·17·19·23
for the

volume of the state space of quaternionic 4× 4 density matrices.)

It should be pointed out that the manner of derivation of χ̃2(ε) here is distinctly different

from that employed by Lovas and Andai [1, App. A] in obtaining the form of χ̃1(ε), though

it has also been able to find this result here using the cylindrical algebraic decomposition

approach (sec. IV A 1).

C. Common features of two-rebit, two-qubit and two-quaterbit constraint sets

To begin, let us make the temporary change of notation,

z13 = r13, z14 = r14, z23 = r23, z24 = r24. (46)

To construct the two-rebit function χ̃1(ε), in our mode of analysis above, we need, first, to

ensure the positive-definiteness of the associated 4× 4 real-entry density matrix D (with its

(1,2), (2,1), (3,4), (4,3)-entries nullified). To accomplish this, we must enforce the pair of

constraints

− r2
13 − r2

23 + 1 > 0 (47)

and

− r2
13 − 2r13r14r23r24 − r2

14 + r2
14r

2
23 − r2

23 +
(
r2

13 − 1
)
r2

24 + 1 > 0. (48)

Additionally, to ensure the positive-definiteness of its partial transpose (and, thus, the

separability of D [32]), we must enforce the constraint

µ4
(
−r2

14

)
+ µ2

(
−r2

13 − 2r13r14r23r24 + r2
14r

2
23 +

(
r2

13 − 1
)
r2

24 + 1
)
− r2

23 > 0. (49)

Now, moving on to the two-qubit case, let us employ polar coordinates of the form,

z13 = r13 cosφ13, y13 = r13 sinφ13, . . . . (50)
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Then, the constraint (47) remains as is, while both (48) and (49) are modified by replacing

the term 2r13r14r23r24 by

2r13r14r23r24 cos (φ13 − φ14 − φ23 + φ24) . (51)

The range of CC = cos (φ13 − φ14 − φ23 + φ24) is [−1, 1]. (So, implicitly, CR = 1.)

The same set of three constraints, as in this two-qubit case, holds as well (generalizing

from polar to hyperspherical coordinates [33]) in the two-quaterbit case [34], but for the

replacement in two of the three constraints of the factor CC by an (apparently) much more

cumbersome term CQ. (We employ the “Moore determinant” for our quaternionic calculations

[35].) This term is composed of twelve angular, and again none of the four radial variables.

(However, simulations strongly indicate that the range of this expression is also [−1, 1].)

Further, we observe that only the two even powers of µ, that is µ2 and µ4, appear in

the constraints. In the two-rebit case, the corresponding integrand in the multidimensional

integration is simply 1, while in the two-qubit case it would be r13r14r23r24, and in the

two-quaterbit instance, it would be (r13r14r23r24)3.

1. Attempted construction of χ̃4(ε)

We were able to again obtain the two-qubit formula (42) for χ̃2(ε), using the just indicated

set of three integration constraints. So, we naturally attempted to extend the scheme of

analysis to the two-quaterbit case.

Our parallel calculation, then, yielded (here, as a beginning exercise, we take CC = CQ)

χ̃4(ε) = − 1

385
ε4
(
75ε4 + 128ε2 − 588

)
(52)

(again a function of ε2). But when we substituted this function into our ansatz (11), with

α = 2, we obtain a separability probability result of 58
969
≈ 0.0598555, rather than the

strongly-supported value of 26
323
≈ 0.0804954 [8, eq. (4)]. (An effort to similarly study the

[non-division-algebra] α = 3
2

case, with an integrand of (r13r14r23r24)
2, having a presumed

separability probability of 36061
262144

, led to intractable integrals involving elliptic functions.)

So, we must conclude that either our ansatz (11), for this particular case, is not proper or

perhaps more likely that our treatment of the twelve-angular-variable factor (ranging from -1

to 1) as the cosine function of a single variable, in the same manner as the two-qubit term
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CC is, has led us astray. (We found specific support for the ansatz in this case by computing

the volume form for the 2 × 2 self-adjoint quaternionic matrices, denoted by Msa
2Q in the

notation of [1, Table 1]. It was of the form 1
4

sin(2η) sin2(θ)(x− y)4 sin3(φ) cos(φ).) Certainly,

it would be desirable to obtain a concise re-expression of this twelve-angular-variable term.

In our efforts in this latter regard, we have obtained an interesting concise expression of

certain nine-dimensional sections of the twelve-dimensional body CQ. The (1,3), (1,4), (2,3)

and (2,4) quaternionic entries (of absolute value no greater than 1) of the 4×4 density matrix

D were each parameterized, in the standard hyperspherical manner, by a single radial and

three angular variables. There are six possible pairs of such entries. If we equated the three

angles of the (1,3)-(1,4) or (1,3)-(2,3) or (1,4)-(2,4) or (2,3)-(2,4) pair (thus, reducing the

dimensionality from twelve to nine), then the twelve-dimensional (radii-free) term collapses

greatly to the six-variable (conditional) expression,

cos θ1 cos θ2 + sin θ1 sin θ2(cos η1 cos η2 + cos (φ1 − φ2) sin η1 sin η2). (53)

Here, the θ’s and η’s are the corresponding two latitudinal angles (varying from 0 to π), and

the φ’s the corresponding longitudinal angles (varying from 0 to 2π) of the unmatched pair,

the three equated angles of the matched pair vanishing from the expression (53). If the three

angles of both pairs are equated, the expression (53) further reduces to -1.

The marginal distribution (integrating out the eight latitudinal angles) of CQ over the

longitudinal angles equalled 16π4

81
CC. (The relations between conditional, marginal and

full/joint distributions comprise a research topic of considerable interest [36, 37].)

The term, −2r13r14r23r24CQ arising in the constraints stems from summing two identical

terms in the expansion of the Moore determinant of the two-quaterbit density matrix with,

in our now usual analytical manner, its (1,2), (2,1), (3,4), (4,3) entries nullified. One of

the 24 = 4! terms in the expansion corresponds to minus the ordered product of the (1,4),

(4,2), (2,3) and (3,1) entries, while the second identical term corresponds to minus the

ordered product of the (1,3), (3,2), (2,4) and (4,1) entries. The two-rebit and two-qubit

constraint terms −2r13r14r23r24CR = −2r13r14r23r24 and −2r13r14r23r24CC arise similarly, but

the ordering of the entries in the product becomes irrelevant.

If we assume that the Lovas-Andai two-quaterbit function has the polynomial structure

exhibited by (52) then we could obtain the presumed separability probability 26
323

using the
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remarkably simple function

χ̃4(ε) = ε4
(
2− ε4

)
. (54)

Slightly less simple, but also similarly successful would be

χ̃4(ε) = ε4
(
−26ε4 + 32ε2 − 5

)
. (55)

We wanted to test the fit of these last two functions by the generation of random two-quaterbit

matrices–but had not yet found an effective manner of doing so (cf. [38–40]). (The possible

use of Ginibre ensembles, in the manner of [38], and the associated issues in doing so, has

been addressed by C. F. Dunkl in App. C.) The computational resources employed by Fei

and Joynt in this regard greatly exceeded those available to us [41].

