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Abstract

The problem of noise incidence on qubits taking part of bipartite entanglement-based protocols is

addressed. It is shown that the use of a three-partite GHZ state and measurements instead of their

EPR counterparts allows the experimenter to detect 2/3 of the times whenever one of the qubits

involved in the measurement is affected by bit-flip noise through the mere observation of unexpected

outcomes in the teleportation and superdense coding protocols when compared to the ideal case.

It is shown that the use of post-selection after the detection of noise leads to an enhancement in

the efficiency of the protocols. The idea is extended to any protocol using entangled states and

measurements. Furthermore it is provided a generalization in which GHZ states and measurements

with an arbitrary amount of qubits are used instead of EPR pairs, and remarkably, it is concluded

that the optimal number of qubits is only three.
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I. INTRODUCTION

Although it has been just over two decades since the appearance of error-correction schemes

for quantum systems first introduced in a seminal paper by Shor [1] and further extended

one year later by Steane [2], nowadays these protocols represent a cornerstone in quantum

information science (QIS) due to the role played towards the possibility of building quantum

devices large enough to be able to improve processing capacity and information storage

stability when compared to classical counterparts [3]. Shor’s work inspired several theoretical

extensions and experimental realizations, and today represents a very active area in quantum

information. For a deeper exploration and recent progresses, we refer the reader to [3–

5].

One of the essential elements in quantum error correction codes (QEC) and hence, on the

feasibility of quantum computation is entanglement [6]. Besides QEC applications, entangle-

ment is also a key resource for a large variety of tasks in QIS [7, 8], among the most known

we find: Ekert’s quantum key distribution [9], superdense coding [10] and the teleportation

protocol [11]. In fact an entire quantum computer can be conceived where entanglement

provides all the basic structure [12].

Due to the importance of these protocols, several efforts have been put towards their imple-

mentation under more realistic frameworks, i.e. considering the effect of interactions with

the environment. In reference [13] the action of noise in the teleportation protocol is con-

templated and an optimal protocol is derived. A set of strategies to improve the fidelity in

quantum teleportation under different kinds of noise is proposed in [14]. In addition, several

schemes comparing multipartite channels were considered in [15].

In the present work it is formulated a scheme for partial error-detection concerning protocols

based on bipartite entanglement between qubits. We show that this is possible by literally

replacing EPR states by tripartite Greenberger-Horne-Zeilinger (GHZ) states [16, 17], and

whenever needed, instead of EPR measurements we use the GHZ basis. Our procedure,

inspired by some results reported in [18], follows the basic ideas of reference [19], using an

ancillary system which allows for detection of the noise incidence and post-selection of the

desired outputs, a process that has been considered as a viable mean of computation [20].



On one hand our protocol is in a certain way limited, for it only permits a partial detection of

one kind of noise, say bit-flip, on the other hand it is far less expensive in terms of resources:

while the QEC proposed by Shor [1] demands two extra qubits to detect bit-flip in each qubit

of memory, our proposal demands only one to reveal noise on two qubits. Furthermore, our

process does not demand an adjacent computation to be implemented, instead it is only

necessary to adjust some steps of the existing task.

The paper is organized as follows: First we describe the approach used to model the effect

of noise on the system in terms of the Kraus operators, and the domain of validity to the

model. In section II we compare some protocols using EPR states to the case when these

are replaced by GHZ counterparts. In both cases we consider perfect realization (perfect in

the sense of production of states and completion of ideal measurements) and the presence of

noise. In section IV the ideas exposed previously are extended in order to cover any protocol

using pairs of entangled qubits and EPR measurements. Section V is devoted to show the

optimality of the protocol for the case of N = 3. In the last section the main results are

discussed and some conclusions are given.

