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Abstract

Quantum coherence is one of the most significant theories in quantum physics.

Ordering states with various coherence measures is an intriguing task in quantifi-

cation theory of coherence. In this paper, we study this problem by use of four

important coherence measures – the l1 norm of coherence, the relative entropy of

coherence, the geometric measure of coherence and the modified trace distance

measure of coherence. We show that each pair of these measures give a different

ordering of qudit states when d ≥ 3. However, for single-qubit states, the l1 norm

of coherence and the geometric coherence provide the same ordering. We also

show that the relative entropy of coherence and the geometric coherence give

a different ordering for single-qubit states. Then we partially answer the open

question proposed in [Quantum Inf. Process. 15, 4189 (2016)] whether all the

coherence measures give a different ordering of states.

Keywords l1-norm of coherence, relative entropy of coherence, geometric measure

of coherence, modified trace distance of coherence, ordering states.

Introduction

Quantum coherence is one of the most outstanding features in quantum me-

chanics. It is very essential in various research fields such as low-temperature

thermodynamics [1], [2], [3], [4], [5], quantum biology [6], [7], [8], [9], [10],

[11], nanoscale physics [12], [13], etc. Although formulating resource theory of

quantum coherence is a long-standing open problem, it has only been proposed by

Baumgratz et al. recently [14]. In their seminal work, conditions that a suitable

measure of coherence should satisfy have been put forward. After that, many

efforts have been made in quantification of coherence. Up to now, various proper

quantifiers have been given, such as the l1 norm of coherence, the relative entropy
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of coherence [14], the geometric measure of coherence [15] and the modified

trace distance measure of coherence [16], [17], etc.

Based on various physical contexts, different values of coherence may reflect

different properties of quantum states. Generally, one cannot say that the coherence

of a state ρ1 is smaller than that of ρ2, since different coherence measures may

provide a different ordering for these two states. Similar to the case of quantum

entanglement, different measures of quantum coherence characterize different as-

pects of the state, and play different roles in quantum information processing.

Hence, a given quantum state may behavior better in one information processing,

but worse in another information task. On the other hand, one can identify two

measures of coherence to some extent if they give the same ordering for all

quantum states. Therefore, it is worthy of a study on the ordering of quantum

states under different measures of quantum coherence. It should be noted that this

issue has been extensively investigated in the theory of quantum entanglement.

In [18], Virmani et al. showed that any two entanglement measures placing the

same ordering on states must be identical, as long as they coincide on pure states.

However, less has been known for quantum coherence. In this paper, we focus on

ordering states based on various coherence measures.

In [19], Liu et al. consider the l1 norm of coherence and the relative entropy

of coherence, and show that these two measures do not give the same ordering of

states. Then they propose an open question: whether all the coherence measures

give a different ordering of states? That is to say, whether there exist quantum

states ρ1 and ρ2, such that the following relation fails for any two coherence

measures CA and CB: CA(ρ1) ≤ CA(ρ2) iff CB(ρ1) ≤ CB(ρ2). In this paper, we

investigate this problem. We mainly focus on four coherence measures – the l1

norm of coherence, the relative entropy of coherence, the geometric measure of

coherence and the modified trace distance measure of coherence. We show that

each pair of these measures do not give the same ordering of high-dimensional

states in general. However, the l1 norm of coherence and the geometric coherence

provide the same ordering for single-qubit states, while the relative entropy of

coherence and the geometric coherence still give rise to a different ordering in this

case. Thus we partially answer the open question proposed in [19]. Additionally,
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we provide some special sets of quantum states such that each pairs of the four

coherence measures give the same ordering.

This paper is organized as follows. In Sect. 2, we review some basic concepts

about quantification theory of coherence and some coherence measures we will use

in this paper. In Sect. 3, we present our main results via detailed examples by using

pairwise coherence measures. We also extend our discussion to the coherence of

formation and the Tsallis relative α-entropy of coherence for single-qubit states.

We conclude our results in Sect. 4.

The quantification of coherence

In this section, we first review some basic concepts about quantification of

coherence.

