Skip to main content
Log in

Constructing quantum Hash functions based on quantum walks on Johnson graphs

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We present a quantum hash function in a quantum walk framework on Johnson graphs. In this quantum hash function, the message bit decides which coin operator, i.e., Grover operator or DFT operator, is applied on the coin at each step. Then a fixed conditional shift operator is applied to decide the movement of the walker. Compared with existing quantum-walk-based hash functions, the present hash function has a lower collision rate and quantum resource cost. It provides a clue for the construction of other cryptography protocols by introducing the quantum walk model into hash functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Knuth, D.: The Art of Computer Programming, Sorting and Searching, vol. 3, 2nd edn. Addison-Wesley, Boston (1998)

    MATH  Google Scholar 

  2. Buhrman, H., Cleve, R., Watrous, J., de Wolf, R.: Quantum fingerprinting. Phys. Rev. Lett. 87, 167902 (2001)

    Article  ADS  Google Scholar 

  3. D. Gavinsky, T. Ito: Quantum fingerprints that keep secrets. Technical Report Cornell University Library. arXiv:1010.5342 (2010)

  4. Ablayev, F., Vasiliev, A.: Cryptographic quantum hashing. Laser Phys. Lett. 11(2), 025202 (2014)

    Article  ADS  MATH  Google Scholar 

  5. Ablayev, F., Ablayev, M., Vasiliev, A.: On the balanced quantum hashing. J. Phys: Conf. Ser. 681, 012019 (2016)

    MATH  Google Scholar 

  6. M. Ziatdinov: From graphs to keyed quantum hash functions. arXiv:1606.00256v1 (2016)

  7. D. Aharonov, A. Ambainis, J. Kempe, et al.: Quantum walks on graphs. In: Proceedings of the 33rd ACM Symposium on Theory of Computing, pp. 50–59 (2001)

  8. Ambainis, A.: Quantum walk algorithm for element distinctness. SIAM J. Comput. 37(1), 210–239 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Magniez, F., Santha, M., Szegedy, M.: Quantum algorithms for the triangle problem. SIAM J. Comput. 37(2), 413–424 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Tamascelli, D., Zanetti, L.: A quantum-walk-inspired adiabatic algorithm for solving graph isomorphism problems. J. Phys. A: Math. Theor. 47(32), 325302 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Li, D., Zhang, J., Guo, F.-Z., Huang, W., Wen, Q.-Y., Chen, H.: Discrete-time interacting quantum walks and quantum Hash schemes. Quantum Inf. Process. 12(3), 1501–1513 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Li, D., Zhang, J., Ma, X.W., Zhang, W.W., Wen, Q.Y.: Analysis of the two-particle controlled interacting quantum walks. Quantum Inf. Process. 12(6), 2167–2176 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Yang, Y.-G., Xu, P., Yang, R., Zhou, Y.H., Shi, W.M.: Quantum Hash function and its application to privacy amplification in quantum key distribution, pseudo-random number generation and image encryption. Sci. Rep. 6, 19788 (2016)

    Article  ADS  Google Scholar 

  14. Xue, P., Sanders, B.C.: Two quantum walkers sharing coins. Phys. Rev. A 85, 022307 (2012)

    Article  ADS  Google Scholar 

  15. Shenvi, N., Kempe, J., Whaley, K.B.: Quantum random-walk search algorithm. Phys. Rev. A 67, 052307 (2003)

    Article  ADS  Google Scholar 

  16. Stefaňák, M., Barnett, S.M., Kollár, B., Kiss, T., Jex, I.: Directional correlations in quantum walks with two particles. New J. Phys. 13, 033029 (2011)

    Article  ADS  Google Scholar 

  17. Li, D., Yang, Y.-G., Bi, J.-L., Yuan, J.-B., Xu, J.: Controlled alternate quantum walks based quantum Hash function. Sci. Rep. 8, 225 (2018)

    Article  ADS  Google Scholar 

  18. Yang, Y.-G., Zhang, Y.-C., Xu, G., Chen, X.-B., Zhou, Y.-H., Shi, W.-M.: Improving the efficiency of quantum Hash function by dense coding of coin operators in discrete-time quantum walk. Sci. China-Phys. Mech. Astron. 61(3), 030312 (2018)

    Article  ADS  Google Scholar 

  19. S. Aaronson: G. Phi. Fo. Fum. http://scottaaronson.com/blog/?p=2521. Accessed 13 May 2018

  20. J.A. Kun: Quasi-polynomial time algorithm for graph isomorphism: the details. http://jeremykun.com/2015/11/12/a-quasipolynomial-time-algorithm-for-graph-isomorphism-the-details/. Accessed 13 May 2018

  21. L. Babai: Graph isomorphism in quasi-polynomial time. arXiv:1512.03547

  22. M. Bellare, T. Kohno: Hash function balance and its impact on birthday attacks. In: Eurocrypt 04, LNCS, vol. 3027, pp. 401–418 (2004)

  23. M.J. Saarinen: A meeting-in-the-middle collision attack against the new FORK-256. In: Indocrypt 2007, LNCS, vol. 4859, pp. 10–17 (2007)

  24. Dobbertin, H.: Cryptanalysis of MD4. J. Cryptol. 11(4), 253–271 (1998)

    Article  MATH  Google Scholar 

  25. F. Chabaud, A. Joux: Differential collisions in SHA-0. In: Crypto’98, LNCS, vol. 1462, pp. 56–71 (1998)

  26. Y. Sasaki, K. Aoki: Finding preimages in full MD5 faster than exhaustive search. In: Eurocrypt 2009, LNCS, vol. 5479, pp 134–152 (2009)

Download references

Acknowledgements

We thank Dr. Xiu-Bo Chen and Dr. Zheng Yuan for reviewing the original manuscript. This work was supported by the National Natural Science Foundation of China (Grant Nos. 61572053, 61671087, U1636106, 61602019, 61571226, 61701229, 61702367), Beijing Natural Science Foundation (Grant Nos. 4162005, 4182006), Natural Science Foundation of Jiangsu Province, China (Grant No. BK20170802), Jiangsu Postdoctoral Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Feng Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, WF., Zhang, YC., Yang, YG. et al. Constructing quantum Hash functions based on quantum walks on Johnson graphs. Quantum Inf Process 17, 156 (2018). https://doi.org/10.1007/s11128-018-1923-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1923-9

Keywords

Navigation