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Abstract

A notion of quantum conference is introduced in analogy withthe usual notion of a conference that happens
frequently in today’s world. Quantum conference is defined as a multiparty secure communication task that
allows each party to communicate their messages simultaneously to all other parties in a secure manner using
quantum resources. Two efficient and secure protocols for quantum conference have been proposed. The security
and efficiency of the proposed protocols have been analyzed critically. It is shown that the proposed protocols can
be realized using a large number of entangled states and group of operators. Further, it is shown that the proposed
schemes can be easily reduced to protocol for multiparty quantum key distribution and some earlier proposed
schemes of quantum conference, where the notion of quantum conference was different.

Keywords: quantum conference, quantum cryptography, secure quantum communication, multiparty quantum communica-
tion.

1 Introduction

In 1984, an unconditionally secure key distribution protocol using quantum resources was proposed by Bennett and Brassard
[1]. The scheme, which is now known as BB84 protocol drew considerable attention of the cryptography community by its
own merit as it offered unconditional security, which was unachievable by any classical protocol of key distribution. However,
the relevance of BB84 quantum key distribution (QKD) protocol and a set of other schemes of QKD were actually established
very strongly in 1994, when the seminal work of Shor [2] established that RSA [3] and a few other schemes of classical
cryptography [4] would not remain secure if a scalable quantum computer is built. The BB84 protocol, not only established
the possibility of obtaining unconditional security, but also manifested enormous power of quantum resources that hadbeen
maneuvered since then. Specifically, this attempt at the unconditional security of QKD was followed by a set of protocolsfor
the same task [5–7]. Interestingly, the beautiful applications of quantum mechanics in secure communication did not remain
restricted to key distribution. In fact, it was realized soon that the messages can be sent in a secure manner without preparing a
prior key [8]. Exploiting this idea various such schemes were proposed which fall under the category of secure direct quantum
communication ( [8–12] and references therein).

The schemes for secure direct quantum communication can be categorized into two classes on the basis of additional
classical communication required by the receiver (Bob) to decode each bit of the transmitted message- (i) quantum secure
direct communication (QSDC) [8–10] and (ii) deterministicsecure quantum communication (DSQC) [11]. In the former,
Bob does not require an additional classical communicationto decode the message, while such a classical communication
is involved in the latter (see [13] for review). It is worth noting that in a scheme of QSDC/DSQC meaningful information
flows in one direction as it only allows Alice to send a messageto Bob in an unconditionally secure manner using quantum
resources and without generation of a key. However, in our daily life, we often require two way communication (say, when we
speak on a telephone). Interestingly, a modification of one of the first few QSDC schemes (i.e., ping-pong scheme [8]) led to
a new type of protocol that allows both Alice and Bob to communicate simultaneously using the same quantum channel. This
scheme for simultaneous two way communication was first proposed by Ba An [14] and is known as quantum dialogue (QD).
Due to its similarity with the task performed by telephones,a scheme for QD are also referred as quantum telephone [?, 16]
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or quantum conversation1 [17] scheme, but in what follows, we will refer to them as QD. Due to its practical relevance,
schemes of QD received much attention and several new schemes of QD have been proposed in the last decade [18–21].
However, all these schemes of QD, and also the schemes of QSDCand DSQC, mentioned here are restricted to the two-
party scenario. This observation led to two simple questions- (i) Do we need a multiparty QD for any practical purpose?
and (ii) If answer of the previous question is yes, can we construct such a scheme? It is easy for us (specially for the
readers of this paper and the authors of the similar papers who often participate in conferences and meet as members of
various committees) to recognize that conferences and meetings provide examples of situation where multiparty dialogue
happens. Specifically, in a conference a large number of participants can exchange their thoughts (inputs, which may be
viewed as classical information). Although, usually participants of the conference/meeting are located in one place,but with
the advent of new technologies, tele-conferences, webinar, and similar ideas that allow remotely located users to get involved
in multiparty dialogue, are becoming extremely popular. For the participants of such a conference or meeting that allows
users to be located at different places, desirable characteristics of the scheme for the conference should be as follows- (A) A
participant must be able to communicate directly with all other participants, or in other words, every participant mustbe able
to listen the talk/opinion delivered by every speaker as it happens in a real conference. (B) A participant should not be able to
communicate different opinion/message to different usersor user groups. (C) Illegitimate users or unauthorized parties (say
those who have not paid conference registration fees) will not be able to follow the proceedings of the conference. It is obvious
that criterion (C) requires security and a secure scheme formultiparty quantum dialogue satisfying (A)-(C) is essential for
today’s society. We refer to such a scheme for multiparty secure communication that satisfies (A)-(C) as a scheme for quantum
conference (QC) because of its analogy with the traditionalconferences (specially with the tele-conferences). The analogy
between the communication task performed here and the traditional conference can be made clearer by noting that Wikipedia
defines conference as “a conference is a meeting of people who"confer" about a topic” [22]. Similarly, Oxford dictionary
describes a conference as “a linking of several telephones or computers, so that each user may communicate with the others
simultaneously” [23]. This is exactly the task that the proposed protocol for QC is aimed to perform using quantum resources
and in a secure manner. Thus, QC is simply a conference, whichis ann-party communication, where each participant can
communicate his/her inputs (classical information) usingquantum resources to remaining(n − 1) participants. However, it
should be made clear that it is neither a multi-channel QSDC nor a multi-channel QD scheme. To be precise, one may assume
that each participant maintains private quantum channels with all other participants and uses those to communicate his/her
input to others via QSDC or QD. This is against the idea of a conference, as in this arrangement, a participant may send
different information/opinion to different participants, in violation of Criterion (B) listed above. The fact that tothe best of
our knowledge, no such scheme for multiparty secure quantumcommunication exists has motivated us to introduce the notion
of QC and to aim to design a scheme for the same.