II. BIT FLIP NOISE

In general terms it is possible to include the noise effect on a quantum system by employing

several approaches. In this paper we are not interested in the dynamics of the system in

a detailed way, thus we can use the formalism of Kraus operators [21]. This approach

provides a practical way to describe several types of errors that may take place during the

experimental implementation of quantum protocols. In this paper our main concern is the

study of a system affected by bit-flip noise, under this, a qubit initially prepared in a state

|j〉 is modified as:

|j〉 → |j ⊕ 1〉



where the symbol “⊕” indicates sum modulo 2. Given a N -partite system, if the k-th qubit

may with probability p be affected, the Kraus operators read:

Â0 =
√

1− p 1̂1 ⊗ · · · ⊗ 1̂N , Â1 =
√
p 1̂1 ⊗ · · · ⊗ σ̂(k)

x ⊗ · · · ⊗ 1̂N .

In the Kraus formalism, the quantum state evolution after the interaction with the environ-

ment may be described as a map:

ρ̂ ∈ B(H) 7−→ ε(ρ̂) ∈ B(H), (1)

where B(H) is the space of the bounded operators on the Hilbert space H. More explicitly,

ε(ρ̂) is given by:

ε(ρ̂) =
∑

j

Âj ρ̂Â
†
j , (2)

in this way, when a single qubit described by ρ̂ = |φ〉〈φ| is affected by bit-flip noise, we

have

ε(ρ̂) = (1− p) |φ〉〈φ|+ pσ̂x |φ〉〈φ| σ̂†
x. (3)

For a composed system of N qubits subject to bit-flip noise acting locally in each subsystem,

we have:

ε(ρ̂) =

1
∑

j1,...,jN=0

Âj1 ⊗ · · · ⊗ ÂjN ρ̂ Â†
j1
⊗ · · · ⊗ Â†

jN
. (4)

Let us assume that every part of the system may be affected with equal probability p, and

moreover we restrict ourselves to the weak-noise regime, i.e. the probability is low enough

in order to ensure that events in which we have at most two qubits affected are very unlikely

compared to those where there is only one. In this way, after some calculations, equation 4



is reduced to:

ε(ρ̂) ≈ (1−Np)ρ̂+ p
{

(

σ̂x ⊗ 1̂⊗ · · · ⊗ 1̂
)

ρ̂
(

σ̂x ⊗ 1̂⊗ · · · ⊗ 1̂
)

+

+
(

1̂⊗ σ̂x ⊗ · · · ⊗ 1̂
)

ρ̂
(

1̂⊗ σ̂x ⊗ · · · ⊗ 1̂
)

+ · · · +

+
(

1̂⊗ 1̂⊗ · · · ⊗ σ̂x
)

ρ̂
(

1̂⊗ 1̂⊗ · · · ⊗ σ̂x
)

}

+O(p2)f(ρ̂), (5)

where f(ρ̂) represents higher order perturbations on the initially prepared state ρ̂.

III. COMPARISON BETWEEN PROTOCOLS

In this section we provide a comparative overview between two very important and well

known protocols in QIS: (i) quantum teleportation and (ii) superdense coding. We present

the protocols in two scenarios: The first one corresponding to the traditional way, using

EPR pairs weakly subject to bit-flip noise and EPR measurements. In the second scenario

we replace all EPR states present in the system by noisy three-qubit GHZ states, and GHZ

measurements.

A. Quantum Teleportation

Proposed initially by Bennet and collaborators [11] and posteriorly experimentally imple-

mented [22], the quantum teleportation protocol represents a very important subject because

it presents how quantum mechanics can be used to develop new types of communications

technologies [23], and remarkably, in recent times two realizations that make the protocol

feasible in the context of global communications [24, 25] have been reported.

Let start analyzing the traditional scenario using EPR pairs, and in the following we consider

the teleportation scheme using a GHZ state as the channel.