2. Attempted construction of χ̃8(ε) for the presumptive octonionic case (K = O)

We formally repeated, now with d = 8, the form of analysis used in our attempted

construction (sec. IV C 1) of χ̃4(ε). So, we (again, naively) assumed that we had a radial-

variable-free factor of the form CO = CC = cos (φ13 − φ14 − φ23 + φ24), and further used as our

jacobian (ρ11ρ22ρ33ρ44)7, rather than (ρ11ρ22ρ33ρ44)3 (cf. [18]). Then, the pseudo-Lovas-Andai

function we obtained was

χ̃8(ε) =
ε8 (2458624ε2 − 45 (847ε4 + 17408ε2 + 24192) ε4 + 1159340)

1707849
. (56)

This led to a separability probability estimate of 11410114
5429220123

≈ 0.00210161, while the formal

prediction [8] is 44482
4091349

≈ 0.0108722, with a consequent ratio of these two values of 5705057
29513807

≈

0.193301.

A function that does produce 44482
4091349

is

χ̃8(ε) = ε8
(
−305ε8 + 131ε6 + 5ε4 + 5ε2 + 3

)
. (57)

V. X-STATES FUNCTIONS CONFORM TO DYSON-INDEX ANSATZ

Since the (1,2)-, (2,1)-, (3,4)-, (4,3)-entry nullified two-quaterbit problem was proving

challenging, it seemed of interest to investigate what arises when we additionally nullify

the (1,3)-, (3,1)-, (2,4)-, (4,2)-entries, reducing then to the X-states framework [42, 43]. I,

first, examined the two-rebit and two-qubit problems, and then went on to the two-quaterbit
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question. I was able to reproduce the corresponding X-statess PPT-probabilities 16
3π2 ,

2
5

and

2
7

reported in [44].

Now, the interesting finding, certainly conforming to the Dyson-index ansatz, is that the

functions of the variable (ε) that in the Lovas-Andai framework is the singular-value ratio,

are simply

ε, ε2, ε4 (58)

in these three scenarios. (Let us note that ε2 is a factor of χ̃2(ε) = ε2(4 − ε2)/3 and ε4 is

a factor of our then conjectured χ̃4(ε) = ε4(2 − ε4). “It is somewhat interesting that the

identity function approximates well χ̃1(ε))” [1, p. 6]. In the X-states case, we see that the

relationship is an exact one.)

If we insert these functions into (11), rather than the true X-states PPT-probabilities, we

obtain 16
9
− 35π2

256
≈ 0.428418, 13

66
≈ 0.19697 and 124

2907
≈ 0.0426557, all smaller than the true

values.

Also, if we formally proceed with the (non-division-agebra-based) case α = 3
2
, by setting

one of the three non-real components of the quaternionic off-diagonal entries to zero, we

get (still conforming to the ansatz), ε
3
2 . The corresponding X-states PPT-probability is

1024
315π2 ≈ 0.329374, while the use of ε

3
2 in (11), with α = 3

2
, gives 2816

147
− 129633075π2

67108864
≈ 0.0915121.

VI. FORMULA FOR THE LOVAS-ANDAI TWO-QUATERBIT FUNCTION χ̃4(ε)

The simple nature of the results of the X-states analyses led us to consider the slightly

expanded/intermediate scenarios in which either the two members of the (1,3)-, (3,1)- or of

the (2,4)-, (4,2)- pairs are not constrained to zero. We were quite surprised to find that in

both the two-rebit and two-qubit cases, the associated separability functions were precisely

the previously found χ̃1(ε) and χ̃2(ε). (So, it appeared that we could obtain these functions

by nullifying as many as three pairs of off-diagonal entries, rather than just two, as had been

our strategy up until this point in time.)

This encouraged us to similarly examine the two-quaterbit case. We employed hyperspher-

ical coordinates for the four components of each quaternion. Then, the positivity constraints

to be enforced only involved the three radial, and none of the angular variables. We rather
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readily arrived at the result

χ̃4(ε) =
1

35
ε4
(
15ε4 − 64ε2 + 84

)
. (59)

Substitution of this function into the ansatz (11), with α = 2, gave us a numerator of

1∫
−1

x∫
−1

χ̃4

(√
1− x
1 + x

/√
1− y
1 + y

)
(1− x2)4(1− y2)4(x− y)4dydx =

1048576

430890075
(60)

and a denominator of

1∫
−1

x∫
−1

(1− x2)4(1− y2)4(x− y)4dydx =
524288

17342325
(61)

yielding the relatively long-standing conjecture [8, 12, 13] of

Psep/PPT (Q) =
26

323
. (62)

(Charles Dunkl has pointed out that 524288 = 219, 1048576 = 220, 17342325 = 32·52·72·112·13,

and 430890075 = 32 · 52 · 72 · 112 · 17 · 19.)

Now we will be able to further pursue this line of approach (of nullifying three off-diagonal

pairs) to find the Lovas-Andai functions χ̃d(ε), in full generality.

VII. GENERAL CONSTRUCTION OF THE LOVAS-ANDAI FORMULAS

In their interesting, important Conclusion section, Lovas and Andai write: “The structure

of the unit ball in operator norm of 2 × 2 matrices plays a critical role in separability

probability of qubit-qubit and rebit-rebit quantum systems. It is quite surprising that the

space of 2× 2 real or complex matrices seems simple, but to compute the volume of the set

{a b

c e

∣∣∣ a, b, c, e ∈ K,

∥∥∥∥∥∥
a b

c e

∥∥∥∥∥∥ < 1,

∥∥∥∥∥∥
a εb

c
ε
e

∥∥∥∥∥∥ < 1
}

for a given parameter ε ∈ [0, 1], which is the value of the function χd(ε), is a very challenging

problem. The gist of our considerations is that the behavior of the function χd(ε) determines

the separability probabilities with respect to the Hilbert-Schmidt measure.” (The operator

norm ‖·‖ is the largest singular value or Schatten-∞ norm. Let us note that Glöckner studied

functions on the quaternionic unit ball [45].)
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It appears that the cylindrical-algebraic-decomposition approach we have applied to 4× 4

density matrices D with diagonal 2 × 2 diagonal blocks D1, D2 (and even one additional

pair of nullified entries) to obtain the trio χ̃1(ε), χ̃2(ε) and χ̃4(ε) specifically answers this

“very challenging” question, but in a manner quite different than Lovas and Andai applied in

deriving χ̃1(ε) [1, App. A].