Here it would be apt to note that although no scheme for QC is yet proposed, various schemes for other multiparty quantum
communication tasks have already been proposed. For example, quantum schemes for voting [24], auction [25, 26], and e-
commerce [27] are necessarily expected to be multiparty quantum communication schemes. Interestingly, there are a few
schemes for all these tasks proposed in the past ( [24–27] andreferences therein). Another recently discussed multiparty task
is quantum key agreement (QKA) ( [28] and references therein), where the final key is generated by the contribution of all the
parties involved, and a single or a few parties can not decidethe final key. For instance, a multiparty QKA scheme [28] was
proposed in the recent past, in which encoded qubits travel in a circular manner among all the parties. In fact, most of these
multiparty quantum communication schemes, except QKA, canbe intrinsically viewed as a (many) sender(s) sending some
useful information in a secure manner to a (many) receiver(s) under the control of a third party. Further, all these schemes can
be broadly categorized as secure multiparty quantum communication and secure multiparty quantum computation. Though
the line between the two is very faint to distinguish and categorize a scheme among one of them, QKA and e-commerce may
be considered in the former, while voting and auction fall under the latter. Some efforts have also been made to introduce
a notion of QC as a multiparty quantum communication task. However, earlier ideas of QC can be viewed as special cases
of the notion of QC presented here and they are not sufficient to perform a conference as defined above in analogy with the
definition provided in Oxford dictionary and other sources.

Bose, Vederal and Knight [29] proposed a generalized entanglement-swapping-based scheme for multiparty quantum
communication that led to a set of quantum communication schemes related to QC, viz., cryptographic conference [29],
conference key agreement and conference call [30], and a scheme where many senders send their messages to single receiver
via generalized superdense coding [29]. In cryptographic conference, all parties share a multipartite entangled state. They
perform measurement in the computational or diagonal basis, and the results of those measurements in which the bases chosen
by all the users coincide are used to establish the secret keywhich will be known to all the users within the group. A similar
notion of conference key agreement was used in [30], where a generalized notion of dense coding was used. Clearly the
notion of conference is weaker here, and in our version of conference such keys can be distributed easily if all the users
communicate random bits instead of meaningful messages. Recent success of designing the above mentioned schemes for

1It may be noted that in an ideal scheme of QD, information encoded by two parties exist simultaneously in a channel, but in the protocol for quantum
conversation introduced in [17], it was not the case. However, the communication task in hand was equivalent.
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multiparty quantum communication further motivated us to look for a scheme for QC.
A two party analogue of QC can be considered as QD, where both parties can communicate simultaneously. The group

theoretic structure of Ba-An-type QD schemes has been discussed in Ref. [31]. The group theoretic structure discussed
in [28, 31, 32] will be exploited here to introduce the concept of QC. Further, an asymmetric counterpart of the Ba-An-type
QD scheme is proposed in the recent past [32]. Following which we will also introduce and briefly discuss an asymmetric QC
(AQC), where all the parties involved need not to send an equal amount of information. With the recent interest of quantum
communication community on quantum internet [33,34] and experimental realization of multiparty quantum communication
schemes [35], the motivation for introducing a QC or AQC scheme can be established.

Remaining part of the paper is organized as follows. Sec. 2 isdedicated to a brief review of QD and the group theoretic
approach of QD for the sake of completeness of the paper, which has been used in the forthcoming sections to develop the
idea of QC. Two general schemes for the task of QC have been introduced in Sec. 3. In the next section, we have considered
a few specific examples of both these schemes. The feasibility of an AQC scheme has also been discussed in Sec. 4. Finally,
the security and efficiency of the proposed schemes have beendiscussed in Sec. 5 before concluding the paper in Sec. 6.

2 Ba An protocol of QD and its generalization using modified Pauli group

It would be relevant to mention that some of the present authors had presented the general structure of QD protocols in [31] and
established that the set of unitary operators used by Alice and Bob must form a group under multiplication. The group structure
has also been found to be suitable for the asymmetric QD schemes [32], where Alice and Bob use encoding operations from
different subgroups of a modified Pauli group, likeG1 = {I, X, iY, Z}. This particular Abelian group (G1) is of order 4
under multiplication and is called a modified Pauli group as we neglect the global phase in the product of any two elements of
this group, which is consistent with the quantum mechanics (for detail see [31,32]). The generalized groupGn can be formed
by n-fold tensor products ofG1, i.e.,Gn = G⊗n

1 . In the original QD protocol [14], the encoding is done by Alice and Bob,
respectively, using the same set of operations{Ui} from the modified Pauli groupG1. The entire scheme of Ba An [14] can
be summed up in the formula|ψj〉final = UBUA|ψi〉initial :initual 〈ψi|ψj〉final = δi,j , where|ψk〉 are the Bell states. It
is required that all the possible final states obtained afterAlice’s and Bob’s encoding operations should remain orthonormal
to each other and also with the initial state. Once the initial and final states are known to both the legitimate users, theycan
exploit knowledge of their own encoding operation to extract each other’s message.