1. Teleportation using EPR states and measurements

Let define the EPR basis {|ψmn〉}, whose elements are given by:

|ψmn〉 =
1√
2

1
∑

j=0

(−1)mj |j, j ⊕ n〉 , (6)

where m,n ∈ {0, 1}. In the same way the projector of the (m,n) EPR state is given by:

Π̂mn ≡ |ψmn〉〈ψmn| . (7)

It is worth mentioning that this set form a complete basis for the two qubit Hilbert space

(also known as Bell basis) and any element |ψjk〉 may be obtained by application of Pauli

matrices on the state |ψ00〉:
|ψmn〉 = (σ̂m

z ⊗ σ̂n
x) |ψ00〉 , (8)

where σ̂k
µ indicates k times the “µ” Pauli matrix.

The goal of the teleportation protocol is to virtually send the a priori unknown state |Ψ〉 =
α0|0〉 + α1|1〉 from one part, let us say Alice whose qubit’s states lie on the Hilbert space

HA, to a distant part, hereafter Bob, possessing a qubit on the Hilbert space HB. Initially

Alice and Bob share an EPR state, thus the total quantum state of the system is described

by:

ρ̂o = |Ψ〉〈Ψ|A ⊗ |ψ00〉〈ψ00|AB ,

ρ̂o =
1

2

1
∑

jkmn=0

αjα
∗
k |jm〉〈kn|A ⊗ |m〉〈n|B .

Decomposing the Alice’s part in the Bell basis, using the relation between the computational

and Bell basis |mn〉 =∑k(−1)km |ψk,m⊕n〉 /
√
2 and after some calculations, it is possible to

show that:

ρ̂o =
1

4

1
∑

mn=0

Π̂(A)
mn ⊗

(

σ̂n
x σ̂

m
z |Ψ〉〈Ψ|B σ̂m

z σ̂
n
x

)

+ ρ̂null, (9)

ρ̂null corresponds to the non-diagonal part of ρ̂o (i.e. terms proportional to |ψkl〉〈ψmn| with



k 6= m and l 6= n on the Alice’s part of the system). In forthcoming decompositions we use

the same notation.

In the next step Alice performs a projective measurement in the EPR basis and according

to her output, she tells Bob how to adjust his state with one out of the set of operations

{1, σx, σz, σzσx}. We can represent the teleportation protocol by the transformation T :

B(HA)⊗B(HB) 7→ B(HB), where B(HB) is the space of the bounded operators on HB:

T (Ĉ) = TrA

{

1
∑

mn=0

(

Π̂mn ⊗ σ̂m
z σ̂

n
x

)

Ĉ
(

Π̂mn ⊗ σ̂n
x σ̂

m
z

)

}

, (10)

where TrA represents the partial trace over Alice’s part. It is straightforward to show that

the application of the transformation T on the initial state ρ̂0 gives:

T (ρ̂o) = |Ψ〉〈Ψ|B , (11)

as required by the teleportation protocol.

Now we assume that before the teleportation process, a small amount of bit-flip noise affects

Alice’s part. Thus the state of the system (Alice + Bob) is modified as ρ̂0 → ˆ̺:

ˆ̺ = (1−2p)ρ̂o+p
{

(

σ̂x ⊗ 1̂⊗ 1̂
)

ρ̂o
(

σ̂x ⊗ 1̂⊗ 1̂
)

+
(

1̂⊗ σ̂x ⊗ 1̂
)

ρ̂o
(

1̂⊗ σ̂x ⊗ 1̂
)

}

+O(p2)f(ρ̂o)

where f(ρ̂o) represents an operation on the initial state ρ̂o which is not interesting under

the scope of the present work. By noticing that σ̂k
x ⊗ 1̂ |ψmn〉 = (−1)km |ψm,n⊕k〉 and 1̂ ⊗

σ̂k
x |ψmn〉 = |ψm,n⊕k〉, and after some calculations the density operator reduces to:

