Skip to main content
Log in

Analysing nonlocality robustness in multiqubit systems under noisy conditions and weak measurements

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We analyse robustness of nonlocal correlation in multiqubit entangled states—three- and four-qubit GHZ class and three-qubit W class—useful for quantum information and computation, under noisy conditions and weak measurements. For this, we use a Bell-type inequality whose violation is considered as a signature for confirming the presence of genuine nonlocal correlations between the qubits. In order to demonstrate the effects of noise and weak measurements, an analytical relation is established between the maximum expectation value of three and four-qubit Svetlichny operators for the systems under study, noise parameter and strengths of weak measurements. Our results show that for a set of three- and four-qubit GHZ class states, maximal nonlocality does not coincide with maximum entanglement for a given noise parameter and a certain range of weak measurement parameter. Our analysis further shows an excellent agreement between the analytical and numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Einstein, A.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)

    ADS  MATH  Google Scholar 

  2. Bohm, D., Aharanov, Y.: Discussion of experimental proof for the paradox of Einstein, Rosen, and Podolsky. Phys. Rev. 108, 1070–1076 (1957)

    ADS  MathSciNet  Google Scholar 

  3. Bell, J.S.: On the Einstein Podolsky Rosen paradox. Physics 1, 195–200 (1964)

    MathSciNet  Google Scholar 

  4. Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969)

    ADS  MATH  Google Scholar 

  5. Gisin, N.: Bell’s inequality holds for all non-product states. Phys. Lett. A 154, 201–202 (1991)

    ADS  MathSciNet  Google Scholar 

  6. Peres, A.: Incompatible results of quantum measurements. Phys. Lett. A 151, 107–108 (1990)

    ADS  MathSciNet  Google Scholar 

  7. Mermin, N.D.: What’s wrong with these elements of reality? Phys. Today 43, 9–11 (1990)

    Google Scholar 

  8. Home, D., Selleri, F.: Bells theorem and the EPR paradox. Riv. Nuovo Cimento 14, 1 (1991)

    MathSciNet  Google Scholar 

  9. Batle, J., Plastino, A.R., Casas, M., Plastino, A.: Conditional q-entropies and quantum separability: a numerical exploration. J. Phys. A Math. Gen. 35, 10311 (2002)

    ADS  MathSciNet  MATH  Google Scholar 

  10. Batle, J., Casas, M.: Nonlocality and entanglement in qubit systems. J. Phys. A Math. Gen. 44, 445304 (2011)

    ADS  MathSciNet  MATH  Google Scholar 

  11. Ozdemir, S.K., Bartkiewicz, K., Liu, Y.X., Miranowicz, A.: Teleportation of qubit states through dissipative channels: conditions for surpassing the no-cloning limit. Phys. Rev. A 76, 042325 (2007)

    ADS  Google Scholar 

  12. Bartkiewicz, K., Lemr, K., Cernoch, A., Miranowicz, A.: Bell nonlocality and fully entangled fraction measured in an entanglement-swapping device without quantum state tomography. Phys. Rev. A 95, 030102 (2017)

    ADS  Google Scholar 

  13. Khalfin, L., Tsirelson, B.: Quantum/classical correspondence in the light of Bell’s inequalities found. Physics 22, 879–948 (1992)

    MathSciNet  Google Scholar 

  14. Mermin, N.D.: Hidden variables and the two theorems of John Bell. Rev. Mod. Phys. 65, 803–815 (1993)

    ADS  MathSciNet  Google Scholar 

  15. Horodecki, R., Horodecki, M., Horodecki, P.: Teleportation, Bell’s inequalities and inseparability. Phys. Lett. A 222, 21–25 (1996)

    ADS  MathSciNet  MATH  Google Scholar 

  16. Zeilinger, A.: Experiment and the foundations of quantum physics. Rev. Mod. Phys. 71, S288–S297 (1999)

    Google Scholar 

  17. Genovese, M.: Research on hidden variable theories: a review of recent progresses. Phys. Rep. 413, 319–396 (2005)

    ADS  MathSciNet  Google Scholar 

  18. Brunner, N., et al.: Bell nonlocality. Rev. Mod. Phys. 86, 419–478 (2014)

    ADS  Google Scholar 

  19. Tittel, W., Brendel, J., Zbinden, H., Gisin, N.: Violation of Bell inequalities by photons more than 10 km apart. Phys. Rev. Lett. 81, 3563–3566 (1998)

    ADS  Google Scholar 

  20. Mair, A., Vaziri, A., Weihs, G., Zeilinger, A.: Entanglement of the orbital angular momentum states of photons. Nature 412, 313–316 (2001)

    ADS  Google Scholar 

  21. Kwiat, P.: New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337–4341 (1995)

    ADS  Google Scholar 

  22. Kwiat, P.: Hyper-entangled states. J. Mod. Opt. 44, 2173–2184 (1997)

    ADS  MathSciNet  MATH  Google Scholar 

  23. Babichev, S.A., Appel, J., Lvovsky, A.I.: Homodyne tomography characterization and nonlocality of a dual-mode optical qubit. Phys. Rev. Lett. 92, 193601 (2004)