Interestingly, Alice and Bob encode information with the same operators, say,I for 00,X for 01,iY for 10, andZ for 11.
In this scenario, Alice obtains a unique bijective mapping from the composite encoding of Alice and Bob (UB.UA) to Bob’s
operation (UB) using her unitary operation (UA). This is obvious where there are only 2 parties, we may ask, is it possible to
extend this scheme for QD to design a scheme for multiparty conference? Let us examine two cases with 3 parties: in Case 1:
when all the parties encode the same bits say, 00 i.e., they apply UCI

, UBI
andUAI

; and in Case 2: when one of them encodes
the same bits used in Case 1, i.e., 00 and other two will encodethe similar bits but other than 00, say 01(or 10, 11), i.e.,
they applyUCX

, UBX
andUAI

, respectively. In these two cases, the resultant state is always the same as what was prepared
initially, and none of the parties can deterministically conclude each others encoding. In fact, there will be many suchcases,
hence, Ba An’s original protocol for QD cannot be generalized directly to design a scheme for multiparty conference.

To design a scheme for QC, we will use the idea of disjoint subgroups introduced by some of the present authors in the
recent past [28]. Disjoint subgroups refer to subgroups, say gi andgj, of a groupGn such that they satisfygi ∩ gj = {I}.
Thus, except Identitygi andgj do not contain any common element. The modified Pauli groupG1 has 3 mutually disjoint
subgroups:g1 = {I, X}, g2 = {I, iY } andg3 = {I, Z}. Whenever there are more than two parties, we can encode using
disjoint subgroups of operators, i.e., each party may be allowed to encode with a unique disjoint subgroup. For example,
if Alice, Bob and Charlie want to set up a QC among them, then Alice can encode usingg1, Bob can encode usingg2 and
Charlie can encode usingg3. The use of disjoint subgroups circumvents the limitations of the original two-party QD scheme
and provides a unique mapping required for multiparty conversation.

In what follows, we have proposed two protocols to accomplish the task of a QC scheme.

3 Quantum conference

Here, we have designed two multiparty quantum communication schemes where prior generation of key is not required. These
schemes may be used for QC, i.e., for multiparty communication of meaningful information among the users. Additionally, it
is easy to observe that these schemes naturally reduce to theschemes for multiparty key distribution if the parties sendrandom
bits instead of meaningful messages.
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3.1 Protocol 1: Multiparty QSDC scheme for QC

Let us start with the simplest case, where(N − 1) parties send their message toN th party. This can be thought of as a
multiparty QSDC. Suppose all the parties decide to encode orcommunicatek-bit classical messages. In this case, each user
would require a subgroup of operators with at least2k operators. In other words, each party would need at least a subgroupgi
of order2k of a groupG. Here, we would like to propose one such multiparty QSDC scheme.

Step 1.1 First party Alice be given one subgroupgA = {A1, A2, . . . , A2k} to encode herk-bit information. Similarly, other
parties (say Bob and Charlie) can encode using subgroupsgB = {B1, B2, . . . , B2k}, andgC = {C1, C2, . . . , C2k},
and so on for(N − 1)th party Diana, whose encoding operations aregD = {D1, D2, . . . , D2k}.
All these subgroups are pairwise disjoint subgroups, i.e.,they are chosen in such a way thatgi ∩ gj = {I} ∀i, j ∈
{1, 2, · · · , N − 1}. As the requirement for encoding operations to be from disjoint subgroups has been already estab-
lished beforehand.
Additionally, here we assume that all the parties do nothing(equivalent to operator Identity) on their qubits for encoding
a string ofk zeros. As Identity is the common element in the set of encoding operations to be used by each party it will
be convenient to consider this as a convention in the rest of the paper.

Step 1.2 Nathan (theN th party) prepares ann-qubit entangled state|ψ〉 (with n ≥ (N − 1)k).
It is noteworthy that maximum information that can be encoded on the(N − 1) k-qubit quantum channel is(N − 1) k
bits and here(N − 1) parties are sendingk bits each. In other words, after encoding operation of all the(N − 1) parties
the quantum states should be one of the2(N−1)k possible orthogonal states.

Step 1.3 Nathan sendsm qubits (m < n) of the entangled state|ψ〉 to Alice in a secure manner, who applies one of the
operationsAi (which is an element of the subgroup of operators available with her) on the travel qubits to encode her
message. This will transform the initial state to|ψA〉 = Ai|ψ〉. Subsequently, Alice sends all these encoded qubits to
the next user Bob.

Step 1.4 Bob encodes his message which will transform the quantum state to |ψB〉 = BjAi|ψ〉. Finally, he also sends the
encoded qubits to Charlie in a secure manner.

Step 1.5 Charlie would follow the same strategy as followed by Alice and Bob. In the end, Diana receives all the encoded
travel qubits and she also performs the operation corresponding to her message to transform the state into|ψ′

i,j,k,...,l〉 =
Dl · · ·CkBjAi|ψ〉. She returns all the travel qubits to Nathan.

Step 1.6 Nathan can extract the information sent by all(N − 1) parties by measuring the final state using an appropriate basis
set.
It may be noted that Nathan can decode messages sent by all(N − 1) parties, if and only if the set of all the encoding

operations gives orthogonal states after their application on the quantum state, i.e.,
{

|ψ′
i,j,k,...,l〉

}

are orthogonal for all

i, j, k, . . . , l ∈
{

1, · · · 2k
}

. In other words, after the encoding operation of all the(N − 1) parties the quantum states
should be a part of a basis set with2(N−1)k orthogonal states for unique decoding of all possible encoding operations.