Our analyses, however, now are able to reveal that this problem has an extremely succinct

formulation. We employ the set of constraints (imposing–in quantum-information-theoretic

terms–the positivity of the density matrix and its partial transpose),

r2
23 < 1 ∧

(
r2

14 − 1
) (
r2

23 − 1
)
> r2

24 ∧ r2
23

(
ε2r2

14 − 1
)
> ε2

(
ε2r2

14 + r2
24 − 1

)
. (63)

Then, subject to these constraints, we have to integrate the jacobian (corresponding to the

hyperspherical parameterization of the three off-diagonal non-nullified entries of the density

matrix) (r14r23r24) d−1 over the unit cube [0, 1]3. Dividing the result of the integration by

π4−dΓ
(
d
2

+ 1
)2

d3Γ
(
d+1

2

)2 , (64)

yields the desired χ̃d(ε). (If we take r24 = 0, and a jacobian of (r14r23) d−1, we revert to the

X-states setting, and obtain simply εd as the corresponding function.)

This last result (64) is obtained by integrating the same jacobian (r14r23r24) d−1 over the

unit cube, subject to the constraints (imposing the positivity of the density matrix),

r2
23 < 1 ∧

(
r2

14 − 1
) (
r2

23 − 1
)
> r2

24. (65)

In fact, we have found that for d = 8, presumptively corresponding to the fourth division

algebra, the octonions (O) (cf. sec. IV C 2), the function

χ̃8(ε) =
1

1287
ε8
(
1155ε8 − 7680ε6 + 20160ε4 − 25088ε2 + 12740

)
, (66)

yielded through the indicated pair of three-dimensional constrained integrations, does give

the value 44482
4091349

, generated in previous studies [2–5].

Further, we have confirmed through symbolic means for d = 6, 10, 12, 14, 16, 18, 20 (in

addition, to the cases d = 2, 4, 8 already studied) and numerical means for d = 3, 5 (in

adddition, to the two-rebit case d = 1) that this methodology, reproduces the corresponding

exact (rational) values (parameterized by α = d
2
) reported in [8, eqs. (1)-(3)] (also eqs. (4)-6))

above), based on a certain “concise” formulation of a hypergeometric-based expression.
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For even d, the constant term in χ̃d(ε) is given by

8dΓ
(
d+1

2

)3

π3/2Γ
(

3d
2

+ 1
) , (67)

while the coefficient of ε2 is

−
23d−13−

3
2

(d+1)d3Γ
(
d+1

2

)3

√
πΓ
(
d
2

+ 2
3

)
Γ
(
d
2

+ 4
3

)
Γ
(
d
2

+ 2
) . (68)

We have obtained further formulas in this series up to the coefficient of ε22.

Further, we have (for both even and odd values of d),

χ̃d(ε) = (69)

εdΓ(d+ 1)
(

Γ(d+ 1)2
3F̃2

(
−d

2
, d

2
, d; d

2
+ 1, 3d

2
+ 1; ε2

)
+ 2 2F1

(
−d

2
, d

2
; d+2

2
; ε2
))

2Γ
(
d
2

+ 1
)2 −

4ddεdΓ
(
d+1

2

)2

πΓ
(
d
2

+ 1
)2

∫ 1

0

r2d−1
14 2F1

(
−d

2
,
d

2
;
d+ 2

2
; r2

14

)(
1− ε2r2

14

)
d/2dr14

(the tilde indicating regularization).

A. Master formula for χ̃d(ε)

An integration-by-parts (https://mathoverflow.net/q/279065/47134), and subsequent

simplification of (69), then yields (Fig. 22)

χ̃d(ε) = (70)

εdΓ(d+ 1)3
3F̃2

(
−d

2
, d

2
, d; d

2
+ 1, 3d

2
+ 1; ε2

)
Γ
(
d
2

+ 1
)2 .

What one would now aspire to accomplish is to replicate (now for general d, rather than

specifically d = 1) the course pursued by Lovas and Andai in the proof of their Theorem

2, establishing the two-rebit separability probability as 29
64

. They employed two changes-of-

variables and an integration-by-parts in their argument, recasting the problem as involving

an integration over s ∈ [0,∞] and t ∈ [0, 1]. The generalization for our purposes of their

(d = 1) integrand factor
256s4t3 (1− t2)

(s+ t)5(st+ 1)5
(71)
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FIG. 22: Lovas-Andai master formula (70) for χ̃d(ε)

is

f(d, s, t) =
25d+3

(
st

(s+t)2

)d+1 (
st

(st+1)2

)d (
1

st+1
− t

s+t

)d
(st+ 1)2

= (72)

(−1)d25d+3s3d+1t2d+1
(
t2 − 1

)d
((s+ t)(st+ 1))−3d−2. (73)

This, in fact, can be integrated over s ∈ [0,∞], yielding

(−1)d25d+3t−4d−3
(
t2 − 1

)d
Γ(3d+ 2)2

2F̃1

(
3d+ 2, 3d+ 2; 6d+ 4; 1− 1

t2

)
. (74)

So, we are faced with the task of integrating the product of this term and χ̃d(t), given by

(70), over t ∈ [0, 1]. Division of this “numerator” result by the denominator (obtained by

substituting α = d
2

in (10)),

π3−3d/28ddΓ
(

3d
2

)
Γ(d+ 1)2

Γ
(
d
2

+ 5
6

)
Γ
(
d
2

+ 7
6

)
Γ
(

5d
2

+ 2
) , (75)

would then give us the Hilbert-Schmidt separability/PPT-probability for the corresponding

d-setting.
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1. MeijerG-based formulas for separability/PPT-probabilities for even d

We have, in fact, not yet to this point in time, been able to explicitly perform the indicated

integration t ∈ [0, 1], while allowing d to be free, though the integration can readily be

carried out for any specific even value of d. In our quest for such a general formula, we have

conducted indefinite integrations over T =
√
t, for even values of d and have analyzed the

results to try to uncover a general rule. We have found that for any specific even value of d,

the corresponding indefinite integration yields a weighted sum of 1 + 3d
2

MeijerG functions

T−
3d
2
−1G2,3

3,3

 1

T
|
−3d− 1,−3d− 1,−3d

2

0, 0,−3d
2
− 1

+ (76)

3d
2
−1∑

i=1

T−
3d
2

+i−1f(d, i)G2,3
3,3

 1

T
|
−3d− 1,−3d− 1, i− 3d

2

0, 0,−3d
2

+ i− 1

+

f

(
d,

3d

2

)
G2,3

3,3

 1

T
|
1,−3d,−3d

1, 1, 0


times a factor of

π3
(
−1

2

)d−1
3−

9d
2
−3Γ(3d+ 2)

Γ
(
d
2

+ 5
6

)3
Γ
(
d
2

+ 7
6

)3
Γ
(

3d
2

+ 1
)4 . (77)

The ratio of this “numerator factor” (77) to the “denominator factor” (75) substantially

simplifies (correct for both odd and even d) to

(−1)d+1Γ
(

5d
2

+ 2
)

Γ
(
d
2

+ 1
)2

Γ
(

3d
2

+ 1
)3

Γ(3d+ 2)
. (78)

Let us note that (with i being the imaginary unit)

f

(
d,

3d

2

)
=

3idΓ
(

3d
2

)2

8Γ(d)Γ(2d)
, (79)

and

f
(
d, 3d

2
− 1
)

f(d, 1)
=

(27i)d4−2d−3(d+ 2)(5(d− 1)d+ 2)Γ
(
d
2
− 1

3

)
Γ
(
d
2

+ 1
3

)
Γ
(
d
2

+ 2
3

)
Γ
(
d
2

+ 4
3

)
√
π(d− 1)Γ

(
d+ 1

2

)
Γ
(
d+3

2

)2 .