    ADS  Google Scholar 

  24. Thew, R., Acn, A., Zbinden, H., Gisin, N.: Bell-type test of energy-time entangled qutrits. Phys. Rev. Lett. 93, 010503 (2004)

    ADS  MathSciNet  Google Scholar 

  25. Bennett, C.H., Wiesner, S.: Communication via one-and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)

    ADS  MathSciNet  MATH  Google Scholar 

  26. Bennett, C.H.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    ADS  MathSciNet  MATH  Google Scholar 

  27. Bostrom, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)

    ADS  Google Scholar 

  28. Gisin, N., et al.: Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)

    ADS  MATH  Google Scholar 

  29. Zukowski, M., Zeilinger, A., Horne, M.A., Eckert, A.: “Event-ready-detectors” Bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287–4290 (1993)

    ADS  Google Scholar 

  30. Knill, E., Laflamme, R.: Power of one bit of quantum information. Phys. Rev. Lett. 81, 5672–5675 (1998)

    ADS  Google Scholar 

  31. Luo, S.: Quantum discord for two-qubit systems. Phys. Rev. A 77, 042303 (2008)

    ADS  Google Scholar 

  32. Datta, A., Shaji, A., Caves, C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100, 050502 (2008)

    ADS  Google Scholar 

  33. Dakic, B., et al.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)

    ADS  MATH  Google Scholar 

  34. Svetlichny, G.: Distinguishing three-body from two-body nonseparability by a Bell-type inequality. Phys. Rev. D 35, 3066–3069 (1987)

    ADS  MathSciNet  Google Scholar 

  35. Seevinck, M., Svetlichny, G.: Bell-type inequalities for partial separability in N-particle systems and quantum mechanical violations. Phys. Rev. Lett. 89, 060401 (2002)

    ADS  MathSciNet  MATH  Google Scholar 

  36. Collins, D., Gisin, N., Linden, N., Massar, S., Popescu, S.: Bell inequalities for arbitrarily high-dimensional systems. Phys. Rev. Lett. 88, 040404 (2002)

    ADS  MathSciNet  MATH  Google Scholar 

  37. Bancal, J.D., Gisin, N., Pironio, S.: Looking for symmetric Bell inequalities. J. Phys. A 43, 385303 (2010)

    MathSciNet  MATH  Google Scholar 

  38. Barrett, J., Colbeck, R., Kent, A.: Memory attacks on device-independent quantum cryptography. Phys. Rev. Lett. 110, 010503 (2013)

    ADS  Google Scholar 

  39. Ghose, S., Debnath, S., Sinclair, N., Kabra, A., Stock, R.: Multiqubit nonlocality in families of 3-and 4-qubit entangled states. J. Phys. A Math. Theor. 43, 445301 (2010)

    MathSciNet  MATH  Google Scholar 

  40. Pan, J.W., Bouwmeester, D., Daniell, M., Weinfurter, H., Zeilinger, A.: Experimental test of quantum nonlocality in three-photon Greenberger–Horne–Zeilinger entanglement. Nature 403, 515–519 (2000)

    ADS  MATH  Google Scholar 

  41. Eibl, M., Kiesel, N., Bourennane, M., Kurtsiefer, C., Weinfurter, H.: Experimental realization of a three-qubit entangled W state. Phys. Rev. Lett. 92, 077901 (2004)

    ADS  Google Scholar 

  42. Zhao, Z., Yang, T., Chen, Y.-A., Zhang, A.-N., Zukowski, M., Pan, J.W.: Experimental violation of local realism by four-photon Greenberger–Horne–Zeilinger entanglement. Phys. Rev. Lett. 91, 180401 (2003)

    ADS  Google Scholar 

  43. Eibl, M., Gaertner, S., Bourennane, M., Kurtsiefer, C., Zukowski, M., Weinfurter, H.: Experimental observation of four-photon entanglement from parametric down-conversion. Phys. Rev. Lett. 90, 200403 (2003)

    ADS  MATH  Google Scholar 

  44. Walther, P., Aspelmeyer, M., Resch, K.J., Zeilinger, A.: Experimental violation of a cluster state Bell inequality. Phys. Rev. Lett. 95, 020403 (2005)

    ADS  Google Scholar 

  45. Lavoie, J., Kaltenbaek, R., Resch, K.: Experimental violation of Svetlichny’s inequality. New J. Phys. 11, 073051 (2009)

    ADS  Google Scholar 

  46. Zhao, J.Q., Cao, L.Z., Wang, X.Q., Lu, H.X.: Experimental investigation of tripartite entanglement and nonlocality in three-qubit generalized Greenberger–Horne–Zeilinger states. Phys. Lett. A 376, 2377–2380 (2012)

    ADS  Google Scholar 

  47. Collins, D., Gisin, N., Popescu, S., Roberts, D., Scarani, V.: Bell-type inequalities to detect true \(n\)-body nonseparability. Phys. Rev. Lett. 88, 170405 (2002)