This scheme can be viewed as the generalization of ping-pongprotocol [8] to a multiparty scenario, where multiple sender’s
can simultaneously send their information to a receiver. Ina similar way, if all the senders wish to send and receive the same
amount of information, then all of them can also choose to prepare their initial state|ψ〉 independently and send it to all other
parties in a sequential manner. Subsequently, all of them may follow the above protocol faithfully to performN simultaneous
multiparty QSDC protocols.

In fact, N simultaneous multiparty QSDC schemes of the above form willperform the task required in an ideal QC
scheme. However, as each sender has to encode his secret multiple times (N − 1 times), it would allow him to encode
different information in each round. Though it may be advantageous in some communication schemes, where a sender is
allowed to send different bit values to different receivers, but is undesirable in a scheme for QC. Specifically, to stress on
the relevance of a scheme that allows each sender to encode different bits to all the receivers, we may consider a situation
where each party (or a few of them) publicly asks a question, and the receivers answer the question independently (for an
analogy think of a panel discussion in television). In this case, all the receivers may have different opinions (say one may
agree with some of them and may not with the remaining) about various questions being asked. As far as a scheme for QC
is concerned, Protocol 1 described here would work under theassumption of semi-honesty. Specifically, a semi-honest party
may try to cheat, but he/she would follow the protocol faithfully. This assumption would enable us to consider that each party
is encoding the same information every time. In what follows. we will establish that such an assumption is not required.
Specifically, in Protocol 2, we aim to design a genuine QC scheme, which does not require the semi-honesty assumption to
restrict a user from sending different information to different receivers.
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3.2 Protocol 2: Multiparty QD-type scheme for QC

Here, we will attempt to design an efficient QC scheme, which can be thought of as a generalized QD scheme. In analogy of
the original Ba-An-type QD scheme, we will need the set of encoding operations for theN th party (Nathan). Here, firstly we
propose the protocol which is followed by a prescription to obtain the set of operations forN th party, assuming a working
scheme designed for the Protocol 1.

Step 2.1 Same as that of Step 1.1 of Protocol 1 with a simple modification that also provide Nathan a subgroupgN =
{N1, N2, . . . , N2k}which enables him to encode ak-bit message at a later stage.
The mathematical structure of this subgroup will be discussed after the protocol.

Step 2.2 Same as Step 1.2 of Protocol 1.

Step 2.3 Same as Step 1.3 of Protocol 1.

Step 2.4 Same as Step 1.4 of Protocol 1.

Step 2.5 Same as Step 1.5 of Protocol 1.

Step 2.6 Nathan applies unitary operationNm to encode his secret and the resulting state would be|ψ′′
i,j,k···l,m〉 = NmDl · · ·

CkBjAi|ψ〉.

Step 2.7 Nathan measures|ψ′′
i,j,k···l,m〉 using the appropriate basis as was done in Step 1.6 of Protocol 1 and announces the

measurement outcome. Now, with the information of the initial state, final state and one’s own encoding all parties can
extract the information of all other parties.
It is to be noted that the information can be extracted only ifthe set of all the encoding operations gives orthogonal

states after their application on the quantum state, i.e., all the elements of
{

|ψ′′
i,j,k···l,m〉

}

are required to be mutually

orthogonal fori, j, k · · · l,m ∈
{

1, · · · 2k
}

. In other words, after the encoding operation of all theN parties the set of
all possible quantum states should form a2(N−1)k dimensional basis set.

Nathan’s unitary operation can be obtained using the fact that the remaining(N − 1) parties have already utilized the channel
capacity. Hence, his encoding should be in such a way that after his encoding operationNm, the final quantum state should
remain an element of the basis set in which the initial state was prepared. However, the bijective mapping between the initial
and final states present in Protocol 1 would disappear here. This is not a limitation. It is actually a requirement. This is
so because, in contrast to Protocol 1 where the initial and final states are secret, in Protocol 2, the choice of the initialstate
and the final state are publicly broadcasted. Existence of a bijective mapping would have revealed all the secrets to Eve.This
condition provides us a mathematical advantage. Specifically, it allows us to construct the set of unitary operations that Nathan
can apply. To do so we need to use the information about the disjoint subgroups of operators that are used by other parties.
The procedure for construction of Nathan’s set of operations is described below.

For simplicity, let us write the encoding operations of all the parties as follows:

0̃ 1̃ · · · ˜(2k − 1)
Alice A1 A2 · · · A2k

Bob B1 B2 · · · B2k

Charlie C1 C2 · · · C2k

...
...

...
...

...
Diana D1 D2 · · · D2k

Nathan N1 N2 · · · · · · N2k .