(80)

Also,
3d
2∑
i=1

f(d, i) = −1. (81)
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In general, giving us the weights f(d, i) to be employed, we have the linear difference equa-

tion (constructed based on multiple applications of the Mathematica FindSequenceFunction

command) shown in Fig. 23,

Now, one must evaluate the weighted sum of the 1+ 3d
2

MeijerG functions at the specific end

points T = 1 and T = 0, taking their difference to arrive at the desired (definite integration)

result. For the two-qubit case d = 2, we found these two values to be 148 + 8
33

and 148,

respectively, giving us the correct result for the difference of 8
33

. For the two-quaterbit d = 4

instance, we have −333631 − 297
323

and -333632, giving us the 26
323

oucome. Now for d = 6,

we have 1008871862 + 2999
103385

and 10088871862, consistent with [8, eq. (4)], and similarly

for d = 8, with the upper value being −3543784402375− 4046867
4091349

and the lower value being

-3543784402376, the difference being 44482
4091349

, as expected. So, for odd values of d
2
, we appear

to have pairs of positive limits, and for even values, negative limits.

In fact, if we replace α in Fig. 3 of [8] by d
2
, we arrive at a large hypergeometric-based

expression that serves as an alternative–succeeding for both odd and even values of d–to

these MeijerG-related results.

See also App. D for an alternative (arguably, superior/finite in character) approach

developed by C. Dunkl to the MeijerG one just outlined.

B. Equivalence argument of C. Koutschan

It remains now to formally demonstrate the equivalence in predicted Hilbert-Schmidt

separabilty/PPT-probabilities yielded by the Lovas-Andai-based procedure developed in this

paper and the earlier-presented “concise formula”.

Let us note that with our new formula (70) for χ̃d(ε), we are able–at least for even d-to

compute the exact rational values of the corresponding separability/PPT-probabilities. With

the earlier concise formula ((4)-(6)) [8, eqs. (1)-(3)] we are only able–but to apparently

arbitrarily high-accuracy–to approximate these values. The case of odd values of d appears

to be somewhat more problematical/challenging in obtaining the corresponding exact values.

To be most specific, to compute the d-th separability-PPT probability (d = 1, 2, 4
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FIG. 23: Linear difference equation for MeijerG summation weights f(d, i)
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corresponding to R,C,O, . . .), we must integrate over t ∈ [0, 1] the product of

(−1)d3
3d
2

+182d+1t−3(d+1) (t2 − 1)
d

Γ
(
d
2

+ 5
6

)
Γ
(
d
2

+ 7
6

)
Γ
(
d+1

2

)
Γ
(

3(d+1)
2

)
Γ
(

5d
2

+ 2
)

Γ(3d+ 2)

π2Γ
(
d
2

+ 1
)

(82)

and

2F̃1

(
3d+ 2, 3d+ 2; 6d+ 4; 1− 1

t2

)
3F̃2

(
−d

2
,
d

2
, d;

d

2
+ 1,

3d

2
+ 1; t2

)
, (83)

where˜indicates regularization. (We follow the use of Lovas and Andai in employing either t

or ε, in different settings. When d is even, the 3F̃2 function terminates, and is a polynomial

in t, Dunkl indicated.)

In fact, C. Koutschan has been able, applying creative telescoping with the use of his

HolonimicFunctions package [46], to derive a recurrence of order 4 for this integral I, involving

the terms I(d), I(d+ 2), I(d+ 4). He has also constructed an order 6 recurrence for the large

hypergeometric-based expression (G), involving G(d), G(d + 2), G(d + 4), G(d + 6), given

in Fig. 3 of [8] that yields the separability/PPT-probabilities. Equivalently to G, we can

apparently employ [47, p. 26]

He further checked that the order-6 recurrence for G is a left-multiple (in the [Ore] operator

sense) of the order-4 recurrence. Indeed, G also satisfies the order-4 recurrence (Fig. 24).

He, then, confirmed that certain initial conditions, namely, that I(0) = G(0), ..., I(3) =

G(3) are satisfied. By numerically evaluating G, and then rationalizing, he found that the

first 4 values of the sequence G(d) were the rational numbers
{

29
64
, 8

33
, 36061

262144
, 26

323

}
. By applying

the recurrence, he saw that G(d) is rational for each natural number d. As a consistency

check, he compared the values for G(4), ..., G(10) that he got from: (1) numerical evaluation;

and (2) by applying the recurrence. Indeed, they agreed.

Equivalently to G, in this argument, we can apparently employ [47, p. 26]

Psep/PPT (0, d) = 2Q(0, d) = 1−

√
π2−

9d
2
− 5

2 Γ
(

3(d+1)
2

)
Γ
(

5d
4

+ 19
8

)
Γ(2d+ 2)Γ

(
5d
2

+ 2
)

Γ(d)
×

(84)

6F̃5

(
1, d+

3

2
,
5d

4
+ 1,

1

4
(5d+ 6),

5d

4
+

19

8
,
3(d+ 1)

2
;
d+ 4

2
,
5d

4
+

11

8
,
1

4
(5d+ 7),

1

4
(5d+ 9), 2(d+ 1); 1

)
.

(More generally, Q(k, d) gives that portion, for random induced measure, parameterized by k,

of the total separability/PPT-probability for which the determinantal inequality |ρPT | > |ρ|

holds. The sum of the six upper parameters of the 6F5 function here minus the sum of the
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FIG. 24: Order-4 recurrence satisfied by: (1) the large 7F6-hypergeometric-based expression (G)

[and its “concise” reformulation ((4)-(6))]; (2) the Lovas-Andai-based integral I(d) of the product

of (82) and (83); and (3) the specialized random induced measure formula (84).
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five lower ones is “d-free”, equalling −1
2
. This indicates that terminating the infinite sum

associated with the 6F5 function after n terms, leads to a truncation error of O(n−
1
2 ). In

general, p+1Fp converges at t=1 provided the sum of the p+ 1 upper parameters minus the

sum of the p lower parameters is less than zero http://dlmf.nist.gov/16.2#i 16.2(iii).)

