Skip to main content
Log in

Hierarchically controlled remote preparation of an arbitrary single-qubit state by using a four-qubit \(|\chi \rangle \) entangled state

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we present a scheme for Hierarchically controlled remote preparation of an arbitrary single-qubit state via a four-qubit \(|\chi \rangle \) state as the quantum channel. In this scheme, a sender wishes to help three agents to remotely prepare a quantum state, respectively. The three agents are divided into two grades, that is, an agent is in the upper grade and other two agents are in the lower grade. It is shown that the agent of the upper grade only needs the assistance of any one of the other two agents for recovering the sender’s original state, while an agent of the lower grade needs the collaboration of all the other two agents. In other words, the agents of two grades have different authorities to recover sender’s original state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Bennett, C.H., Wiesner, S.J.: Communication via one-and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Hillery, Bužek, M.V.: Quantum copying: fundamental inequalities. Phys. Rev. A 56, 1212 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  5. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A. 59, 162 (1999)

    Article  ADS  Google Scholar 

  6. Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83, 648 (1999)

    Article  ADS  Google Scholar 

  7. Karimipour, V., Bahraminasab, A., Bagherinezhad, S.: Entanglement swapping of generalized cat states and secret sharing. Phys. Rev. A. 65, 042320 (2002)

    Article  ADS  Google Scholar 

  8. Chau, H.F.: Practical scheme to share a secret key through a quantum channel with a 27.6% bit error rate. Phys. Rev. A. 66, 060302 (2002)

    Article  ADS  Google Scholar 

  9. Xiao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A. 69, 052307 (2004)

    Article  ADS  Google Scholar 

  10. Singh, S.K., Srikanth, R.: Generalized quantum secret sharing. Phys. Rev. A. 71, 012328 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  11. Lance, A.M., Symal, T., Bowen, W.P., Sanders, B.C., Lam, P.K.: Tripartite quantum state sharing. Phys. Rev. Lett. 92, 177903 (2004)

    Article  ADS  Google Scholar 

  12. Li, Y., Zhang, K., Peng, K.: Multiparty secret sharing of quantum information based on entanglement swapping. Phys. Lett. A. 324, 420 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Deng, F.G., Li, X.H., Li, C.Y., Zhou, P., Zhou, H.Y.: Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein-Podolsky-Rosen pairs. Phys. Rev. A. 72, 044301 (2005)

    Article  ADS  Google Scholar 

  14. Lance, A.M., Symul, T., Bowen, W.P., Sanders, B.C., Tyc, T., Ralph, T.C., Lam, P.K.: Continuous-variable quantum-state sharing via quantum disentanglement. Phys. Rev. A. 71, 033814 (2005)

    Article  ADS  Google Scholar 

  15. Zheng, S.B.: Splitting quantum information via W states. Phys. Rev. A. 74, 054303 (2006)

    Article  ADS  Google Scholar 

  16. Gordon, G., Rigolin, G.: Generalized quantum-state sharing. Phys. Rev. A. 73, 062316 (2006)

    Article  ADS  Google Scholar 

  17. Zhang, Q.Y., Zhang, Y.B., Zhang, L.L., Ma, P.C.: Schemes for splitting quantum information via tripartite entangled states. Int. J. Theor. Phys. 48, 3331 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gottesman, D.: Theory of quantum secret sharing. Phys. Rev. A 61, 042311 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  19. Wang, X.W., Xia, L.X., Wang, Z.Y., Zhang, D.Y.: Hierarchical quantum-information splitting. Opt. Commun. 283, 1196 (2010)

    Article  ADS  Google Scholar 

  20. Wang, X.W., Zhang, D.Y., Tang, S.Q., Xie, L.J.: Multiparty hierarchical quantum-information splitting. J. Phys. B 44, 035505 (2011)

    Article  ADS  Google Scholar 

  21. Wang, X.W., Zhang, D.Y., Tang, S.Q., Zhan, X.G., You, K.M.: Hierarchical quantum information splitting with six-photon cluster states. Int. J. Theor. Phys. 49, 2691 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lo, K.H.: Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity. Phys. Rev. A 62, 012313 (2000)

    Article  ADS  Google Scholar 

  23. Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63, 014302 (2000)

    Article  ADS  Google Scholar 

  24. Bennett, C.H., Divincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootters, W.K.: Remote state preparation. Phys. Rev. Lett. 87, 077902 (2001)

    Article  ADS  Google Scholar 

  25. Devetak, I., Berger, T.: Low-entanglement remote state preparation. Phys. Rev. Lett. 87, 197901 (2001)

    Article  ADS  Google Scholar 

  26. Berry, D.W., Sanders, B.C.: Optimal remote state preparation. Phys. Rev. Lett. 90, 057901 (2003)

    Article  ADS  Google Scholar 

  27. Zhan, Y.B.: Remote state preparation of a Greenberger–Horne–Zeilinger class state. Common. Theor. Phys. 43, 637 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  28. Ma, P.C., Zhan, Y.B.: Scheme for probabilistic remotely preparing a multi-particle entangled GHZ state. Chin. Phys. B 17, 445 (2008)

    Article  ADS  Google Scholar 

  29. Ma, P.C., Zhan, Y.B.: Scheme for remotely preparing a four-particle entangled cluster-type state. Opt. Commun. 283, 2640 (2010)

    Article  ADS  Google Scholar 

  30. Luo, M.X., Chen, X.B., Ma, S.Y., Yang, Y.X., Hu, Z.M.: Deterministic remote preparation of an arbitrary W-class state with multiparty. J. Phys. B: At. Mol. Opt. Phys. 43, 065501 (2010)