Here,x̃ corresponds to the binary value of the decimal numberx, and it represents the classical information to be encoded by
user X*** (listed in Column 1) using the the operatorXx+1 (listed inx + 1th column in the row corresponding to the user
X***). For example, to encode01 = 1̃, Alice would use the operatorA1+1 = A2, whereas for the same encoding Bob and
Charlie would useB2 andC2, respectively. Further, we would like to note that by construction operatorsXi = X−1

i asXi

is an element of the modified Pauli group, and it is assumed that the encoding operations of the different users are chosen
from the disjoint subgroups of the modified Pauli groups in such a way that the product of operations listed in any column is
Identity, i.e.,

AiBiCi · · ·DiNi = I∀i. (1)
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Number of cbits by Groups Number of Entangled states
parties(N) each party(k) travel qubit(m)

3 1 G1 1 Bell
4 1 G2 2 4-qubit cluster or|Ω〉 state
4 1 G1

2(8), G
2
2(8), G

4
2(8), G

5
2(8) 2 GHZ

5 1 G2 2 4-qubit cluster or|Ω〉 state
2 2 G1 1 Bell
3 2 G2 2 4-qubit cluster or|Ω〉 state
2 3 G2 2 4-qubit cluster or|Ω〉 state
2 3 G1

2(8), G
2
2(8), G

4
2(8), G

5
2(8) 2 GHZ

2 4 G2 2 4-qubit cluster or|Ω〉 state

Table 1: Various possibilities of QC scheme with a maximum number ofN parties each encodingk bits using a group of
unitary operators with at least2(N−1)k elements. The quantum states suitable in each case and corresponding number of
travel qubits are also mentioned.

This implies that if all the parties encode the same secret then the final state and the initial state would be the same. To
illustrate this we may consider following example

0̃ 1̃
Alice I X
Bob I iY

Nathan I Z.

(2)

From Eqs. (1)-(2), it is clear that the choice of encoding operations of the other users (i.e.,Ai.Bi, Ci, · · · , Di) would
uniquely determineNi. Further, it is assumed that the encoding operations used bydifferent users to encodẽx are selected
in a particular order that ensuresXiXj = Xk∀X and particular choice ofi, j. For example, this condition implies that if
Alice’s operators satisfyA2A3 = A5, then Bob and Charlie would be given the encoding operators inan order that satisfy
B2B3 = B5 andC2C3 = C5, respectively, and the same ordering of operators will be applicable to all other users. Now,
using the above mentioned facts and convention, we need to establish that{Nx} forms a group under multiplication.Eq.
(1) and the self reversibility of the elementsXi lead to following identity-Ni = D−1

i · · ·C−1
i B−1

i A−1
i = Di · · ·CiBiAi.

This may be used to establish the closure property of the group {Nx} asNiNj = (Di · · ·CiBiAi) (Dj · · ·CjBjAj) =
(DiDj) · · · (CiCj) (BiBj) (AiAj) = (Dk · · ·CkBkAk) = Nk ∈ {Nx}. This is so because the Pauli operators commute
with each other under the operational definition of multiplication used in defining the modified Pauli group. All the remaining
properties of the group follows directly from the nature of Pauli operators used to designXx. Thus, it is established that the
generalized multiparty QSDC scheme can be modified to a generalized QD scheme. It will be interesting to obtain the original
Ba An’s QD scheme as a limiting case as follows.

0̃ 1̃ 2̃ 3̃
Alice I X iY Z
Bob B1 B2 B3 B4.

This particular case and all the discussions leave us with{Bi} = {I, X, iY, Z} , which is identical with Alice’s operations.
In Table 1, we have provided a list comprising of the number ofparticipants in the QC and the number of cbits they want

to encode. The table explicitly mentions different multipartite states or quantum channels that can be utilized for thesame.

Finally, it is also worth mentioning here that this protocolis free from the individual participant’s attack as each user is
allowed to encode only once. The remaining attack strategies and security against them will be discussed in detail in Sec. 5.
Before doing so, it may be noted that the message is extractedin different ways in Protocol 1 and 2. Specifically, in Protocol 1,
the encoding of each sender is inferred from the bijective mapping between the initial and final states, in analogy to the QSDC
protocols. In Protocol 2, the same task is achieved by each party by exploiting the bijective mapping between the final state
and his/her own encoding, which is analogous to the QD protocols. Therefore, Protocol 1 (2) proposed here can be viewed as
a generalized multiparty QSDC (QD) scheme.

4 Examples and possible modifications

Let’s elaborate the proposed idea by discussing a particular example of the proposed Protocol 2 for a 3 party case, where each
party encodes only one bit. To begin with, let us assume that one of the parties, say, Nathan, prepares an entangled state in the

6



Party c-bits Quantum state Set of encoding operations
3 1 Bell or GHZ {P1 : {I, X} , P2 : {I, iY } , P3 : {I, Z}}
3 2 4-qubit cluster state {P1 : {I⊗ I, I⊗X,X ⊗ I, X ⊗X} ,

P2 : {I⊗ I, I⊗ iY, iY ⊗ I, iY ⊗ iY } , P3 : {I⊗ I, I⊗ Z,Z ⊗ I, Z ⊗ Z}}
4 1 GHZ {P1 : {I⊗ I, X ⊗ I} , P2 : {I⊗ I, X ⊗X} ,

P3 : {I⊗ I, iY ⊗X} , P4 : {I⊗ I, iY ⊗ I}}
4 1 4-qubit cluster state {P1 : {I⊗ I, X ⊗ iY } , P2 : {I⊗ I, X ⊗ Z} ,

P3 : {I⊗ I, iY ⊗ Z} , P4 : {I⊗ I, iY ⊗ iY }}

Table 2: We present some examples of the quantum states required for QC and corresponding encoding operations. In these
examples, if one of the party do not encode (consider Identity) then Protocol 2 will reduce to Protocol 1.