C. Monotone Measure Application

In section 4 of their recent study [1], Lovas and Andai extend their analyses from one

involving the (non-monotone [48]) Hilbert-Schmidt measure to one based on the operator

monotone function
√
x. They are able to conclude (for the case d = 1) that the applicable

“separability function” in this case, η̃d(ε), is precisely the same as the Hilbert-Schmidt

counterpart χ̃d(ε). However, rather than the complementary “normalization factor” ((11),

with α = d
2
),

1∫
−1

x∫
−1

(1− x2)d(1− y2)d(x− y)ddydx, (85)

it is necessary to employ

1∫
−1

x∫
−1

(1− x2)−
d
4 (1− y2)−

d
4 (x− y)ddydx. (86)

(We have not, to this point in time, been able to perform an integration parallel to that yielding

(74), expressing the normalization term as a bivariate function of t and d.) Proceeding,

as before, for specific values of d, we are able to verify their numerical (two-rebit [d =

1]) separability probability result Psep.√x(R) of 0.26223. (We, further, observe that the

normalization term (86), although not amenable apparently to exact integration, clearly

evaluates to 2π
3

.)

Now, quite strikingly, we obtain for the two-qubit (d = 2) analysis, the ratio of π2

2
− 128

27

to π2

2
, that is,

Psep.√x(C) = 1− 256

27π2
≈ 0.0393251. (87)

(We observe that such results–as with the Hilbert-Schmidt 8
33

–appear to reach their most

simple/elegant in the [standard, 15-dimensional] two-qubit setting.)

For the two-quaterbit (d = 4) instance, we obtain the ratio of 4π2

3
− 5513

420
to 1.478504859×
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1013, yielding (the “infinitesimal”) result

PPPT.√x(Q) = 2.2510618339× 10−15. (88)

In light of these three results, it seems of clear interest to pursue parallel analyses for

the interesting variety of monotone metrics, with the minimal monotone (Bures) [49, 50]

one seemingly of particular interest. One question of note is whether the original (Hilbert-

Schmidt-based) Lovas-Andai function χ̃d(ε), given by (70), will continue to be appropriate

(as it has in the
√
x case), and only the complementary normalization factor will change.

The analyses of X-states, in these regards, might be informative (cf. [51]).

VIII. CONCLUDING REMARKS

We have found (sec. IV A) that the Lovas-Andai two-rebit separability function χ̃1(ε)

also serves as the Slater separability function in a reduced (from nine to seven-dimensional)

setting where the 2× 2 diagonal block matrices D1, D2 are themselves diagonal. Additionally,

we know that the Lovas-Andai two-qubit separability function χ̃2(ε) serves as the Slater

separability functions in a reduced (from fifteen to eleven-dimensional) setting where the

2× 2 diagonal block matrices D1, D2 are themselves diagonal. It remains a question of some

interest as to what the Slater two-rebit and two-qubit separability functions themselves are in

the full nine- and fifteen-dimensional settings, in particular, the possibility that the two-qubit

separability function might be 6
71

(3 − µ2)µ2 (cf. Figs. 10, 14). (Can the solutions in the

Lovas-Andai setting be “lifted” to those in the Slater one [cf. eqs.(15)-(20)]?) Also, we note

that Lovas and Andai did not specifically consider D1 and D2 to be diagonal. So, if would

be interesting to ascertain whether their same conclusions (such as the formula for χ̃1(ε))

could have been reached under such assumptions.

The counterpart rebit-retrit and qubit-qutrit 6 × 6 problems (sec. B) might also be

productively studied when the 3× 3 diagonal blocks are themselves diagonal. The problems

under consideration would then be 14 and 23-dimensional in nature, as opposed to 20 and

35-dimensional, with lower-dimensional CAD’s still.

In brief summary, let us emphasize that, at this point in time, we have basically four

quite distinct formulas for the generalized two-qubit Hilbert-Schmidt separability/PPT-

probabilities. In order of chronological development, we have the large expression containing
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six 7F6 hypergeometric functions (all with argument 27
64

) given in [8, Fig. 3], developed on

the basis of extensive moment (density approximation) calculations [9, 13]. Then, we have

the “concise” reexpression of this formula obtained by Qing-Hu Hou through the application

of Zeilberger’s algorithm (creative telescoping) ((4)-(6)) [8, eqs. (1)-(3)]. Next, we have

a formula (84) containing a single 6F5 hypergeometric function, that is the specialization

of an “induced measure” formula [47, p. 26] to the Hilbert-Schmidt case (k = 0). (This

“specialization” relies upon the observation that, in the Hilbert-Schmidt case, the separability

probability is equally divided between the cases where the nonnegative determinant of a

partial transpose is greater or less than the determinant of the density matrix itself.) Finally,

we have the formula developed here, the product of (82) and (83), requiring an integration

over t ∈ [0, 1], within the Lovas-Andai framework. (Strategies for carrying out the integration

are presented in sec. VII A 1 and App. D). Given the constructions by C. Koutschan, using

his HolonomicFunctions program [52], that the first, third and last of these four formulas

satisfy the same order-4 recurrence, we essentially possess a demonstration of the equivalence

of all four formulas (as stringent numerics further support). (Of the four formulas, the only

one Mathematica seems able to exactly evaluate for d = 1, 2, 3, 4, is the 6F5-based one.)

A problem still to be addressed is to extend the set of equivalent formulas studied above,

applicable to the (k = 0) Hilbert-Schmidt case, to the more general random induced measure

setting [19, 53] [47, sec. XIII, App. E] (where many d-specific formulas for Psep/PPT (k, d) are

given). (Here k = K − 4, where the measure is induced in the space of 4× 4 mixed states by

the natural, rotationally invariant measure on the set of all pure states of a 4×K system.)

Appendix A: Absolute separability probabilities

Those separable states that can not be entangled through unitary operations have been

designated as absolutely separable [54, p. 392].

In [55], we reported exact (but now decidedly not rational-valued, and much smaller-

valued) formulas for the Hilbert-Schmidt absolute separability probabilities for the two-rebit,

two-qubit and two-quaterbit states. For the convenience and interest of the reader, we present

them here, while simplifying the forms of the last two.
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The two-rebit absolute separability probability is expressible as [55, eq. (32)]

6928− 2205π

16
√

2
≈ 0.0348338, (A1)

the two-qubit as [55, eq. (34)]

1−
3217542976− 5120883075π + 16386825840 tan−1

(√
2
)

32768
√

2
− 29901918259

497664
≈ 0.00365826

(A2)

and the two-quaterbit as [55, eq. (36)]

13

3043362286338048
× (A3)

(806338156306739134839776− 658857590468226345222144
√

2+

1048604423167357891775325
√

2π−3355534154135545253681040
√

2 tan−1
(√

2
)

) ≈ 0.0000401326.