ˆ̺ = (1− 2p)ρ̂o +
p

2

1
∑

mn=0

Π̂
(A)
m,n⊕1 ⊗

(

σ̂n
x σ̂

m
z |Ψ〉〈Ψ|B σ̂m

z σ̂
n
x

)

+ ˆ̺null. (12)

Note above that the effect of the noise in the final state is to produce an extra term where the

adjustment to be performed according to the output of the measurement is not the correct



one. Proceeding with the protocol will have:

T (ˆ̺) = (1− 2p) |Ψ〉〈Ψ|+ 2p(σ̂x |Ψ〉〈Ψ| σ̂x). (13)

Hence only with probability (1− 2p) Bob’s part holds in the desired state.

Now we turn our attention to the teleportation protocol but instead of EPR states, in this

case we use three partite GHZ states and measurements.

2. Teleportation using GHZ states and measurements

First let us define the three partite GHZ basis elements and related projectors:

|φkmn〉 =
1√
2

1
∑

j=0

(−1)kj |j, j ⊕m, j ⊕ n〉 , (14)

and

Π̂′
kmn ≡ |φkmn〉〈φkmn| , (15)

where k,m, n ∈ {0, 1}. Analogously to the EPR basis, any element |φkmn〉 may be obtained

by application of Pauli matrices on the state |φ000〉 = (|000〉+ |111〉) /
√
2:

|φkmn〉 =
(

σ̂k
z ⊗ σ̂m

x ⊗ σ̂n
x

)

|φ000〉 . (16)

Now Alice and Bob share three entangled qubits prepared in a GHZ state |φ000〉, two qubits

are held by Alice and the other one by Bob. Alice’s objective is again to send an unknown

qubit state |Ψ〉 to Bob. The initial state of the four qubits reads:

ρ̂′o = |Ψ〉〈Ψ|A ⊗ |φ000〉〈φ000|AAB ,

ρ̂′o =
1

2

1
∑

jkmn=0

αjα
∗
k |jmm〉〈knn|A ⊗ |m〉〈n|B . (17)

We can use the relation |kmn〉 =
∑

j(−1)jk |φj,k⊕m,k⊕n〉 /
√
2 to rewrite equation 17 in the



following way:

ρ̂′o =
1

4

1
∑

mn=0

Π̂′(A)
mnn ⊗

(

σ̂n
x σ̂

m
z |Ψ〉〈Ψ|B σ̂m

z σ̂
n
x

)

+ ρ̂′null. (18)

From the projector on Alice’s part we can see that instead of eight, there are only four possible

outputs for a measurement in the GHZ basis, and the desired operation to accomplish the

teleportation process can be described by:

T ′(Ĉ) = TrA

{

1
∑

mn=0

(

Π̂′
mnn ⊗ σ̂m

z σ̂
n
x

)

Ĉ
(

Π̂′
mnn ⊗ σ̂n

x σ̂
m
z

)

}

, (19)

It is straightforward to show that T ′(ρ̂′o) = |Ψ〉〈Ψ|B, as expected.

As in the previous case, before the teleportation protocol takes process, we consider bit-flip

noise acting on all Alice’s qubits under a weak regime. Thus we have ρ̂′o → ˆ̺′:

ˆ̺′ = (1− 3p)ρ̂′o + p
{

(

σ̂x ⊗ 1̂⊗ 1̂
)

ρ̂′o
(

σ̂x ⊗ 1̂⊗ 1̂
)

+
(

1̂⊗ σ̂x ⊗ 1̂
)

ρ̂′o
(

1̂⊗ σ̂x ⊗ 1̂
)

+

+
(

1̂⊗ 1̂⊗ σ̂x
)

ρ̂′o
(

1̂⊗ 1̂⊗ σ̂x
)

}

+O(p2)f ′(ρ̂′o).

