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Abstract

The entanglement detection via local measurements can be experimentally im-
plemented. Based on mutually unbiased measurements and general symmetric
informationally complete positive-operator-valued measures, we present separabil-
ity criteria for bipartite quantum states, which, by theoretical analysis, are stronger
than the related existing criteria via these measurements. Two detailed examples
are supplemented to show the efficiency of the presented separability criteria.

1 Introduction

Entanglement is one of the main differences between quantum mechanics and classical
physics. As an essence resource, it has been widely used to implement some quantum
tasks from quantum cryptography to quantum teleportation; see, e.g., [1]. Thus, the
detection or determination of entanglement of any quantum state becomes extremely
important and necessary. Although many efforts have been devoted to the study of this
problem, it is still open except for the case ofm×n quantum states withmn ≤ 6 [2, 3, 4].
Nevertheless, in the last years, a variety of sufficient conditions for entanglement have
been proposed; see [5] for a survey.

Among them, the separability criteria based on quantum measurements are attrac-
tive in the last years, since they are easily experimentally implemented. In [6], the
mutually unbiased bases (MUBs) [7] were connected with the entanglement detection
for bipartite, multipartite and continuous-variable quantum systems. The detection
ability of the presented criteria partly depends on the maximum number of MUBs.
For C

d, if the dimension d is an integer power of a prime number, then extremal sets
containing d+ 1 MUBs are known. However, for arbitrary d the maximum number of
MUBs is still not known [8].
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In [9], MUBs were generalized to mutually unbiased measurements (MUMs). Unlike
MUBs, a complete set of MUMs, i.e., d + 1 MUMs, can always be constructed with
certain efficiency parameters for any d-dimensional space. Based on MUMs, Chen, Ma
and Fei [10] obtained a new separability criterion including the corresponding criterion
in [6] as a special case. In [11], by applying MUMs to ρ−ρA⊗ρB , where ρA and ρB are
the reduced density matrices of ρ, the authors obtained a new separability criterion,
which is more powerful than the corresponding ones in [6] and [10]. Later, these criteria
were further generalized to the multipartite case [12, 13, 14, 15]. It should be mentioned
that the criteria in [12, 14, 15] can be used to the quantum systems with subsystems
having different dimensions. Recently, Rastegin [16] derived separability criteria in
terms of local fine-grained uncertainty relations under MUBs and MUMs.

Another kind of quantum measurements, known as symmetric informationally com-
plete positive-operator-valued measures (SIC-POVMs) [17], has a close connection with
MUBs. In [18], a family of general SIC-POVMs (GSIC-POVMs) has been constructed.
Unlike SCI-POVMs, the measurement operators of GSIC-POVMs are not necessarily
rank 1. By analogous arguments to MUMs, the separability criteria based on GSIC-
POVMs were also investigated in [11, 13, 19, 20, 15].

The aim of this paper is to achieve some new separability criteria via MUMs and
GSIC-POVMs. They are strictly stronger than the corresponding ones in [6, 10, 11,
12, 19, 20, 15].

The remainder of the paper is organized as follows. In Section 2, some preliminaries
about MUMs and GSIC-POVMs are briefly reviewed. In Section 3, the separability
criteria based on MUMs are obtained for bipartite quantum states. In Section 4,
by similar methods used in Section 3, the separability criteria via GSIC-POVMs for
bipartite quantum states are derived. Some conclusions and future work are drawn in
Section 5.

2 Some classes of measurements

The concept of mutually unbiased bases (MUBs) was first introduced by Schwinger
[7]. The two orthonormal bases {|ai〉}di=1 and {|bi〉}di=1 of Cd are said to be mutually
unbiased, if and only if

|〈ai|bj〉|2 =
1

d
, i, j = 1, · · · , d.

A set of orthonormal bases are MUBs if each two of them are mutually unbiased. The
MUBs have key applications in quantum information processing such as quantum state
tomography, mean kings problems, quantum cryptography; see, e.g., [8]. When d is an
integer power of a prime number, a complete set of MUBs, i.e., d + 1 MUBs, can be
constructed [21]. However, whether there exists a complete set of MUBs for any d is
still unknown.