Let us note that the integer components of the denominators appearing above are either

simply powers of 2, or involve high powers of 2. Also, tan−1
(√

2
)
) ≈ 0.955317–the angle

between the space diagonal of a cube and any of its three connecting angles–has been termed

the “magic angle” (see the eponymous wikipedia article). We have also been able to obtain

absolute separability probabilities in the two-rebit case, again featuring this particular angle

prominently, when the Hilbert-Schmidt (k = 0) measure is replaced by random induced

measures [53] for k = 1, 2, 3.

It appears to be a substantial challenge–using eq. (4) of [56] to find the 6× 6 counterparts

to these three formulas for 4× 4 systems.

Appendix B: Rebit-retrit and qubit-qutrit analyses

Let us now attempt to extend the two-rebit and two-qubit line of analysis above to

rebit-retrit and qubit-qutrit settings–now, of course, passing from consideration of 4 × 4

density matrices to 6 × 6 ones. Lovas and Andai, in their quite recent study, had not

yet addressed such issues. In [2], candidate (Slater-type) separability functions had been

proposed. Two dependent variables (cf. the use of µ =
√

ρ11ρ44
ρ22ρ33

in the lower-dimensional

setting above) had been employed [2, eq. (44)]. Let us now refer to these two variables as

τ1 =
√

ρ11ρ55
ρ22ρ44

and τ2 =
√

ρ22ρ66
ρ33d55

. But, interestingly, it was argued that only a single dependent

variable τ = τ1τ2 =
√

ρ11ρ66
ρ33ρ44

sufficed for modeling the corresponding separability functions.
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The separability function in the rebit-retrit case was proposed to be simply proportional to

τ [2, eq.(98)].

In our effort to extend the Lovas-Andai analyses [1] to this setting, we now took D1 and

D2 to equal the upper and lower diagonal 3× 3 blocks of the 6× 6 density matrix in question.

Then, we computed the three singular values (s1 ≥ s2 ≥ s3) of D
1/2
2 D

−1/2
1 , and took the ratio

variables ε1 = s2
s1

and ε2 = s3
s2

as the dependent ones in question. (An issue of possible concern

is that, unlike the 4× 4 case [32], positivity of the determinant of the partial transpose of a

6× 6 density matrix is only a necessary, but not sufficient condition for separability.) Also,

in the case of diagonal D, again the two variables in the µ framework are equal to those in

the ε setting, or to their reciprocals.

Then, we generated 3,436 million rebit-retrit and 2,379 million qubit-qutrit density

matrices, randomly with respect to Hilbert-Schmidt measure. (These sizes are much larger

than those employed in 2007–for similar purposes–in [2].) We appraised the separability

of the density matrices D by testing whether the partial transpose, using the four 3 × 3

blocks, had all its six eigenvalues positive. The separability probability estimates were

0.13180011± 0.0000113109 and 0.02785302± 6.6124281 · 10−6, respectively. (We can reject

the qubit-qutrit conjecture of 32
1199
≈ 0.0266889 advanced in [2, sec. 10.2]. A possible

alternative candidate is 72
2585

= 5·11·47
23·32 ≈ 0.027853, while in the rebit-retrit case, we have

298
2261

= 7·17·19
2·149

≈ 0.1318001.) Further, our estimates of the probabilities that D had two [the

most possible [57]] negative eigenvalues, and hence a positive determinant, although being

entangled, were 0.0334197±0.0000409506 in the rebit-retrit case, and 0.0103211±0.000031321

in the qubit-qutrit instance.)

In the two-variable settings, we partition the square [0, 1]2 of possible separability proba-

bility results into an 80×80 grid, and in the one-variable setting, use a partitioning (as in the

two-rebit and two-qubit analyses above) into 200 subintervals of [0,1]. In Fig. 25 we show the

ratio of the square of the rebit-retrit separability probability to the qubit-qutrit separability

probability as a function of τ , while in Fig. 26, we show a two-dimensional version. Fig. 27

is the analog of this last plot using the singular-value ratios ε1 and ε2. As in Figs. 17, 18 and

19, we observe a gradual increase in these Dyson-index-oriented analyses. In Figs. 28 and 29,

we show the highly linear (“diagonal”) rebit-retrit and qubit-qutrit separability probabilities,

holding τ1 = τ2.

Let us note that Mendonça, and Marchiolli, and Hedemann have recently shown [58, App.
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FIG. 25: The ratio of the square of the rebit-retrit separability probability to the qubit-qutrit

separability probability as a function of τ = τ1τ2 =
√

ρ11ρ66
ρ33ρ44

FIG. 26: The ratio of the square of the rebit-retrit separability probability to the qubit-qutrit

separability probability as a function of τ1 =
√

ρ11ρ55
ρ22ρ44

and τ2 =
√

ρ22d66
ρ33d55
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FIG. 27: The ratio of the square of the rebit-retrit separability probability to the qubit-qutrit

separability probability as a function of the singular value ratios ε1 and ε2
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FIG. 28: Rebit-retrit separability probabilities for τ1 = τ2

A] that for qubit-qutrit X-states, the partial transposes can–in contrast to more general

such 6 × 6 systems–have no more than one negative eigenvalue. Therefore, positivity of

the determinant of the partial transpose is both necessary and sufficient for separability,

in this case. Nevertheless, Dunkl has been able to conclude that the Hilbert-Schmidt
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FIG. 29: Qubit-qutrit separability probabilities for τ1 = τ2

separability probabilities reported in [44] for two-qubit X-states, continue to hold in these

higher-dimensional qubit-qutrit X-state systems.

Appendix C: Comparison of Ginibre and Cholesky methods for quaternion positive-

definite matrices–by C. F. Dunkl

The calculations depend on integrating monomials over the unit sphere in RN . We use the

Pochhammer symbol (a)n :=
∏n

i=1 (a+ i− 1). If a 6= 0,−1,−2, . . . then Γ (a+ n) /Γ (a) =

(a)n.

Lemma C.1 Let SN−1 be the unit sphere in RN with the inherited rotation-invariant measure

dω and let n1, n2, . . . , nN ∈ N0 ({0, 1, 2, 3 . . .}) then∫
SN−1

N∏
i=1

|xi|ni dω (x) = 2
N∏
i=1

Γ

(
ni + 1

2

)
/Γ

(
1

2

(
N∑
i=1

ni +N

))
.

Proof Let n =
∑N

i=1 ni and f (x) =
∏N

i=1 |xi|
ni . In spherical polar coordinates∫

RN

f (x) exp

(
−|x|

2

2

)
dx =

∫ ∞
0

rn exp

(
−r

2

2

)
rN−1dr

∫
SN−1

f (x) dω (x) .