In this case we take into account the following relations: σ̂j
x⊗1̂⊗1̂ |φk,m,n〉 = (−1)jk |φk,m⊕j,n⊕j〉,

1̂ ⊗ σ̂j
x ⊗ 1̂ |φk,m,n〉 = |φk,m⊕j,n〉 and 1̂ ⊗ 1̂ ⊗ σ̂j

x |φk,m,n〉 = |φk,m,n⊕j〉. Substituting, we

have:

ˆ̺′ = (1−3p)ρ̂′o+
p

4

1
∑

mn=0

(

Π̂
′(A)
m,n⊕1,n⊕1 + Π̂

′(A)
m,n⊕1,n + Π̂

′(A)
m,n,n⊕1

)

⊗
(

σ̂n
x σ̂

m
z |Ψ〉〈Ψ|B σ̂m

z σ̂
n
x

)

+ ˆ̺′null.

Here we can find a new element: while in the ideal case we would only get four out-

puts, due to the incidence of noise we have additionally four measurement results, say:

{|φ001〉 , |φ010〉 , |φ101〉 , |φ110〉} and even though we cannot proceed as in the traditional error-

syndrome, because here we can only determine the cases in which noise has affected one of

the GHZ qubits in Alice, but we are not capable of identify on which specifically. However we

can take advantage of this partial knowledge to perform a post-selection during the protocol:

discarding Bob’s qubits whenever “undesired” outputs are obtained.



Following this process and performing the proper renormalization, the final state reads:

ˆ̺F =
1− 3p

1− 2p
|Ψ〉〈Ψ|+ p

1− 2p
σ̂x |Ψ〉〈Ψ| σ̂x, (20)

which is always better than the result obtained in the protocol using EPR states, (eq. 13)

under a weak-noise regime.

B. Superdense Coding

Here we analyze the protocol of superdense coding, theoretically proposed in [10] and experi-

mentally implemented in [26], whose importance lies on its capability to reach a compression

factor of 2 per message. The scenario consists on two parts: Alice (the sender), sharing an

EPR state |ψ00〉 with Bob (the receiver).

Through the application of the operations σ̂a2
x σ̂

a1
z , Alice encodes a two bit message (a1, a2) on

her qubit which is afterwards physically sent to Bob. The receiver (now holding both qubits)

performs a measurement in the EPR basis and recovers the original message according to

his output: |ψa1,a2〉.

If nevertheless before Bob’s measurement the system is affected by bit-flip noise, then under

the regime of weak noise, the resulting state is given by:

ˆ̺ = (1− 2p)Π̂a1,a2 + 2pΠ̂a1,a2⊕1, (21)

thus only a fraction of 1 − 2p outputs will lead to a proper interpretation of the original

message.

It is possible to think on a different procedure to carry out this protocol. Assume that Alice

and Bob share a GHZ state |φ000〉ABB instead of an EPR state. Alice encodes her message in

the same way as before and sends her qubit to Bob who performs a measurement in the GHZ

basis. He recovers Alice’s string by associating the output |φk,m,n〉 with the string (k,m).

Notice that, so far, the outputs with m 6= n are not possible, however when the action

of noise on the system is considered (before Bob’s measurement), the system is described



by:

ˆ̺′ = (1− 3p)Π̂′
a1,a2,a2

+ p
(

Π̂′
a1,a2⊕1,a2⊕1 + Π̂′

a1,a2⊕1,a2
+ Π̂′

a1,a2,a2⊕1

)

. (22)

In this case, after performing a measurement in the GHZ basis, Bob will receive a fraction

of 1 − 3p of correct signal. However he is capable of detecting that a flip has happened by

observing the detection of “disallowed outputs” (Π̂′
k,m,n for m 6= n). She can thus discard

those results and increase to a rate of (1 − 3p)/(1 − 2p) accurate strings, which is always

better than 1− 2p in the weak noise regime.

IV. GENERAL PROTOCOL

A. Any protocol involving EPR pairs may be performed using GHZ states

In this section our goal is to demonstrate that any protocol involving an EPR pair and

measurements can be performed using a GHZ state and measurements. With this result we

show that, by using GHZ configurations it is possible to detect the presence of bit-flip (or

phase-flip) noise and reach a higher precision by post-selection.