    Article  ADS  Google Scholar 

  31. Zhan, Y.B., Zhang, Q.Y., Shi, J.: Probabilistic joint remote preparation of a high-dimensional equatorial quantum state. Chin. Phys. B 19, 080310 (2010)

    Article  ADS  Google Scholar 

  32. Chen, Q.Q., Xia, Y., Song, J., An, N.B.: Joint remote state preparation of a W-type state via W-type states. Phys. Lett. A 374, 4483 (2010)

    Article  ADS  MATH  Google Scholar 

  33. Zhan, Y.B., Hu, B.L., Ma, P.C.: Joint remote preparation of four-qubit cluster-type states. J. Phys. B: At. Mol. Opt. Phys. 44, 095501 (2011)

    Article  ADS  Google Scholar 

  34. An, N.B., Bich, C.T., Don, N.V.: Deterministic joint remote state preparation. Phys. Lett. A 375, 3570–3573 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Jiang, M., Dong, D.: A recursive two-phase general protocol on deterministic remote preparation of a class of multi-qubit states. J. Phys. B: At. Mol. Opt. Phys. 45, 205506 (2012)

    Article  ADS  Google Scholar 

  36. Zhan, Y.B.: Deterministic remote preparation of arbitrary two- and three-qubit states. EPL 98, 40005 (2012)

    Article  ADS  Google Scholar 

  37. Zhan, Y.B., Fu, H., Li, X.W., Ma, P.C.: Deterministic remote preparation of a four-qubit cluster-type entangled state. Int. J. Theor. Phys. 52, 2615 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. Ma, P.C., Chen, G.B., Li, X.W., Zhan, Y.B.: Deterministic remote preparation of an asymmetric five-party three-qubit entangled state. Laser Phys. 26, 115203 (2016)

    Article  ADS  Google Scholar 

  39. Babichev, S.A., Brezger, B., Lvovsky, A.I.: Remote preparation of a single-mode photonic qubit by measuring field quadrature noise. Phys. Rev. Lett. 92, 047903 (2004)

    Article  ADS  Google Scholar 

  40. Xiang, G.Y., Li, J., Yu, B., Guo, G.C.: Remote preparation of mixed states via noisy entanglement. Phys. Rev. A 72, 012315 (2005)

    Article  ADS  Google Scholar 

  41. Hou, K., Wang, J., Yuan, H., Shi, S.H.: Multiparty-controlled remote preparation of two-particle state. Commun. Theor. Phys. 52, 848 (2009)

    Article  ADS  MATH  Google Scholar 

  42. Song, J.F., Wang, Z.Y.: Controlled remote preparation of a two-qubit state via positive operator-valued measure and two three-qubit entanglements. Int. J. Theor. Phys. 50, 2410 (2011)

    Article  MATH  Google Scholar 

  43. Wang, D., Ye, L.: Multiparty-controlled joint remote state preparation. Quantum Inf. Process. 12, 3223 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Wang, C., Zeng, Z., Li, X.H.: Controlled remote state preparation via partially entangled quantum channel. Quantum Inf. Process. 14, 1077 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Chen, N., Quan, D.X., Yang, H., Pei, C.X.: Deterministic controlled remote state preparation using partially entangled quantum channel. Quantum Inf. Process. 15, 1719–1729 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Huang, L., Zhao, H.X.: Controlled Remote State Preparation of an Arbitrary Two-Qubit State by Using GHZ States. Int. J. Theor. Phys. 56, 678 (2017)

    Article  MATH  Google Scholar 

  47. Lee, J., Min, H., Oh, S.D.: Multipartite entanglement for entanglement teleportation. Phys. Rev. A 66, 052318 (2002)

    Article  ADS  Google Scholar 

  48. Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299, 802–803 (1982)

    Article  ADS  MATH  Google Scholar 

  49. Wang, X.W., Yang, G.J.: Generation and discrimination of a type of four-partite entangled state. Phys. Rev. A 78, 024301 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  50. Shi, Y.L., Mei, F., Yu, Y.F., Feng, X.L., Zhang, Z.M.: Generation of a genuine four-particle entangled state of trap ions. Quantum Inf. Process. 11, 229 (2012)

    Article  MATH  Google Scholar 

  51. Aharonov, Y., Albert, D.Z., Vaidman, L.: How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. 60, 1351 (1988)

    Article  ADS  Google Scholar 

  52. Aharonov, Y., Vaidman, L.: Properties of a quantum system during the time interval between two measurements. Phys. Rev. A 41, 11 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  53. O’Brien, J.L., Pryde, G.J., White, A.G., Ralph, T.C., Branning, D.: Demonstration of an all-optical quantum controlled-NOT gate. Nature 426, 264–267 (2003)

    Article  ADS  Google Scholar 

  54. Kiesel, N., Schmid, C., Weber, U., Ursin, R., Weinfurter, H.: Linear optics controlled-phase gate made simple. Phys. Rev. Lett. 95, 210505 (2005)

    Article  ADS  Google Scholar 

  55. Bao, X.H., Chen, T.Y., Zhang, Q., Yang, J., Zhang, H., Yang, T., Pan, J.W.: Optical nondestructive controlled-NOT gate without using entangled photons. Phys. Rev. Lett. 98, 170502 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 11547023, 11604115); Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials opening project (No. JSKC17007). Huaian 533 talent project (Nos. HAA201737, HAA201728).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng-Cheng Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, PC., Chen, GB., Li, XW. et al. Hierarchically controlled remote preparation of an arbitrary single-qubit state by using a four-qubit \(|\chi \rangle \) entangled state. Quantum Inf Process 17, 105 (2018). https://doi.org/10.1007/s11128-018-1875-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1875-0

Keywords

Navigation