For a given d-dimensional Hilbert space H , let us fix an orthonormal basis

{|i〉}d
i=1. Then the incoherent states are defined as:

σ =

d∑

i=1

pi|i〉〈i|, (1)

where pi ≥ 0, Σd
i=1 pi = 1. The set of all the incoherent states is denoted as I. Let

Λ be a completely positive trace preserving (CPTP) map:

Λ(ρ) =
∑

n

KnρK†n , (2)

where {Kn} is a set of Kraus operators satisfying ΣnK
†
n Kn = Id, with Id the identity

operator. If KnIK
†
n ⊆ I for all n, then we call {Kn} a set of incoherent Kraus

operators, and the corresponding Λ an incoherent operation.

In Ref. [14], Baumgratz et al. proposed a resource-theoretic framework for

quantifying quantum coherence. Any function C defined on a space of quantum

states can be employed as a proper measure of coherence, if it satisfies the

following four conditions :

(B1) C(ρ) ≥ 0, C(ρ) = 0 if and only if ρ ∈ I;

(B2) C(Λ(ρ)) ≤ C(ρ) for any incoherent operation Λ;

(B3) Σn pnC(ρn) ≤ C(ρ), where pn = Tr(KnρK
†
n), ρn = KnρK

†
n/pn, {Kn} is a set

of incoherent Kraus operators;

(B4) C(Σi piρi) ≤ Σi piC(ρi) for any set of quantum states {ρi} and any probability

distribution {pi}.
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Recently, Yu et al. put forward an alternative framework for quantifying co-

herence [16]. This framework is equivalent to the previous one proposed by

Baumgratz et al.[14]. A nonnegative function C can be used as a measure of

coherence, if it satisfies:

(C1) C(ρ) ≥ 0, C(ρ) ≥ 0 if and only if ρ ∈ I;

(C2) C(Λ(ρ)) ≤ C(ρ) for any incoherent operation Λ;

(C3) C(p1ρ1 ⊕ p2ρ2) = p1C(ρ1) + p2C(ρ2) for block diagonal states ρ in the

incoherent basis.

In accordance with the above frameworks, several legitimate coherence mea-

sures have been provided so far. In this paper, we mainly consider four coherence

measures – the l1 norm of coherence, the relative entropy of coherence, the

geometric measure of coherence and the modified trace distance measure of

coherence.

The l1 norm of coherence is defined as

Cl1(ρ) =
∑

i, j

|ρi j|, (3)

where ρi j = 〈i|ρ| j〉.
The relative entropy of coherence is defined as

Cr(ρ) = min
σ∈I
S(ρ‖σ) = S(ρdiag) − S(ρ), (4)

where S(ρ‖σ) = Tr(ρ log ρ − ρ logσ) is the quantum relative entropy, S(ρ) =

−Tr(ρ log ρ) is the von Neumann entropy, and ρdiag = Σiρii|i〉〈i|.
The geometric measure of coherence is defined as

Cg(ρ) = 1 −max
σ∈I

F(ρ, σ), (5)

where F(ρ, σ) =
(
Tr
√√

σρ
√
σ
)2

is the fidelity of two density operators ρ and σ.

When ρ is a pure state, Cg(ρ) = 1 −maxi{ρii}, where ρii = 〈i|ρ|i〉 [20].

The modified trace distance measure of coherence is defined as

C′tr(ρ) = min
λ≥0,δ∈I

‖ ρ − λδ ‖tr . (6)

It has been shown that C′tr(ρ) = Cl1(ρ) if ρ is a single-qubit state [17].
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It should be noted that the last two coherence measures have no analytical

expressions in general. However, for some special classes of coherent states, ex-

plicit formulae have been presented in [20], [17]. For example, for the maximally

coherent mixed states (MCMS) [21],

ρm = p|φd〉〈φd| +
1 − p

d
Id, (7)

where 0 < p ≤ 1, and |φd〉 = 1√
d

∑d
i=1 |i〉 is the maximally coherent state, one has

Cg(ρm) = 1 − [
√

1 − p + 1
d
(
√

1 − p + dp −
√

1 − p)]2 [20], and C′tr(ρm) = p [17].