Assume we are given a task to be performed using an EPR pair (|ψmn〉) and an arbitrary

subsystem described by the density operator ρ̂S ∈ B(HS). The initial state of the system as

a whole reads:

ρ̂o = ρ̂S ⊗ Π̂mn, (23)

for Π̂mn ∈ B(H1 ⊗ H2), with Hj the Hilbert space associated to the qubits of the EPR

state.

In order to perform the task in question, eventually some operation T will be performed on

ρ̂o transforming into a new state ρ̂f . Hence at some point we must have:

T (ρ̂o) = ρ̂f . (24)



In general such a transformation may be written as:

T (σ̂) = TrHQ

(

m′

∑

k=1

V̂kσ̂V̂
†
k

)

Γ−1
m′ , (25)

where Γm′ = Tr
{

∑m′

k=1 V̂kσ̂V̂
†
k

}

and
∑m

k V̂
†
k V̂k = 1̂, for a given m′ ≤ m, under an arbitrary

Hilbert space HQ satisfying: HQ ⊂ HS ⊗H1 ⊗H2.

We can always add an extra qubit ρ̂anc = |0〉〈0| ∈ B(Hanc), sometimes called ancila and

define the extended state ρ̂′o as follows:

ρ̂′o = (1̂S ⊗ 1̂1 ⊗ Ĉnot)ρ̂o ⊗ ρ̂anc(1̂S ⊗ 1̂1 ⊗ Ĉ†
not) = ρ̂S ⊗ Π̂′

mnn, (26)

where Ĉnot represents the CNOT operation acting on H2 ⊗Hanc.

The transformation defined previously (eq. 25) may be generalized to the extended Hilbert

space by introducing the operators V̂ ′
k ∈ B(HS ⊗H0⊗H1⊗Hanc) in the following way:

V̂ ′
k = (V̂k ⊗ 1̂anc)(1̂S ⊗ 1̂1 ⊗ Ĉ†

not), (27)

likewise, the transformation T ′ holds:

T ′(σ̂) = TrHQ′

(

m′

∑

k=1

V̂ ′
kσ̂V̂

′†
k

)

, (28)

which implies that

T (ρ̂o) = T ′(ρ̂′o) = ρ̂f . (29)

In conclusion, any task making use of EPR pairs may be performed using the same number

of GHZ states.



B. Noise detection

Now we focus on tasks using EPR states that involve detecting some elements of an EPR

basis {|ψmn〉} i.e. T is of the form:

T (ρ̂) = TrHQ

{

∑

mn

(

Ûmn ⊗ Π̂mn

)

ρ̂
(

Û †
mn ⊗ Π̂mn

)

}

(30)

where Ûmn are arbitrary unitary matrices. It is important to remark that we assume the

measurement acting on at least one of the qubits in the EPR state.

Consider the incidence of bit-flip noise on the qubits involved in the measurement. Under

the weak noise regime we have:

T (ˆ̺o) = (1− 2p) TrHQ

{

1
∑

mn=0

(

Ûmn ⊗ Π̂mn

)

ρ̂o

(

Û †
mn ⊗ Π̂mn

)

}

+

+ 2pTrHQ

{

1
∑

mn=0

(

Ûmn ⊗ Π̂m,n⊕1

)

ρ̂o

(

Û †
mn ⊗ Π̂m,n⊕1

)

}

, (31)

T (ˆ̺o) = (1− 2p)ρ̂f + 2pTrHQ

{

1
∑

mn=0

(

Ûmn ⊗ Π̂m,n⊕1

)

ρ̂o

(

Û †
mn ⊗ Π̂m,n⊕1

)

}

. (32)

As we can see, the effect of bit-flip noise on the qubits involved in the measurement is to

mix the labels, and in this way decrease the precision of the operation.