The left hand side equals (by the substitution x2
i = 2t )

N∏
i=1

∫ ∞
−∞
|xi|ni e−|xi|

2/2dxi =
N∏
i=1

2(ni+1)/2Γ

(
ni + 1

2

)
,

51



and ∫ ∞
0

rn exp

(
−r

2

2

)
rN−1dr = 2(N+n)/2−1Γ

(
n+N

2

)
.

Divide the left side by this to obtain
∫
S
f (x) dω (x).

Denote the right hand side by I [n1, n2, . . . , nN ]. We use 0$n to denote 0 listed n times.

Thus the surface measure of SN−1 is I[0$N ]. We need another lemma for integrating powers

of sums of squares.

Lemma C.2 Suppose 1 ≤ A ≤ B and n = 1, 2, 3, . . .then the normalized integral∫
SB−1

(
A∑
i=1

y2
i

)n

dω (y)

{∫
SB−1

dω (y)

}−1

=
(A/2)n
(B/2)n

.

Proof The argument is similar to the proof of Lemma C.1. An alternative approach would

rely on Dirichlet integrals

The Cholesky method begins with a random point on S27 ⊂ R28 to form an upper triangular

matrix A such that A11, A22, A33, A44 ≥ 0 and Aij ∈ H for 1 ≤ i < j ≤ 4. Then Q := A∗A is

positive-definite and trQ = 1. In particular Q11 = A2
11 and detQ = (A11A22A33A44)2. The

Jacobian is A13
11A

9
22A

5
33A44. For the measure (detQ)k the nth moment of Q11 (that is E (Qn

11))

is given by

µn =
I [2n+ 2k + 13, 2k + 9, 2k + 5, 2k + 1, 0$24]

I[2k + 13, 2k + 9, 2k + 5, 2k + 1, 0$24]

=
Γ (k + 7 + n) Γ (4k + 28)

Γ (k + 7) Γ (4k + 28 + n)
=

(k + 7)n
(4k + 28)n

,

µ1 =
1

4
, µ2 =

k + 8

4 (4k + 29)
,

µ3 =
(k + 8) (k + 9)

8 (4k + 29) (2k + 15)
.

The Ginibre method for M × 4 begins with a random point on S16M−1 ⊂ R16M to form an

M × 4 matrix H with Hij ∈ H for 1 ≤ i ≤M, 1 ≤ j ≤ 4 and
∑M

i=1

∑4
j=1 |Hij|2 = 1. (For a

quaternion q = x1 +x2i+x3j+x4k define q = x1−x2i−x3j−x4k then |q|2 = qq =
∑4

i=1 x
2
i .)

Then Q := H∗H is positive-definite and trQ = 1. In particular Q11 =
∑M

i=1 (A∗)1iAi1 =∑M
i=1Ai1Ai1 =

∑M
i=1 |Ai1|

2. In real terms each |Ai1|2 is a sum of four squared real variables
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so rewrite Q11 =
∑4M

j=1 x
2
j where (xj)

16M
j=1 is a random point on S16M−1. Apply Lemma C.2

with A = 4M and B = 16M to obtain

νn = E (Qn
11) = E

(
4M∑
j=1

x2
j

)n

=
(2M)n
(8M)n

for n = 1, 2, 3, . . .. In particular ν1 = 1
4

and ν2 =
2M + 1

4 (8M + 1)
.

Thus νn =
(2M)n
(8M)n

and µn =
(k + 7)n

(4k + 28)n
are equal for all n exactly when k + 7 = 2M .

In itself this is not a proof that the Ginibre method produces (detQ)2M−7 times the HS

measure. This statement is a consequence of equation (4.6) in [53].

In particular the Ginibre method does not lead to the HS measure for any M since k is

necessarily odd.

The above calculations can be adapted to other values of the parameter α (with α = 1
2

for

R, α = 1 for C, and α = 2 for H). The Cholesky method starts with the sphere in R4+12α (4

on diagonal, 12α off diagonal) and the Jacobian is A1+6α
11 A1+4α

22 A1+2α
33 A44. The nth moment

of Q11 is

I [2n+ 1 + 6α + 2k, 1 + 4α + 2k, 1 + 2α + 2k, 1 + 2k, 0$12α]

I [1 + 6α + 2k, 1 + 4α + 2k, 1 + 2α + 2k, 1 + 2k, 0$12α]
=

(k + 3α + 1)n
(4k + 12α + 4)n

.

Similarly to above the Ginibre matrix size M × 4 comes from a random point on S8αM−1 ⊂

R8αM and Q11 is the sum of 2αM squares x2
i and the nth moment of Q11 is

(αM)n
(4αM)n

,

which agrees with the (detQ)k ×HS when k = αM − 3α − 1 = (M − 3)α − 1. To apply

the formula:

α =
1

2
, k =

1

2
(M − 5),

α = 1, k = M − 4,

α = 2, k = 2M − 7.

Thus the Ginibre method does produce HS random density matrices with M = 5 for R and

M = 4 for C.
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Appendix D: A Further Formula for the Lovas-Andai Integral–by C. F. Dunkl

We deal here with the evaluation of the integral for even d.∫ 1

0

t−3(1+d)
2F1

(
2 + 3d, 2 + 3d

4 + 6d
; 1− 1

t2

)(
1− t2

)d
3F2

(
−d

2
, d

2
, d

1 + d
2
, 1 + 3d

2

; t2

)
dt (D1)

The first step is to rewrite the 2F1 series as a power series in t2. By use of the identity

2F1

(
a, b

c
;x

)
= (1− x)−a 2F1

(
a, c− b

c
;

x

x− 1

)
we obtain

2F1

(
2 + 3d, 2 + 3d

4 + 6d
; 1− 1

t2

)
= t2(2+3d)

2F1

(
2 + 3d, 2 + 3d

4 + 6d
; 1− t2

)
Thus the desired integral equals∫ 1

0

t1+3d
2F1

(
2 + 3d, 2 + 3d

4 + 6d
; 1− t2

)(
1− t2

)d
3F2

(
−d

2
, d

2
, d

1 + d
2
, 1 + 3d

2

; t2

)
dt

By expanding the series we can integrate term-by-term. The typical term is∫ 1

0

t1+3d+2j
(
1− t2

)d+n
dt =

1

2

∫ 1

0

sj+3d/2 (1− s)d+n ds

=
1

2
B

(
j +

3d

2
+ 1, d+ n+ 1

)
=

1

2

Γ
(
j + 3d

2
+ 1
)

Γ (d+ n+ 1)

Γ
(
j + 5d

2
+ 2 + n

)
=

1

2

Γ
(

3d
2

+ 1
)

Γ (d+ 1)

Γ
(

5d
2

+ 2
) (d+ 1)n(

j + 5d
2

+ 2
)
n

(
3d
2

+ 1
)
j(

5d
2

+ 2
)
j

,

by use of the change-of-variable s = t2 and the beta function. The result for the integral

(D1) is (with d even)

1

2

Γ
(

3d
2

+ 1
)

Γ (d+ 1)

Γ
(

5d
2

+ 2
) d/2∑

j=0

(
−d

2

)
j

(
d
2

)
j
(d)j(

1 + d
2

)
j

(
2 + 5d

2

)
j
j!