Ordering states with coherence measures

Let us recall the concept of ordering states with coherence measures. We first

note that all the states can be ordered under a coherence measure C, since C(ρ)

is always a nonnegative real number. Then a natural question is raised: are there

any two coherence measures CA and CB which give rise to the same ordering of

all states? Here the same ordering means that the following relation holds for any

two states ρ1 and ρ2:

CA(ρ1) ≤ CA(ρ2)⇔ CB(ρ1) ≤ CB(ρ2). (8)

Otherwise, we say that the two measures give a different ordering.

In this section, we discuss ordering states with pairs of coherence measures

among Cl1 , Cr, Cg and C′tr via detailed examples. We will show that Cl1 , Cr, Cg

and C′tr generate a different ordering of qudit (d ≥ 3) states. For single-qubit

states, we show that Cl1 and Cg give the same ordering, while Cr and Cg provide

a different ordering.

Ordering states with Cl1 and Cg

We first consider two-dimensional quantum systems. Any density operator act-

ing on a two-dimensional quantum system can be generally written as

ρ =


a b

b∗ 1 − a

 , (9)

where |a|2 + |b|2 ≤ 1. Then we have Cl1(ρ) = 2|b| and Cg(ρ) =
1−
√

1−4|b|2
2 [20]. It

can be seen that Cl1(ρ) and Cg(ρ) are both increasing functions with respect to

|b|. Thus, for all single-qubit states, the coherence measures Cl1 and Cg give the
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same ordering, since Cl1(ρ1) ≤ Cl1(ρ2) ⇔ |b1| ≤ |b2| ⇔ Cg(ρ1) ≤ Cg(ρ2), where

ρ1 =


a1 b1

b∗1 1 − a1

 and ρ2 =


a2 b2

b∗2 1 − a2

 are arbitrary single-qubit states.

We now discuss the case of high-dimensional quantum systems. Let |ψ〉 =
∑d

i=1

√
λi|i〉 and |φ〉 = ∑d

i=1
√
µi|i〉 be two pure states, where λi ≥ 0,

∑d
i=1 λi = 1,

and µi ≥ 0,
∑d

i=1 µi = 1. Then we have Cl1(|ψ〉) ≤ Cl1(|φ〉)⇔
∑d

i=1

√
λi ≤
∑d

i=1
√
µi,

and Cg(|ψ〉) ≤ Cg(|φ〉)⇔ maxi{λi} ≥ maxi{µi}. Thus Cl1(|ψ〉) ≤ Cl1(|φ〉)⇔ Cg(|ψ〉) ≤
Cg(|φ〉) if the two conditions

∑d
i=1

√
λi ≤

∑d
i=1
√
µi and maxi{λi} ≥ maxi{µi} hold

at the same time.

Let us consider a special case where λ1 = λ ≥ 0, λ2 = λ3 = · · · = λd, i.e.,

|ψ〉 =
√
λ|1〉+

√
1−λ
d−1

∑d
i=2 |i〉. Then we have Cl1(|ψ〉) = (

√
λ+
√

(d − 1)(1 − λ))2−1.

Note that Cl1(|ψ〉) is an increasing function with respect to λ when λ ≤ 1
d
, while

a decreasing function when λ ≥ 1
d
. Let |φ〉 = √µ|1〉 +

√
1−µ
d−1

∑d
i=2 |i〉. We consider

the following cases:

(i) If λ ≤ 1
d
, µ ≤ 1

d
, then we have Cl1(|ψ〉) ≤ Cl1(|φ〉) ⇔ λ ≤ µ ⇔ Cg(|ψ〉) =

1− 1−λ
d−1 ≤ Cg(|φ〉) = 1− 1−µ

d−1 . Thus the coherence measures Cl1 and Cg generate the

same ordering in this case.

(ii) If λ ≥ 1
d
, µ ≥ 1

d
, then we have Cl1(|ψ〉) ≤ Cl1(|φ〉) ⇔ λ ≥ µ ⇔ Cg(|ψ〉) =

1 − λ ≤ Cg(|φ〉) = 1 − µ. Thus Cl1 and Cg also generate the same ordering in this

case.