Following the results of the last section we are able to modify the transformation above in

order to replace EPR states by GHZ states. Thus it is straightforward to show that the

corresponding operation T ′ is:

T ′(Ĉ) = TrHQ′

{

1
∑

mn=0

(

Ûmn ⊗ Π̂′
mnn

)

Ĉ
(

Û †
mn ⊗ Π̂′

mnn

)

}

. (33)



On the other hand, if we look to the GHZ version of the protocol, we have:

T ′(ˆ̺′o) = (1− 3p) TrHQ′

{

1
∑

mn=0

(

Ûmn ⊗ Π̂′
mnn

)

ρ̂′o

(

Û †
mn ⊗ Π̂′

mnn

)

}

+

+ pTrHQ′

{

1
∑

mn=0

(

Ûmn ⊗ Π̂′
m,n⊕1,n⊕1

)

ρ̂′o

(

Û †
mn ⊗ Π̂′

m,n⊕1,n⊕1

)

}

+

+ pTrHQ′

{

1
∑

mn=0

(

Ûmn ⊗ Π̂′
m,n⊕1,n

)

ρ̂′o

(

Û †
mn ⊗ Π̂′

m,n⊕1,n

)

}

+

+ pTrHQ′

{

1
∑

mn=0

(

Ûmn ⊗ Π̂′
m,n,n⊕1

)

ρ̂′o

(

Û †
mn ⊗ Π̂′

m,n,n⊕1

)

}

. (34)

It is clear by the above equation that the effect of noise in this scenario is more rich. We

observe as in the EPR protocol a mixing of the detections labels, however it happens in a

smaller proportion, and to compensate that effect, new outcomes become possible. As those

did not suppose to appear, we can always perform a post-selection by eliminating those

outcomes. This can be done in the generic operation T̃ ′:

T̃ ′(ˆ̺′o) = Γ ·
{

(1− 3p) TrHQ′

[

1
∑

mn=0

(

Ûmn ⊗ Π̂′
mnn

)

ρ̂′o

(

Û †
mn ⊗ Π̂′

mnn

)

]

+

+ pTrHQ′

[

1
∑

mn=0

(

Ûmn ⊗ Π̂′
m,n⊕1,n⊕1

)

ρ̂′o

(

Û †
mn ⊗ Π̂′

m,n⊕1,n⊕1

)

]}

, (35)

where Γ is a normalization factor, depends on the unexpected new outputs and is equal to

1− 2p.

V. GENERAL PROTOCOL USING N-PARTITE GHZ STATES

A natural point remaining to be explored in this work is whether the improvement in the

protocols observed here is only a manifestation of a non-ideal version of some error-correction

scheme, whose imperfection might arise from the low size of the employed ancilla (0.5 qubits

of the ancilla per qubit in the original protocol). This can be verified by generalizing this

protocol to the case where more than one qubit is attached to the original system, i.e.,



replacing EPR pairs and measurements by N -partite GHZ states and measurements, with

N arbitrary. Such a generalization is straightforward, first define the N -partite GHZ state

as follows:

|φ~µ〉 =
1√
2

1
∑

j=0

(−1)jµ0 |j, j ⊕ µ1, . . . , j ⊕ µN−1〉 , (36)

where, ~µ = (µ0, . . . , µN−1), with µj ∈ {0, 1}. In analogy to the previous cases, this state may

also be obtained from local application of Pauli operators on the state |φ0,...,0〉, as:

|φ~µ〉 = (σ̂µ0

z ⊗ σ̂µ1

x ⊗ · · · ⊗ σ̂µN−1

x ) |φ0,...,0〉 . (37)

In the same way, the projector reads:

Π̂′′
~µ = |φ~µ〉〈φ~µ| . (38)

Thus, the operation defined in equation 33 in this case holds:

