Skip to main content
Log in

Bell inequality, steering, incompatibility and Leggett–Garg inequality under coarsening measurement

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We investigate the effects of the coarsening measurement on the quantum-to-classical transition by Bell–Clauser–Horne–Shimony–Holt (Bell–CHSH) non-locality for the conventional two-qubit system, the Leggett–Garg inequality for a two-level system, and steering and incompatibility both in the equatorial plane for N measurement settings. We find that for any fixed N, steering is more vulnerable than incompatibility for coarsening measurement both in reference and in final resolution. For \(N=2\) measurement settings, under the coarsening measurement reference the Leggett–Garg inequality is the most robust, Bell–CHSH non-locality lies between steering and incompatibility, while in the coarsening measurement of final resolution for \(N=2\) measurement settings incompatibility is the most robust, steering and Bell–CHSH non-locality are equally vulnerable, and more than the Leggett–Garg inequality. However, as N increases, incompatibility and steering will become more robust than the Leggett–Garg inequality under the coarsening measurement in reference and in final resolution, respectively. Finally, for the Leggett–Garg inequality, we find that the robustness of the coarsening measurement reference is more than the coarsening temporal reference. In one word, the effects of coarsening measurement strongly depend on the ways of coarsening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bell, J.S.: On the Einstein–Podolsky–Rosen paradox. Physics 1, 195–200 (1964)

    Article  MathSciNet  Google Scholar 

  2. Clauser, J.F., Horne, M.A.: Experimental consequences of objective local theories. Phys. Rev. D 10, 526–535 (1974)

    Article  ADS  Google Scholar 

  3. Leggett, A.J., Garg, A.: Quantum mechanics versus macroscopic realism: Is the flux there when nobody looks? Phys. Rev. Lett. 54, 857 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  4. Leggett, A.J.: Testing the limits of quantum mechanics: motivation, state of play, prospects. J. Phys. Condens. 14, R415 (2002)

    Article  ADS  Google Scholar 

  5. Leggett, A.J.: Realism and the physical world. Rep. Prog. Phys. 71, 022001 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  6. Wiseman, H.M., Jones, S.J., Doherty, A.C.: Steering, entanglement, nonloality, and the Einstein–Podolsky–Rosen paradox. Phys. Rev. Lett. 98, 140402 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Jones, S.J., Wiseman, H.M., Doherty, A.C.: Entanglement, Einstein–Podolsky–Rosen correlations, bell nonlocality, and steering. Phys. Rev. A 76, 052116 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Schrödinger, E.: Discussion of probability relations between separated systems. Math. Proc. Camb. Philos. Soc. 31, 555 (1935)

    Article  ADS  MATH  Google Scholar 

  9. Reid, M.D.: Demonstration of the Einstein–Podolsky–Rosen paradox using nondegenerate parametric amplification. Phys. Rev. A 40, 913 (1989)

    Article  ADS  Google Scholar 

  10. Plívala, M.: Conditions on the compatibility of channels in general probabilistic theory and their connection to steering and Bell nonlocality. Phys. Rev. A 96, 052127 (2017)

    Article  ADS  Google Scholar 

  11. Busch, P.: Unsharp reality and joint measurements for spin observables. Phys. Rev. D 33, 2253 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  12. Busch, P., Grabowski, M., Lahti, P.J.: Operational Quantum Physics, pp. 109–110. Springer, Berlin (1995)

    MATH  Google Scholar 

  13. Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic Press, New York (1976)

    MATH  Google Scholar 

  14. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, pp. 78–83. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  15. Kofle, J., Brukner, Č.: Classical world arising out of quantum physics under the restriction of coarse-grained measurements. Phys. Rev. Lett. 99, 180403 (2007)

    Article  ADS  Google Scholar 

  16. Peres, A.: Quantum Theory: Concepts and Methods. Kluwer, Dordrecht (1993)

    MATH  Google Scholar 

  17. Jeong, H., Lim, Y., Kim, M.S.: Coarsening measurement references and the quantum-to-classical transition. Phys. Rev. Lett. 112, 010402 (2014)

    Article  ADS  Google Scholar 

  18. Kofler, J., Brukner, Č.: Conditions for quantum violation of macroscopic realism. Phys. Rev. Lett. 101, 090403 (2008)

    Article  ADS  Google Scholar 

  19. Raeisi, S., Sekatski, P., Simon, C.: Coarse graining makes it hard to see micro–macro entanglement. Phys. Rev. Lett. 107, 250401 (2011)

    Article  ADS  Google Scholar 

  20. Wang, T., Ghobadi, R., Raeisi, S., Simon, C.: Precision requirements for observing macroscopic quantum effects. Phys. Rev. A 88, 062114 (2013)

    Article  ADS  Google Scholar 

  21. Sekatski, P., Gisin, N., Sangouard, N.: How difficult is it to prove the quantumness of macroscropic states? Phys. Rev. Lett. 113, 090403 (2014)

    Article  ADS  Google Scholar 

  22. Clemente, L., Kofler, J.: Necessary and sufficient conditions for macroscopic realism from quantum mechanics. Phys. Rev. A 91, 062103 (2015)

    Article  ADS  Google Scholar 

  23. Xie, D., Chunling, X.: Quantum metrology in coarsened measurement reference. Phys. Rev. A 95, 012117 (2017)

    Article  ADS  Google Scholar 

  24. Cirelson, B.S.: Quantum generalizations of Bell’s inequality. Lett. Math. Phys. 4, 93 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  25. Jones, S.J., Wiseman, H.M.: Nonlocality of a single photon: paths to an Einstein–Podolsky–Rosen-steering experiment. Phys. Rev. A 84, 012110 (2011)

    Article  ADS  Google Scholar 

  26. Saunders, D.J., Jones, S.J., Wiseman, H.M., Pryde, G.J.: Experimental EPR-steering using Bell-local states. Nat. Phys. 6, 845 (2010)

    Article  Google Scholar 

  27. Karthik, H.S., Usha Devi, A.R., Prabhu Tej, J., Rajagopal, A.K., Narayanan, S.A.: N term pairwise correlation inequalities, steering and joint measurability. Phys. Rev. A 95, 052105 (2017)

    Article  ADS  Google Scholar 

  28. Kumari, S., Pan, A.K.: Probing Various Formulations of Macrorealism for Unsharp Quantum Measurements. arXiv:1705.09934 (2017)

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 11775019 and 11375025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Zou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zou, J. & Shao, B. Bell inequality, steering, incompatibility and Leggett–Garg inequality under coarsening measurement. Quantum Inf Process 17, 173 (2018). https://doi.org/10.1007/s11128-018-1938-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1938-2

Keywords

Navigation