3F2

(
2 + 3d, 2 + 3d, d+ 1

4 + 6d, j + 5d
2

+ 2
; 1

)
. (D2)

By use of the Gauss sum and contiguous hypergeometric series we can produce finite

expressions for the integral. We state the Gauss sum (with ċ > a + b) and define utility

functions.

S (a, b, c) :=
Γ (c− a− b) Γ (c)

Γ (c− a) Γ (c− b)
,

2F1

(
a, b

c
; 1

)
= S (a, b, c) .

For k = 0, 1, 2 . . . and k < min (c− a− b, g) define

S32 (a, b, c; g, k) := 3F2

(
a, b, g

c, g − k
; 1

)
.

54



Proposition D.1 For k = 0, 1, 2 . . . and k < min (c− a− b, g)

S32 (a, b, c; g, k) =
Γ (c− a− b) Γ (c)

Γ (c− a) Γ (c− b)

k∑
j=0

(−k)j (a)j (b)j
j! (1 + a+ b− c)j (g − k)j

.

Proof For any n there is the formula (easy to verify, by finite differences, or the Chu-

Vandermonde sum)

(g + n− k)k
(g − k)k

=
k∑
j=0

(
k

j

)
n (n− 1) (n− 2) · · · (n− j + 1)

(g − k)j
.

Then

3F2

(
a, b, g

c, g − k
; 1

)
=
∞∑
n=0

(a)n (b)n
(c)n n!

(g)n
(g − k)n

and
(g)n

(g − k)n
=

(g)n−k (g + n− k)k
(g − k)k (g)n−k

=
(g + n− k)k

(g − k)k
.

Also

∞∑
n=0

(a)n (b)n
(c)n n!

n (n− 1) (n− 2) · · · (n− j + 1) =
∞∑
n=j

(a)n (b)n
(c)n (n− j)!

=
(a)j (b)j

(c)j

∞∑
m=0

(a+ j)m (b+ j)m
(c+ j)mm!

=
(a)j (b)j

(c)j
S (a+ j, b+ j, c+ j) .

making the change of index m = n− j (observe that n · · · (n− j + 1) = 0 for 0 ≤ n ≤ j − 1).

The S-term equals

Γ (c− a− b− j) Γ (c+ j)

Γ (c− a) Γ (c− b)
=

(c)j
(c− a− b− j)j

Γ (c− a− b) Γ (c)

Γ (c− a) Γ (c− b)

by use of the relation Γ (t) (t)j = Γ (t+ j); also by reversal (c− a− b− j)j =

(−1)j (1 + a+ b− c)j. The binomial coefficient
(
k
j

)
= (−1)j

(−k)j
j!

. Combine the ingredi-

ents and this proves the formula.

Consider the typical term in (D2)

3F2

(
2 + 3d, 2 + 3d, d+ 1

4 + 6d, j + 5d
2

+ 2
; 1

)
.
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Set a = 2 + 3d, b = 1 + d, c = 4 + 6d, g = 2 + 3d, k = d
2
− j. Thus the desired integral (D1)

equals

1

2

Γ
(

3d
2

+ 1
)

Γ (d+ 1)

Γ
(

5d
2

+ 2
) d/2∑

j=0

(
−d

2

)
j

(
d
2

)
j
(d)j(

1 + d
2

)
j

(
2 + 5d

2

)
j
j!
S32

(
2 + 3d, 1 + d, 4 + 6d; 2 + 3d,

d

2
− j
)

=
1

2

Γ
(

3d
2

+ 1
)

Γ (d+ 1)

Γ
(

5d
2

+ 2
) Γ (4 + 6d) Γ (1 + 2d)

Γ (2 + 3d) Γ (3 + 5d)

×
d/2∑
j=0

(
−d

2

)
j

(
d
2

)
j
(d)j(

1 + d
2

)
j

(
2 + 5d

2

)
j
j!

d/2−j∑
i=0

(
j − d

2

)
i
(2 + 3d)i (1 + d)i

i! (−2d)i
(
2 + 5d

2
+ j
)
i

.

The double sum in the last line can be rewritten as

i+j≤d/2∑
i≥0,j≥0

(
−d

2

)
i+j

(
d
2

)
j
(d)j (2 + 3d)i (1 + d)i(

2 + 5d
2

)
i+j

(
1 + d

2

)
j
i!j! (−2d)i

.

Collect the (independent of t) prefactors (from the product of (82) and (83))

18
Γ
(

1
2

+ d
2

)3
Γ
(

7
6

+ d
2

)2
Γ
(

5
6

+ d
2

)2
Γ (1 + 2d)

π7/2Γ
(
1 + d

2

)
Γ (3 + 5d)

3456d.

Evaluate for even d, Γ
(

1
2

+ d
2

)
= Γ

(
1
2

) (
1
2

)
d/2

(and Γ
(

1
2

)
=
√
π);

Γ

(
7

6
+
d

2

)
Γ

(
5

6
+
d

2

)
=

(
7

6

)
d/2

(
5

6

)
d/2

Γ

(
7

6

)
Γ

(
5

6

)
=

(
7

6

)
d/2

(
5

6

)
d/2

1

6
Γ

(
1

6

)
Γ

(
5

6

)
,

and Γ
(

1
6

)
Γ
(

5
6

)
=

π

sin π
6

= 2π (recall Γ (t) Γ (1− t) =
π

sin πt
). Put it all together (even d)

Psep/PPT (d) = 3456d

(
1
2

)3

d/2

(
7
6

)2

d/2

(
5
6

)2

d/2
(2d)!(

d
2

)
! (3)5d

i+j≤d/2∑
i≥0,j≥0

(
−d

2

)
i+j

(
d
2

)
j
(d)j (2 + 3d)i (1 + d)i(

2 + 5d
2

)
i+j

(
1 + d

2

)
j
i!j! (−2d)i

.

Appendix E: Remark on Lovas-Andai paper

It certainly appears that the work of Lovas and Andai [1]–inspired by that of Milz and

Strunz [24]–is highly innovative and successful in finding the two-rebit separability function

χ̃1(ε), and verifying the conjecture that the two-rebit Hilbert-Schmidt separability probability

is 29
64

. However, in our study of the Lovas-Andai paper, we remain unconvinced by the chain

of arguments on page 13 leading to the result 1
4
, and have posted a stack exchange question

(https://mathematica.stackexchange.com/q/144277/29989) in this regard.
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