T ′′(Ĉ) = TrHQ′′

{

1
∑

mn=0

(

Ûmn ⊗ Π̂′′
m,n,n,...,n

)

Ĉ
(

Û †
mn ⊗ Π̂′′

m,n,n,...,n

)

}

. (39)

In the presence of bit-flip noise, under the weak-noise regime, we have:

T̃ ′′(ˆ̺′′o) = Γ ·
{

(1−Np) TrHQ′′

[

1
∑

mn=0

(

Ûmn ⊗ Π̂′′
m,n,...,n

)

ρ̂′o

(

Û †
mn ⊗ Π̂′′

m,n,...,n

)

]

+

+ pTrHQ′′

[

1
∑

mn=0

(

Ûmn ⊗ Π̂′′
m,n⊕1,n⊕1,...,n⊕1

)

ρ̂′′o

(

Û †
mn ⊗ Π̂′′

m,n⊕1,n⊕1,...,n⊕1

)

]

+

+ pTrHQ′′

[

1
∑

mn=0

(

Ûmn ⊗ Π̂′′
m,n⊕1,n,...,n

)

ρ̂′′o

(

Û †
mn ⊗ Π̂′′

m,n⊕1,n,...,n

)

]

+

+ · · · +

+ pTrHQ′′

[

1
∑

mn=0

(

Ûmn ⊗ Π̂′′
m,n,n,...,n⊕1

)

ρ̂′′o

(

Û †
mn ⊗ Π̂′′

m,n,n,...,n⊕1

)

]}

. (40)



Therefore, after post-selection we get an efficiency of (1 − Np)/ [1− (N − 1)p]. Now it is

natural to ask whether increasing the number of parties above N = 3 enhances the perfor-

mance of the protocol, i.e. for what values of N∗ and arbitrary p, the following condition

holds:
1−N∗p

1− (N∗ − 1)p
>

1− 3p

1− 2p
,

however this is only possible for N∗ < 3. In this way we have shown that the best strategy

is to employ three-partite GHZ states and measurements.

VI. DISCUSSION AND CONCLUSION

We presented a protocol for error detection in some entanglement-based tasks, in which the

key ingredient is the replacement of EPR pairs by GHZ states. First, we showed its perfor-

mance in two well known tasks: teleportation and superdense coding. Then we considered

a general task under the effect of weak bit-flip noise, and we have demonstrated that it is

alway possible to increase its efficiency by using our protocol. Additionally, this process is

less expensive than many other protocols, as it only demands one ancillary qubit per pair

of qubits in the system. Nonetheless it is important to remark that such an enhancement

is not for free, in fact, measurements in the EPR basis must be replaced by measurements

in the GHZ basis. Moreover, in the form we have presented, the protocol works only under

bit-flip noise, and although it is possible to conceive an adjustement in order to work with

phase-flip noise through a simple local change of basis, it will never work with both kinds

of noise. Furthermore we have proven that our proposal is not equivalent to any QEC by

showing that it cannot be improved by increasing the size of the ancilla.

It is a curious fact that the replacement of an EPR pair by a GHZ state as a resource leads

to an increase in the precision of some task that may be performed between two remote

parts, for instance the protocol of teleportation. That because if we consider the bipartition

involved in this protocol, the three-partite GHZ and the EPR state have the same entropy of

entanglement [6] and thus they should represent the same resource with the same potential

(which should be the maximum possible) for such a task.



An interesting question is whether a similar process can be performed for tasks demanding

a higher number of entangled parts using another relevant classes of quantum states, such

as cluster states, for instance.
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Márcio M. Cunha is supported by FACEPE-FULBRIGHT BCT 0060-1.05/18 grant. Finan-

cial support from Conselho Nacional de Desenvolvimento Cient́ıfico e Tecnológico (CNPq)

through its program INCT-IQ, Coordenação de Aperfeiçoamento de Pessoal de Ńıvel Supe-
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