Mutually unbiased measurements (MUMs) [9] can be seen as a generalization of
MUBs under weaker requirements. Two measurements on C

d

P(b) =

{

P (b)
n |P (b)

n ≥ 0,

d
∑

n=1

P (b)
n = Id

}

, b = 1, 2

2



are said to be mutually unbiased if and only if

(i) Tr(P
(b)
n ) = 1;

(ii) Tr(P
(b)
n P

(b′)
n′ ) = δnn′δbb′κ+ (1− δnn′)δbb′

1−κ
d−1 + (1− δbb′)

1
d
,

where the efficiency parameter κ satisfies 1
d
< κ ≤ 1. A complete set of MUMs, i.e.,

d + 1 MUMs, can be constructed in any d-dimensional space; see [9] for a detail. If κ
can be chosen to be κ = 1, a complete set of MUMs reduces to a complete set of MUBs.

A set of d2 operators






Mi|Mi ≥ 0,

d2
∑

i=1

Mi = Id







is said to be a general symmetric informationally complete positive-operator-valued
measure (GSIC-POVM) [18] if and only if

(i) Tr(M2
i ) = α, i = 1, · · · , d2;

(ii) Tr(MiMj) =
1−dα

d(d2−1) , 1 ≤ i 6= j ≤ d2,

where the parameter α satisfies 1
d3

< α ≤ 1
d2
. The complete set of GSIC-POVMs can

be constructed explicitly in all finite dimensions for some choices of α [18]. If α can be
chosen to be α = 1

d2
, then the complete set of GSIC-POVMs becomes the complete set

of SIC-POVMs [22].

3 Entanglement detection via MUMs

In this section, based on MUMs, we give separability criteria for bipartite states. In
the following, for any matrix A, we denote by Tr(A), AT , ||A||tr and ||A||2 the trace,
the transpose, the trace norm (i.e., the sum of singular values) and the spectral norm
(i.e., the maximum singular value) of A, respectively.

Let {P(b)}m1

b=1 and {Q(b)}m2

b=1 be two sets of MUMs on C
d1 and C

d2 , respectively.

Then we define X = {Xi}d1m1

i=1 and Y = {Yj}d2m2

j=1 with

Xi = P (b1)
n1

, i = (b1 − 1)d1 + n1, b1 = 1, · · · ,m1, n1 = 1, · · · , d1, (1)

Yj = Q(b2)
n2

, j = (b2 − 1)d2 + n2, b2 = 1, · · · ,m2, n2 = 1, · · · , d2. (2)

For any state ρ in C
d1 ⊗ C

d2 , we further define

M(X,Y )(ρ) = (wij) ∈ C
d1m1×d2m2

with
wij = Tr

(

Xi ⊗ Yj(ρ− ρA ⊗ ρB)
)

,

where ρA and ρB are the reduced density matrices acting on the first and second sub-
systems, respectively. The following theorem gives the new separability criterion based
on M(X,Y )(ρ).
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Theorem 3.1. Let {P(b)}m1

b=1 and {Q(b)}m2

b=1 be two sets of MUMs on C
d1 and C

d2 with

efficiency parameters κ1 and κ2, respectively, and let X = {Xi}d1m1

i=1 and Y = {Yj}d2m2

j=1

be defined as in (1) and (2). If the quantum state ρ in C
d1 ⊗ C

d2 is separable, then

∥

∥

∥
M(X,Y )(ρ)

∥

∥

∥

tr
≤

√

√

√

√

m1 − 1

d1
+ κ1 −

d1m1
∑

i=1

(Tr(XiρA))
2

√

√

√

√

m2 − 1

d2
+ κ2 −

d2m2
∑

i=1

(Tr(YiρB))
2
.

(3)
See the “Appendix” for the proof.

In general, the criterion given by Theorem 3.1 is more efficient when mi gets larger
from 1 to di + 1, i = 1, 2; see, e.g., [6]. Hence, consider the cases d1 = d2 = d,
m1 = m2 = d+ 1, and κ1 = κ2 = κ. (3) in Theorem 3.1 reduces to

||M(X,Y )(ρ)||tr ≤

√

√

√

√1 + κ−
d(d+1)
∑

i=1

(Tr(XiρA))
2

√

√

√

√1 + κ−
d(d+1)
∑

i=1

(Tr(YiρB))
2
. (4)

In this case, the criterion [11, Theorem 2] states that any separable state ρ in C
d ⊗C

d

satisfies

d(d+1)
∑

i=1

∣

∣Tr
(

Xi ⊗ Yi(ρ− ρA ⊗ ρB)
)∣

∣ ≤

√

√

√

√1 + κ−
d(d+1)
∑

i=1

(Tr(XiρA))
2

√

√

√

√1 + κ−
d(d+1)
∑

i=1

(Tr(YiρB))
2
,

(5)
which is weaker than (4) by the inequality [25]

n
∑

i=1

|gii| ≤ ||G||tr for any matrix G = (gij) ∈ C
n×n.