Bell basis|ψin〉 in Step 2.2 (the same is also illustrated through Figure 1, where the quantum state transforming in the various
intermediate steps is mentioned). Nathan sends one of the qubits of the Bell state to Alice in Step 2.3, who encodes a unitary
operationUX : UX ∈ {I, X} corresponding to her secret and sends it to Bob. Similarly, Bob also encodes his message in Step
2.4 using a unitary operationUiY : UiY ∈ {I, iY }. Finally, Nathan receives the encoded qubit in Step 2.5 and encodes his
message using a unitary operationUZ : UZ ∈ {I, Z} in Step 2.6. Finally, in Step 2.7, Nathan measures the final quantum state
|ψfin〉 = UZUiY UX |ψin〉 in the Bell basis and announces the measurement outcome. From the knowledge of the encoding
operation performed by himself/herself, and the initial and final Bell states all three parties would be able to decode the secrets
sent by the remaining two parties, for which they have to use the bijective mapping present between his/her own encoding
and the pair of encoding operations performed by the other two users. For instance, we may consider a particular case, where
Nathan’s choice of the initial state and measurement outcomes are the same, say|ψ+〉. This announcement leaves only two
possibilities, eitherUZ = UiY = UX = I or UX = X , UiY = iY andUZ = Z. In this particular case, each party knows
whether they have encoded 0 (i.e., applied Identity) or not.Using which they can extract the message sent by the remaining
users. We may further note that if we restrict Nathan to always encode Identity, then this scheme (Protocol 2) will reduceto
Protocol 1.

Step 2.2

|ψin〉 : |ψin〉 ∈ {|ψ±〉, |φ±〉}

Step 2.3

UX |ψin〉

Step 2.4

UiY UX |ψin〉

Step 2.6

|ψfin〉 = UZUiY UX |ψin〉

Figure 1: The evolution of the quantum channel with all the intermediate states and corresponding encoding in an example
scheme are summarized. Here, the unitary operationsUX : UX ∈ {I, X} , UiY ∈ {I, iY } , andUZ ∈ {I, Z} .

Further examples with the higher number of parties involvedin the QC are summarized in Table 2. The examples listed
are not the unique choices and similar set of unitary operators may be easily obtained using the prescription defined in the
previous section.

The proposed QC scheme may also be extended to an asymmetric counterpart of the QC scheme, where each party may
not be encoding the same amount of information. One such easiest example is a lecture, where the orator speaks most of
the time while the remaining users barely speak. In such cases, the parties sending redundant bits to accommodate the QC
scheme may choose an AQC scheme. To exploit the maximum benefit of such schemes a party encoding more information
than others (say Alice) should prepare (and also measure) the quantum state (in other words, start the QC scheme). In this
case, the choice of unitary operations by each party would also become relevant and Alice should use a subgroup of higher
order than the remaining users. For instance, in a 3-party scenario, Alice may use aP2 from Row 2 of Table 2 to encode 2 bits
message, while the remaining three users may chooseP1 andP3, respectively. It is worth noting here that the security of the
QC scheme discussed in the following section ensures the security of the AQC scheme designed here as well.

Further, the proposed schemes can also be easily modified to obtain corresponding schemes for controlled QC, where an
additional party (who is referred to as the controller) would prepare the quantum channel in such a way that the QC task can
only be accomplished after the controller allows the other users to do so [12, 36]. Controlled QC can be achieved in various
ways. For example, the controller may prepare the initial state and keep some of the qubits with himself, and in absence ofthe
measurement outcome of the corresponding qubits the other legitimate parties would fail to accomplish the task [12]. The same
feat can also be achieved by the controller without keeping asingle qubit with himself by using permutation of particles[36].
Thus, it is easy to generalize the proposed schemes for QC to yield schemes for controlled QC. Such a scheme for controlled
QC would have many applications. For example, a direct application to that scheme would be quantum telephone where the
controller can be a Telephone company [16] that provides thechannel to the respective users after authentication. Thus, the
present scheme can be used to generalize the scheme proposedin [16] and thus to obtain a scheme for multiparty quantum
telephone or quantum teleconference. Additionally, the multiparty communication schemes proposed here can be reduced to
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schemes for secure multiparty quantum computation. Interestingly, a recently proposed secure multiparty computation scheme
designed for quantum sealed-bid auction task [26] can be viewed as a reduction of the Protocol 1 proposed here. Therefore,
we hope that the proposed schemes may also be modified to obtain solutions of various other real life problems.

5 Security analysis and efficiency

A QC protocol is expected to confront the disturbance attack(or denial of service attack), the intercept-and-resend attack,
the entangle-and-measure attack, man-in-the-middle attack and Trojan-horse attack by implementing the BB84 subroutine
strategy (for detail see [32, 37]), which allows senders to insert decoy qubits prepared randomly inX-basis orZ-basis in
analogy with BB84 protocol and to reveal the traces of eavesdropping by comparing the initial states of the decoy qubits
with the states of the same qubits after measured by the receivers randomly usingX-basis orZ-basis. In fact, quantum
communication of all the qubits from one party to other, as mentioned in both the protocols (for example, in Step 1.3), is
performed in a secure manner. To accomplish the secure communication of message qubits using BB84 subroutine, an equal
number of decoy qubits (the number of decoy qubits are required to be equal to the number of message qubits traveling through
the channel) are inserted randomly in the string of travel qubits. On the authenticated receipt of this enlarged sequence of travel
qubits, the sender discloses the positions of the decoy qubits and those qubits are then measured by the receiver randomly in
X-basis orZ-basis. Subsequent comparison of the initial states and themeasurement outcomes reveals the error rate. If the
computed error rate is obtained below a tolerable limit, then the quantum communication of message qubits is consideredto
be accomplished in a secure manner [37,38], and the steps thereafter are followed. Therefore, the above mentioned attacks on
the proposed schemes can be defeated simply by adding decoy qubits and following BB84 subroutine.