(iii) If λ ≥ 1
d
, µ < 1

d
, then we have Cg(|ψ〉) ≤ Cg(|φ〉)⇔ (d−1)λ ≥ 1−µ. To find

different ordering pairs, one may choose λ and µ that satisfy Cl1(|ψ〉) > Cl1(|φ〉)⇔√
λ+
√

(d − 1)(1 − λ) >
√
µ+
√

(d − 1)(1 − µ). This implies that
√

1 − λ+
√

1 − µ >
√

(d − 1)λ+
√

(d − 1)µ ≥
√

1 − µ+
√

(d − 1)µ. Hence 1−µ
d−1 ≤ λ < 1−(d−1)µ, d ≥ 3,

and in this case Cl1 and Cg generate a different ordering. Therefore we conclude

that the coherence measures Cl1 and Cg do not give the same ordering in d-

dimensional quantum systems when d ≥ 3. They can only provide the same

ordering for families of quantum states.

As another example, let us consider ρm defined in (7). We have that Cl1 and Cg

provide the same ordering for this class of states, since Cl1(ρm) = (d − 1)p and

Cg(ρm) = 1− [
√

1 − p + 1
d
(
√

1 − p + dp −
√

1 − p)]2 are both increasing functions

with respect to p, thus Cl1(ρm) ≤ Cl1(ρ̃m) ⇔ p ≤ p̃ ⇔ Cg(ρm) ≤ Cg(ρ̃m), where
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ρ̃m = p̃|φd〉〈φd| + 1−p̃

d
Id.

Ordering states with Cr and Cg

In Ref. [19], the authors have shown that Cr and Cl1 give rise to a different

ordering of single-qubit states. Taking into account the previous result that Cl1

and Cg provide the same ordering of single-qubit states, we have that Cr and Cg

must provide a different ordering in this case. Just like the discussion in [22], to

find σ1 and σ2 that satisfy both Cr(σ1) > Cr(σ2) and Cg(σ1) < Cg(σ2), one can

choose t1 and t2 (t1 < t2) such that H
( 1−
√

1−t21
2

)
> 1−H

(
1−t2

2

)
, and then find z1 and

z2 (0 ≤ z1, z2 ≤ 1) by using H
(

1
2 −

z1
2

)
−H
(

1
2 −
√

z2
1+t21
2

)
> H
(

1
2 −

z2
2

)
−H
(

1
2 −
√

z2
2+t22
2

)
,

where σ1 =
1
2


1 + z1 t1

t1 1 − z1

 , σ2 =
1
2


1 + z2 t2

t2 1 − z2

, and H(x) = −x log x −

(1 − x) log(1 − x). For instance, assume

σ1 =


4
5

2
5

2
5

1
5

 , σ2 =


1
2

1√
6

1√
6

1
2

 . (10)

we have that Cr and Cg must provide a different ordering. This can be seen from the

fact that Cr(σ1) = 0.7219 > Cr(σ2) = 0.5576, and Cg(σ1) = 1
5 < Cg(σ2) = 3−

√
3

6 .

For high-dimensional quantum systems, let us define two d-dimensional states

(d ≥ 3) as follows:

σ
(d)
1 = pσ1 ⊕ (1 − p)δ(d−2)

1 , σ
(d)
2 = pσ2 ⊕ (1 − p)δ(d−2)

2 , (11)

where 0 < p ≤ 1, and δ(d−2)
1 , δ(d−2)

2 are (d − 2)-dimensional incoherent states. Then

Cr(σ
(d)
1 ) = pCr(σ1) > pCr(σ2) = Cr(σ

(d)
2 ), and Cr(σ

(d)
1 ) = pCg(σ1) < pCg(σ2) =

Cg(σ(d)
2 ). Thus, the coherence measures Cr and Cg give rise to a different ordering

of arbitrary dimensional states.

However, for some special classes of states, Cr and Cg could generate the same

ordering. For instance, it has been shown that for all single-qubit states with a

fixed mixedness, the coherence measures Cl1 and Cr have the same ordering [23],

thus Cr and Cg also have the same ordering in this case, since Cl1 and Cg provide

the same ordering for all single-qubit states. Let us consider again a class of

MCMS ρm, one has Cr(ρm) = log d +
1+(d−1)p

d
log 1+(d−1)p

d
+

(d−1)(1−p)
d

log 1−p

d
. It can

been seen that Cr(ρm) and Cg(ρm) are both increasing functions with respect to p,

hence give rise to the same ordering.
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Ordering states with C′tr and Cg

It is obvious that C′tr and Cg give the same ordering of single-qubit states, since

in this case C′tr(ρ) = Cl1(ρ), Cl1 and Cg provide the same ordering.