Since the criteria given in [6, 10] are weaker than (5), the criterion (4) from Theorem
3.1 is the strongest one among these criteria.

Recently, Liu et al. [12] presented separable criteria for quantum states with dif-
ferent dimensions of subsystems. Let d = min{d1, d2}. Consider m1 = m2 = m. We
define two subsets

{p1, p2, · · · , pmd} ⊆ {1, 2, · · · ,md1}, {q1, q2, · · · , qmd} ⊆ {1, 2, · · · ,md2}

where

id1 + 1 ≤ pid+l ≤ (i+ 1)d1, jd2 + 1 ≤ qjd+l ≤ (j + 1)d2

for l = 1, · · · , d and i, j = 0, 1, · · · ,m − 1. Set G = (gij) ∈ C
md×md with gij =

Tr(Xpi ⊗ Yqjρ). The criterion [12, Theorem 3] shows that any separable state ρ in
C
d1 ⊗ C

d2 satisfies

Tr(G) =

md
∑

i=1

Tr(Xpi ⊗ Yqiρ) ≤
√

m− 1

d1
+ κ1

√

m− 1

d2
+ κ2. (6)
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If W is a sub-matrix of the matrix V , then from [26] we have ||W ||tr ≤ ||V ||tr. By this
conclusion and similar comparison between [10] and [11], it can be found that Theorem
3.1, with m1 = m2 = m, is stronger than the criterion (6).

We now compare Theorem 3.1 with the existing related criteria by examples.

Example 3.1. Consider the following 3× 3 bound entangled state [27]:

ρ =
1

4

(

I9 −
4
∑

i=0

|ηi〉〈ηi|
)

,

where

|η0〉 =
1√
2
|0〉(|0〉 − |1〉), |η1〉 =

1√
2
(|0〉 − |1〉)|2〉, |η2〉 =

1√
2
|2〉(|1〉 − |2〉),

|η3〉 =
1√
2
(|1〉 − |2〉)|0〉, |η4〉 =

1

3
(|0〉 + |1〉+ |2〉)(|0〉 + |1〉+ |2〉).

Consider the mixture of ρ with white noise:

ρp =
1− p

9
I9 + pρ, 0 ≤ p ≤ 1.

The complete set of MUMs is always constructed by using generalized Gell-Mann op-
erators; see [9] for a detail. Numerical computations show that the existing criteria
[6, 10, 11] based on MUMs cannot detect any entanglement of ρp. The criterion (4) can
detect entanglement of ρp for 0.8822 ≤ p ≤ 1. Thus, (4) is the best one among these
criteria.

Example 3.2. The following d× d Werner states are due to [28]:

ηr =
1

d3 − d
((d− r)Id2 + (dr − 1)σ) ,

where −1 ≤ r ≤ 1, σ =
∑d−1

i,j=0 |ij〉〈ji| is the “flip” or “swap” operator. For d = 3, the
separability criteria in [20] based on MUMs cannot detect any entanglement in ηr. But,
the separability criteria [11, Theorem 2] and (4) can respectively detect entanglement
of ηr for −1 ≤ r ≤ −0.3340. Thus, for Werner states, the criterion (4) is as efficient as
[11, Theorem 2]. Nevertheless, they both outperform [11, Theorem 2].

4 Separability criteria via GSIC-POVMs

Similar to Theorem 3.1, the separability criterion based on GSIC-POVMs can be de-
rived for bipartite states.