Further, Bob’s intimation by Alice that she has sent her qubits and Bob’s acknowledgment of the receipt of qubits, via an
authenticated classical channel, is necessary to avoid theunwanted circumstances under which Eve pretends as the desired
party. There also exist some technical procedures to circumvent the Trojan-horse attack ( [32] and references therein). As
a scheme of QC incorporates multiusers we have discussed below the security in two scenarios where (1) an outsider (Eve)
attacks the protocol, or (2) an insider (one or some of the legitimate users) attacks the protocol. Further, all the attacks and
counter measures mentioned in this section are applicable on both the schemes, unless specified.

Outsider’s attacks

In the entangle-and-measure attack, Eve entangles her qubitα |0〉 + β |1〉 with the travel qubit in the channel. Eve can
extract the information by performing theZ-basis measurement on her ancillae. To counter this attack,the decoy states|0〉,
|1〉, |+〉 and|−〉 are randomly inserted and when they are examined for security, then Eve is detected with probability|β|2

when she attacks|0〉 and|1〉 states, otherwise the states remain separable for|+〉 and|−〉. Consequently, the total detection

probability of Eve is|β|
2

2 taking into account that the probability of generation of each decoy qubit state is14 .
In theintercept-and-resend attack, Eve prepares some fresh qubits and swaps one of her qubits with the accessible qubit

in the channel when(i− 1)th user sends it toith user. Thereafter, Eve retrieves her qubit during their communication fromith
user to(i+ 1)th user and obtains the encoding ofith user by performing a measurement on her qubits. This attack will also be
defended by incorporating decoy qubits. However, Eve may modify her strategy to measure the intercepted qubits randomly
in either the computational or diagonal basis before sending the freshly prepared qubits corresponding to the measurement
outcomes. It is evident that Eve’s measurement of the decoy qubits will produce disturbance if she measures in the wrong
basis. Letn be the total number of travel qubits such thatn

2 are decoy and message qubits each. Eve interceptsm qubits
which will entail both decoy and message. Without a loss of generality, we assume that half of them qubits are decoy and the
other half are message qubits. Since the security check is performed on the decoy qubits alone, we are interested in them/2
decoy qubits which Eve measures in her lab out of then

2 decoy qubits in the channel. The fraction of qubits measuredby Eve

out of the total decoy qubits is given byf = m/2
n/2 = m

n . From which the information gained by Eve isI(A : E) = f/2. This
implies thatf/2 times the correct basis will be chosen by Eve. The error induced by Eve is observed by Alice and Bob only
when Bob measures in the same basis as of Alice and ise = f/2

2 = f
4 . The amount of information Bob receives is given by

I(A : B) = (1 − H [ f4 ]), whereH [u] is the Shannon binary entropy. The security is ensured untilI(A : B) ≥ I(A : E).
One can calculate the fractionf ∼= 0.68 for secure communication with the tolerable error rate17% ( [39,40] and references
therein). Eve’s success probability is34 and it would decrease with the increasing value ofm as

(

3
4

)m
.

Information leakage attack is inherent in the QD schemes, and consequently, is applicable to Protocol 2 proposed here
as well. It refers to the information gained by Eve about the encoding of the legitimate parties by analyzing the classical
channel only. In brief, the leakage can be thought of as the difference between the total information sent by both the legitimate
users and the minimum information required by Eve to extractthat information (i.e., Eve’s ignorance). The mathematical
prescription for an average gain of Eve’s information is

I (Ai : E) = Ha priori −Ha posteriori, (3)
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whereHa priori is the total classical information all the legitimate parties have encoded; andHa posteriori is Eve’s igno-
rance after the announcement of the measurement outcome andis averaged over all the possible measurement outcomes
as

∑

r P (r)H (i|r), with the conditional entropyH (i|r) = −
∑

i P (i|r) log (P (i|r)). If the party authorized to prepare
and measure the quantum state selects the initial state randomly and sends it to all the remaining users by using a standard
unconditionally secure protocol for QSDC or DSQC then the leakage can be avoided as it increases theHa posteriori, and thus
decreasesI (Ai : E) to zero corresponding to no leakage [32].

Insider’s attacks

Participant attack is possible in both the schemes proposed here. In the first scheme, a participant can send different cbits to
different members unless we assume semi-honest parties. Although this scheme is advantageous in certain applications, like
sealed bid auction (where this attack is detected in post-confirmation steps) [26] or where each participant wants to encode
different values to respective participant, but in the conference scenario where it is required that each participant encodes the
same message to all other participants then this attack is prominent, and it is wise to follow the second scheme, which is free
from the assumption of semi-honest parties.

