Skip to main content
Log in

A large-alphabet three-party quantum key distribution protocol based on orbital and spin angular momenta hybrid entanglement

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The orthogonality of the orbital angular momentum (OAM) eigenstates enables a single photon carry an arbitrary number of bits. Moreover, additional degrees of freedom (DOFs) of OAM can span a high-dimensional Hilbert space, which could greatly increase information capacity and security. Moreover, the use of the spin angular momentum–OAM hybrid entangled state can increase Shannon dimensionality, because photons can be hybrid entangled in multiple DOFs. Based on these observations, we develop a hybrid entanglement quantum key distribution (QKD) protocol to achieve three-party quantum key distribution without classical message exchanges. In our proposed protocol, a communicating party uses a spatial light modulator (SLM) and a specific phase hologram to modulate photons’ OAM state. Similarly, the other communicating parties use their SLMs and the fixed different phase holograms to modulate the OAM entangled photon pairs, producing the shared key among the parties Alice, Bob and Charlie without classical message exchanges. More importantly, when the same operation is repeated for every party, our protocol could be extended to a multiple-party QKD protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing (Bangalore, India) (IEEE, New York) pp. 175–179 (1984)

  2. Djordjevic, I.B.: Multidimensional QKD based on combined orbital and spin angular momenta of photon. IEEE Photon. J. 5(6), 1–13 (2013)

    Article  Google Scholar 

  3. Perumangatt, C., Rahim, A.A., Salla, G.R., et al.: Three-particle hyper-entanglement: teleportation and quantum key distribution. Quantum Inf. Process. 14, 3813–3826 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Zhuang, Q.T., Zhang, Z.S., Shapiro, J.H.: Large-alphabet encoding schemes for floodlight quantum key distribution. arXiv:1702.02424v1 [quant-ph] (2017)

  5. Ding, Y.H., Bacco, D., Dalgaard, K., et al.: High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits. NPJ Quantum Inf. 3(1), 1–7 (2017)

    Article  Google Scholar 

  6. Guan, D.J., Wang, Y.J., Zhuang, E.: A practical protocol for three-party authenticated quantum key distribution. Quantum Inf. Process. 13(11), 2355–2374 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Papanastasiou, P., Weedbrook, C., Pirandola, S.: Continuous-variable quantum key distribution in fast fading channels. arXiv preprint arXiv:1710.03525 (2017)

  8. Alshowkan, M., Elleithy, K., Odeh, A., Abdelfattah, E.: A new algorithm for three-party quantum key distribution. In: 2013 Third International Conference on Innovative Computing Technology (INTECH), pp. 208–212. IEEE

  9. Shih, H.C., Lee, K.C., Hwang, T.: New efficient three-party quantum key distribution protocols. IEEE J. Sel. Top. Quantum Electron. 15(6), 1602–1606 (2009)

    Article  ADS  Google Scholar 

  10. Chen, H.C., Lin, S.Z., Kung, T.L.: Three-party authenticated quantum key distribution protocol with time constraint. In: Proceedings of the 2012 Sixth International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS), pp. 506–511. IEEE

  11. Wijayanto, H., Chen, H.C., Lin, W.Y.: A smart card-based three-party quantum key distribution protocol. In: Proceedings of the International Conference on Broadband and Wireless Computing, Communication and Applications, Springer, pp. 291–301

  12. Poynting, J.H.: The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light. Proc. R. Soc. Lond. A 82, 560–567 (1909)

    Article  ADS  MATH  Google Scholar 

  13. Allen, L., Beijersbergen, M.W., Spreeuw, R.J.C., Woerdman, J.P.: Orbital angular momentum of light and the transformation of Laguerre-Gaussian modes. Phys. Rev. A 45, 8185–8190 (1992)

    Article  ADS  Google Scholar 

  14. Chen, L.X., She, W.: Encoding orbital angular momentum onto multiple spin states based on a Huffman tree. New J. Phys. 11(10), 103002 (2009)