Theorem 4.1. Let P = {Pb}d
2

1

b=1 and Q = {Qb}d
2

2

b=1 be two sets of GSIC-POVMs

on C
d1 and C

d2 with parameters α1 and α2, respectively. If the quantum state ρ in
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C
d1 ⊗ C

d2 is separable, then

||M(P,Q)(ρ)||tr ≤

√

√

√

√

α1d
2
1 + 1

d1(d1 + 1)
−

d2
1
∑

i=1

(Tr(PiρA))2

√

√

√

√

α2d
2
2 + 1

d2(d2 + 1)
−

d2
2
∑

i=1

(Tr(QiρB))2.

By analogous analysis to Theorem 3.1, one can show that Theorem 4.1 is more
efficient than the corresponding criteria in [20, Theorem 1], [11, Theorem 3] and [19,
Theorem 2].

We now, by states in Examples 3.1 and 3.2, compare the efficiency of Theorem
4.1 and the related criteria based on GSIC-POVMs. For ρp, the criteria in [10, 11]
cannot detect any entanglement for any p, while Theorem 4.1 can give an entanglement
condition 0.8822 ≤ p ≤ 1. For ηr, using Theorem 4.1 and [11, Theorem 3], we can obtain
the same entanglement condition −1 ≤ r ≤ −0.3340. But the criterion given in [20]
does not show any entanglement in ηr. In a word, Theorem 4.1 is more efficient than
the corresponding criteria in [11, 20].

5 Conclusions

Based on MUMs and GSIC-POVMs, we have derived some new separability criteria,
which by theoretical analysis and numerical examples, are stronger than the correspond-
ing existing criteria. In the future, how to investigate genuine multipartite entanglement
by using MUMs and GSIC-POVMs is an interesting problem.
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Appendix: Proof of Theorem 3.1

Since ρ is separable, it can be decomposed into

ρ =
r
∑

k=1

pkρ
A
k ⊗ ρBk , (7)

where pk > 0,
∑

k pk = 1, ρAk and ρBk are pure states on the first and second subsystems,
respectively. From the equality [23]

ρ− ρA ⊗ ρB =
1

2

r
∑

s,t=1

pspt(ρ
A
s − ρAt )⊗ (ρBs − ρBt ),

6



we can derive

M(X,Y )(ρ) =
1

2

r
∑

s,t=1

psptM
(

(ρAs − ρAt )⊗ (ρBs − ρBt )
)

, (8)

where

M
(

(ρAs − ρAt )⊗ (ρBs − ρBt )
)

=
(

Tr
(

(Xi ⊗ Yj)(ρ
A
s − ρAt )⊗ (ρBs − ρBt )

))

d1m1×d2m2

=
(

Tr(Xi(ρ
A
s − ρAt ))Tr(Yj(ρ

B
s − ρBt ))

)

d1m1×d2m2

=







Tr(X1(ρ
A
s − ρAt ))
...

Tr(Xd1m1
(ρAs − ρAt ))







(

Tr(Y1(ρ
B
s − ρBt )) · · · Tr(Yd2m2

(ρBs − ρBt ))
)

:= βs,tη
T
s,t. (9)

From (8) and (9), it is easy to deduce

||M(X,Y )(ρ)||tr ≤
1

2

r
∑

s,t=1

pspt||M
(

(ρAs − ρAt )⊗ (ρBs − ρBt )
)

||tr

=
1

2

r
∑

s,t=1

pspt||βs,tηTs,t||tr =
1

2

r
∑

s,t=1

pspt||βs,t||2||ηs,t||2

≤ 1

2

√

√

√

√

r
∑

s,t=1

pspt||βs,t||22

√

√

√

√

r
∑

s,t=1

pspt||ηs,t||22

≤

√

√

√

√

m1 − 1

d1
+ κ1 −

d1m1
∑

i=1

(Tr(XiρA))
2

√

√

√

√

m2 − 1

d2
+ κ2 −

d2m2
∑

i=1

(Tr(YiρB))
2
,

where, in the second equality, the second inequality and the third inequality, we have
used, respectively, the equality

|||a〉〈b|||tr = |||a〉||2|||b〉||2 for any vectors |a〉 and |b〉,

the well-known Cauchy-Schwarz inequality, and the inequalities [24]

d1m1
∑

i=1

Tr(Xiρ1)
2 ≤ m1 − 1

d1
+ κ1,

d2m2
∑

i=1

Tr(Yiρ2)
2 ≤ m2 − 1

d2
+ κ2 (10)

for any pure states ρ1 and ρ2 in C
d1 and C

d2 , respectively.
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