For high-dimensional quantum systems, since the two coherence measures C′tr
and Cg have no analytical expressions in general, we can only take into account

special examples to show that they do not provide the same ordering. To this end,

let us consider two qutrit states ρ1 = |φ2〉〈φ2|⊕0, and ρ2 = p|φ3〉〈φ3|+ 1−p

3 I3, where

|φ2〉 = 1√
2

∑2
i=1 |i〉, and |φ3〉 = 1√

3

∑3
i=1 |i〉. Then we have C′tr(ρ1) = C′tr(|φ2〉〈φ2|) =

1, C′tr(ρ2) = p, Cg(ρ1) = Cg(|φ2〉〈φ2|) = 1
2 , Cg(ρ2) = 1− (2

3

√
1 − p + 1

3

√
1 + 2p)2. It

can be seen that Cg(ρ2) ≤ 2
3 , since Cg(ρ2) is an increasing function with respect

to p. Thus there exists a p < 1 such that Cg(ρ2) > Cg(ρ1). For instance, let ρ′2 =
99

100 |φ3〉〈φ3| + 1
300I3, then we get Cg(ρ′2) > Cg(ρ1), and C′tr(ρ′2) = 99

100 < C′tr(ρ1) = 1.

That is to say, C′tr and Cg provide a different ordering of qutrit states. Using similar

approach which transforms a 3×3 density matrix to a d×d density matrix (d ≥ 3)

by direct sum of an incoherent state, we have that the coherence measures C′tr
and Cg generate a different ordering of qudit (d ≥ 3) states.

Similar to the above discussion, C′tr and Cg provide the same ordering for ρm,

since C′tr(ρm) and Cg(ρm) are both increasing functions with respect to p.

Ordering states with C′tr and Cl1

Before discussing ordering states with C′tr and Cl1 , let us first provide an upper

bound of C′tr. Let σ be a pure qudit state and δi = |i〉〈i|, 1 ≤ i ≤ d. Then we have

C′tr(σ) ≤ min
λ≥0,1≤i≤d

‖ σ − λδi ‖tr

= min
λ≥0

√
λ2 + (2 − 4max

i
{σii})λ + 1

=



√
1 − (2max

i
{σii} − 1)2 if max

i
{σii} ≥ 1

2 ,

1 if max
i
{σii} < 1

2 .

Thus, for any qudit state ρ, C′tr(ρ) ≤ Σi piC′tr(ρi) ≤ 1, where ρ = Σi piρi is any

pure state decomposition of ρ with pi ≥ 0, Σi pi = 1. For single-qubit states, since

Cl1(ρ) = C′tr(ρ), Cl1 and C′tr of course provide the same ordering in this case.

Now consider the following pure qutrit states, |ψ〉 =
√
λ1|1〉+

√
λ2|2〉 and |φ〉 =

√
µ1|1〉 +

√
µ2(|2〉 + |3〉), where λ1 + λ2 = 1, µ1 + 2µ2 = 1. Assume that 1

2 ≤ λ1 <
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µ1 <
8
9 . Then we find C′tr(|φ〉) ≤

√
1 − (2µ1 − 1)2 < 2

√
λ1(1 − λ1) = C′tr(|ψ〉), and

Cl1(|φ〉) = (
√
µ1 +

√
2(1 − µ1))2 − 1 > 1 ≥ Cl1(|ψ〉). For instance, let ρ1 and ρ2 be

two pure qutrit states,

ρ1 =



1
2

1
2 0

1
2

1
2 0

0 0 0


, ρ2 =



3
4

√
6

8

√
6

8√
6

8
1
8

1
8√

6
8

1
8

1
8


.

Using the previous results, one can easily get C′tr(ρ2) ≤
√

1 − (2 · 3
4 − 1)2 =

√
3

2 <

C′tr(ρ1) = 1, and Cl1(ρ2) = 2
√

6+1
4 > Cl1(ρ1) = 1. Thus the coherence measures C′tr

and Cl1 give a different ordering in this case, hence also give a different ordering

of states in d-dimensional quantum systems when d ≥ 3.