    Article  ADS  Google Scholar 

  15. Chen, D., Zhao, S.H., Shang, T.F.: Measurement device independent quantum key distribution assisted by hybrid qubit. J. Mod. Opt. 63(21), 2326–2331 (2016)

    Article  ADS  Google Scholar 

  16. Chen, D., Zhao, S.H., Sun, Y.: Measurement-device-independent quantum key distribution with q-plate. Quantum Inf. Process. 14(12), 4575–4584 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Chen, D., Zhao, S.H., Shi, L., Liu, Y.: Measurement-device-independent quantum key distribution with pairs of vector vortex beams. Phys. Rev. A 93(3), 032320 (2016)

    Article  ADS  Google Scholar 

  18. Marrucci, L., Manzo, C., Paparo, D.: Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett. 96, 163905 (2006)

    Article  ADS  Google Scholar 

  19. Yan, L., Gregg, P., Karimi, E., Rubano, A., Marrucci, L., Boyd, R., Ramachandran, S., et al.: Q-plate enabled spectrally diverse orbital-angular-momentum conversion for stimulated emission depletion microscopy. Optica 2, 900–903 (2015)

    Article  Google Scholar 

  20. Marrucci, L., Karimi, E., Slussarenko, S., et al.: Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications. J. Opt. 13(6), 064001 (2011)

    Article  ADS  Google Scholar 

  21. Chen, L.X., She, W.: Increasing Shannon dimensionality by hyperentanglement of spin and fractional orbital angular momentum. Opt. Lett. 34(12), 1855–1857 (2009)

    Article  ADS  Google Scholar 

  22. Nagali, E., Sciarrino, F., De Martini, F., et al.: Quantum information transfer from spin to orbital angular momentum of photons. Phys. Rev. Lett. 103(1), 013601 (2009)

    Article  ADS  Google Scholar 

  23. Zhang, C.X., Guo, B.H., Cheng, G.M., Guo, J.J., Fan, R.H.: Spin-orbit hybrid entanglement quantum key distribution scheme. Sci. China Phys. Mech. Astron. 57(11), 2043–2048 (2014)

    Article  ADS  Google Scholar 

  24. Chen, L.X., She, W.L.: Hybrid entanglement swapping of photons: creating the orbital angular momentum Bell states and Greenberger–Horne–Zeilinger states. Phys. Rev. A 83, 012306 (2011)

    Article  ADS  Google Scholar 

  25. Zhao, S.M., Gong, L.Y., Li, Y.Q., Yang, H., Sheng, Y.B., Cheng, W.W.: A large-alphabet quantum key distribution protocol using orbital angular momentum entanglement. Chin. Phys. Lett. 30(6), 060305 (2013)

    Article  ADS  Google Scholar 

  26. Leach, J., Jack, B., Romero, J., et al.: Violation of a Bell inequality in two-dimensional orbital angular momentum state-spaces. Opt. Expr. 17(10), 8287–8293 (2009)

    Article  ADS  Google Scholar 

  27. Clauser, J.F., Horne, M.A., Shimony, A., et al.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23(15), 880–884 (1969)

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgements

Hong Lai has been supported by the National Natural Science Foundation of China (No.61702427) and the Doctoral Program of Higher Education (No. SWU115091), the Fundamental Research Funds for the Central Universities (XDJK2018C048) and the financial support in part by the 1000-Plan of Chongqing by Southwest University (No. SWU116007). Mingxing Luo is supported by the National Natural Science Foundation of China (No. 61772437), and Sichuan Youth Science & Technique Foundation (No.2017JQ0048). Jun Zhang is supported by the National Natural Science Foundation of China (No. 61401371). Josef Pieprzyk has been supported by National Science Centre, Poland, project registration number UMO-2014/15/B/ST6/05130.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong Lai or Mehmet A. Orgun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, H., Luo, M., Zhang, J. et al. A large-alphabet three-party quantum key distribution protocol based on orbital and spin angular momenta hybrid entanglement. Quantum Inf Process 17, 162 (2018). https://doi.org/10.1007/s11128-018-1933-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1933-7

Keywords

Navigation