In the second scheme, the authorized party (authorized to prepare and measure the quantum state) encodes his information
at the end just before performing the joint measurement and announcing the outcome. If he wants to cheat he can disclose
an incorrect measurement outcome corresponding to his modified encoding once he comes to know others’ encoding. This
action can be circumvented, and we can implement this protocol either with a trusted party or we can randomly select any two
participants and run the scheme twice considering that respective party encodes same information. Another solution would be
that the initiator sends the hash value of his message at the beginning to all the remaining users, and if the hash value of his
encoding revealed at the last do not match with that of the initially sent hash value, then he had cheated and will be certainly
identified.

Collusion attack is a kind of illegal collaboration of more than one party who are not adjacent to each other, to cheat
other members of a group to learn their encoding (precisely of those who are in between them). The proposed schemes are
circular in nature. In this type of an attack, the attackers generate an entangled state and circulate the same number of fake
qubits as that of the travel qubits. The attackers at the end already possess the home photons of the fake qubits circulated by
the first attacker and performs a joint measurement to learn the encoding of the participants in between them. It will be more
effective if ith and

(

i+ n
2

)

th participants collude. This is so, as both of them get the access of the travel particles at least once
after knowing the secret of all the remaining parties. This attack can be averted by breaking the larger circle intol sub-circles
such that if less thanl attackers collude, they will not be able to cheat (see [26] for details). This attack and the solution are
applicable in both the proposed schemes.

Qubit efficiency:

The qubit efficiency of a quantum communication scheme is calculated as

η =
c

q + b
,

wherec bits of classical information is transmitted usingq number of qubits, and an additional classical communication of
b bits [?]. In the first QC scheme,c = Nk, q = (n+mN)N , andb = 0 as each party sendsk bits and preparesn-qubit
entangled state andm decoy qubits in each round of quantum communication. Therefore, the efficiency is calculated to be
ηProtocol 1 = k

(mN+n) .
Similarly, the qubit efficiency of the second QC scheme amongN parties such that each party encodesk bits can be

computed by noting that in this casec = Nk, q = n+Nm, andb = n. Here,b 6= 0, as the classical communication ofn cbits
is associated with the broadcast of the measurement outcomeby the authorized party. Thus, the qubit efficiency is obtained
asηProtocol 2 = k

m+(2n/N) . From theηProtocol 2 one can easily calculate the qubit efficiency of various possible QC schemes
detailed in Table 1. For example, one can check that the qubitefficiency of a two party QC with each party encoding 2 bits
(which is Ba An’s QD protocol) using Bell state as quantum channel is 67%. Similarly, the qubit efficiency for a QC scheme
involving three parties sending 1 bit each with Bell state asthe quantum channel can be obtained as 43%. Hence, we find that
for the same initial state as quantum channel the efficiency decreases as the number of parties increases and/or the number of
encoded bits decreases.

6 Conclusion

In summary, the notion of QC is introduced as a multiparty secure quantum communication task which is analogous with
the notion of classical conference, and two protocols for secure QC are designed. The proposed protocols are novel in
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the sense that they are the first set of protocols for QC, as theterm QC used earlier were connected to communication
tasks that were not analogous to classical conference. Further, it is shown that protocols proposed here can be reduced to
protocols for QC proposed earlier considering much weaker notion of conference. One of the proposed protocols can be
viewed as a generalization of the ping-pong protocol for QSDC, whereas the other one can be viewed as a generalization of
the schemes for QD. It is noted that Protocol 1 composes number of rounds of multiple-sender to single receiver secure direct
communication, which accomplishes the task of QC under the assumption of semi-honesty of the users. However, this semi-
honesty assumption is not required for Protocol 2, which is proposed here as multiple-sender to multiple-receiver scheme,
where the task is performed in a single round. Subsequently,both the proposed schemes are elaborated with the help of an
explicit example.

We have discussed the utility and applications of these protocols in different scenarios. Specifically, the proposed schemes
may be reduced to a set of multi-party QKD and QKA schemes, if the parties involved in QC send random bits instead of
meaningful messages. Further, feasibility and significance of the controlled and asymmetric counterparts of the proposed QC
schemes have also been established. The modified versions ofthe proposed schemes may also be found useful in accomplish-
ing some real-life problems, whose primitive is secure multiparty computation. For example, one can employ the proposed
schemes for voting among the five countries having power of veto in United Nations, where it is desired that the choice of a
voter is not influenced by the choice of the others. The proposed scheme can also be extended to obtain a dynamic version of
QC, where a participant can join the conference once it has started and leave it before its termination. Such a generalization
is possible using the method introduced by some of the present authors in Ref. [42]. Further, the effect of various types of
Markovian and non-Markovian noise on the schemes proposed here can be investigated easily using the approach adopted
in [43,44].

Security of the proposed schemes has been established against various types of insider and outsider attacks. Further, the
qubit efficiency analysis established that Protocol 2 is more efficient than Protocol 1. Further, one can easily observe that
the proposed schemes are much more efficient compared to a simple minded scheme that performs the same task by using
multiple two-party direct communication schemes, which will again work only under the assumption of semi-honest users.

Finally, we have also presented a set of encoding operationssuitable with a host of quantum channels for performing
the QC schemes for number of parties. This provides experimentalists a freedom to choose the encoding operations and
the quantum state to be used as quantum channel as per convenience. Further, experimental realization of quantum secure
direct communication scheme, which can demonstrate protocols, like quantum dialogue, quantum authentication, has been
successfully performed in [45], and it paves way for experimental realization of QC. Keeping these facts in mind, we conclude
this paper with a hope that the schemes proposed here and/or their variants will be realized in the near future.
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