Noting that Cl1(ρm) = (d − 1)p and C′tr(ρm) = p are both increasing functions

with respect to p, they provide the same ordering for ρm. If we consider the density

matrices which have the block-diagonal form under the incoherent basis, and the

dimension of each block is at most 2, then the coherence measures Cl1 and C′tr
also give the same ordering.

Ordering states with C′tr and Cr

Consider the coherence measures C′tr and Cr for arbitrary d-dimensional quan-

tum systems. When d = 2, C′tr(ρ) = Cl1(ρ), it has been proved in [19] that C′tr and

Cr give rise to a different ordering. When d ≥ 3, similar to the discussion in Sect.

3.2, one can demonstrate that C′tr and Cr also give rise to a different ordering.

There also have been sets of quantum states such that C′tr and Cr provide

the same ordering. Note that the coherence measures Cl1 and Cr have the same

ordering for all single-qubit states with a fixed mixedness. Thus C′tr and Cr also

provide the same ordering in this case, since C′tr(ρ) = Cl1(ρ) for all single-qubit

states. Besides, similarly to the previous discussion, C′tr and Cr give the same

ordering for ρm.

We now extend our discussion to other coherence measures – the coherence

of formation and the Tsallis relative α-entropies of coherence. The coherence of

formation is defined as C f (ρ) = min
{pi,ϕi}
Σi piS(|ϕi〉〈ϕi|diag), where ρ = Σi pi|ϕi〉〈ϕi| is

any pure state decomposition of ρ. The Tsallis relative α-entropies of coherence

is defined as Cα(ρ) = min
δ∈I
Dα(ρ‖δ) = rα−1

α−1 , where r = Σi〈i|ρα|i〉
1
α , α ∈ (0, 1)∪ (1, 2].
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It has been shown that for single-qubit states, Cl1 , C f give the same ordering

[19]. Thus the four measures Cl1 , C′tr, Cg and C f provide the same ordering of

single-qubit states. Moreover, we claim that Cα and Cg, Cα and C′tr, as well as Cα
and C f do not generate the same ordering of single-qubit states when α = 1

2 and

2, since in this case, Cα and Cl1 generate a different ordering [22]. The fact that

Cα and Cr give rise to a different ordering of single-qubit states has also been

proposed in Ref. [22].

In Ref. [23], the authors studied the coherent-induced state ordering with fixed

mixedness. They proved that Cl1 , Cr and Cα give the same ordering of single-

qubit states with a fixed mixedness. Thus, we get that with a fixed mixedness, the

coherence neasures Cl1 , Cr, Cg, C′tr, C f and Cα give the same ordering of single-

qubit states. Therefore the problem of ordering single-qubit states with these six

coherence measures is completely solved.

Conclusion We have investigated the issue of ordering states with the l1 norm of

coherence, the relative entropy of coherence, the geometric measure of coherence

and the modified trace distance measure of coherence. For single-qubit states,

the l1 norm of coherence, the modified trace distance measure of coherence and

the geometric coherence give the same ordering. We also have shown that the

relative entropy of coherence and the geometric measure of coherence do not

give the same ordering of single-qubit states. Furthermore, for high-dimensional

quantum systems, each pair of the four measures Cl1 , Cr, Cg and C′tr give a different

ordering. However, for some special classes of quantum states, each pair of these

measures may provide the same ordering. For instance, we have shown that they

give the same ordering for a class of maximally coherent mixed states ρm. We

also have completely solved the problem of ordering single-qubit states with the

above four measures, coherence of formation and the Tsallis relative α-entropies

of coherence. For each pair of the four measures Cl1 , Cr, Cg and C′tr, we also give

some sets under which they give the same ordering. It should be noted that, as it

was shown in [24], the ”non-equivalence” between the relative entropy and l1-norm

coherence is due to the dependence of the first on the density matrix populations,

in contrast to the last. However, we cannot follow the idea in this paper since the

two coherence measures Cg and C′tr have no analytical expressions in general. In



11

other words, we do not know whether or not these two coherence measures are

dependence of density matrix populations. Further efforts can be made towards

whether or not there exist other coherence measures which generate the same

ordering of qudit states.
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