    ADS  Google Scholar 

  48. Cereceda, J.L.: Three-particle entanglement versus three-particle nonlocality. Phys. Rev. A 66, 024102 (2002)

    ADS  MathSciNet  Google Scholar 

  49. Ghose, S., Sinclair, N., Debnath, S., Rungta, P., Stock, R.: Tripartite entanglement versus tripartite nonlocality in three-qubit Greenberger–Horne–Zeilinger-class states. Phys. Rev. Lett. 102, 250404 (2009)

    ADS  Google Scholar 

  50. Lu, H.X., Zhao, J.Q., Wang, X.Q., Cao, L.Z.: Experimental demonstration of tripartite entanglement versus tripartite nonlocality in three-qubit Greenberger–Horne–Zeilinger-class states. Phys. Rev. A 84, 012111 (2011)

    ADS  Google Scholar 

  51. Zhang, C.: Experimental test of genuine multipartite nonlocality under the no-signalling principle. Sci. Rep. 6, 39327 (2016). https://doi.org/10.1038/srep39327

    ADS  Google Scholar 

  52. Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Mod. Phys. Rev. 75, 715–775 (2003)

    ADS  MathSciNet  MATH  Google Scholar 

  53. Carvalho, A.R.R., Mintert, F., Buchleitner, A.: Decoherence and multipartite entanglement. Phys. Rev. Lett. 93, 230501 (2004)

    ADS  Google Scholar 

  54. Hein, M., Dr, W., Briegel, H.J.: Entanglement properties of multipartite entangled states under the influence of decoherence. Phys. Rev. A 71, 032350 (2005)

    ADS  Google Scholar 

  55. Mintert, F., Ku, M., Buchleitner, A.: Concurrence of mixed multipartite quantum states. Phys. Rev. Lett. 95, 260502 (2005)

    ADS  MathSciNet  Google Scholar 

  56. Bandyopadhyay, S., Lidar, D.A.: Robustness of multiqubit entanglement in the independent decoherence model. Phys. Rev. A 72, 042339 (2005)

    ADS  Google Scholar 

  57. Almeida, M.P., et al.: Environment-induced sudden death of entanglement. Science 316, 579–582 (2007)

    ADS  Google Scholar 

  58. Frowis, F., Dr, W.: Stable macroscopic quantum superpositions. Phys. Rev. Lett. 106, 110402 (2011)

    ADS  Google Scholar 

  59. Mahdiana, M., Yousefjani, R., Salimi, S.: Quantum discord evolution of three-qubit states under noisy channels. Eur. Phys. J. D 66, 133 (2012)

    ADS  Google Scholar 

  60. Ramzan, M.: Decoherence dynamics of discord for multipartite quantum systems. Eur. Phys. J. D 67, 170 (2013)

    ADS  Google Scholar 

  61. Tchoffo, M.: Quantum correlations dynamics and decoherence of a three-qubit system subject to classical environmental noise. Eur. Phys. J. Plus 131, 380 (2016)

    Google Scholar 

  62. Acin, A., Durt, T., Gisin, N., Latorre, J.I.: Quantum nonlocality in two three-level systems. Phys. Rev. A 65, 052325 (2002)

    ADS  Google Scholar 

  63. Methot, A.A., Scarani, V.: An anomaly of non-locality. Quantum Inf. Comput. 7, 157–170 (2007)

    MathSciNet  MATH  Google Scholar 

  64. Fonseca, E.A., Parisio, F.: Measure of nonlocality which is maximal for maximally entangled qutrits. Phys. Rev. A 92, 030101 (2015)

    ADS  Google Scholar 

  65. Lee, S.W., Jaksch, D.: Maximal violation of tight Bell inequalities for maximal high-dimensional entanglement. Phys. Rev. A 80, 010103(R) (2009)

    ADS  Google Scholar 

  66. Gunge, M., Palazuelos, C.: Large violation of Bell inequalities with low entanglement. Commun. Math. Phys. 306, 695 (2011)

    ADS  MathSciNet  MATH  Google Scholar 

  67. Hiesmayr, B.C.: Nonlocality and entanglement in a strange system. Eur. Phys. J. C 50, 73–79 (2007)

    ADS  Google Scholar 

  68. Vidick, T., Wehner, S.: More nonlocality with less entanglement. Phys. Rev. A 83, 052310 (2011)

    ADS  Google Scholar 

  69. Ji, S.W., Lee, J., Lim, J., Nagata, K., Lee, H.W.: Multisetting Bell inequality for qudits. Phys. Rev. A 78, 052103 (2008)

    ADS  Google Scholar 

  70. Brunner, N.: New perspectives on quantum correlations. Phys. E 42, 354–358 (2010)

    Google Scholar 

  71. de Rosier, A., Gruca, J., Parisio, F., Vrtesi, T., Laskowski, W.: Multipartite nonlocality and random measurements. Phys. Rev. A 96, 012101 (2017)

    ADS  Google Scholar 

  72. Chaves, R., Acn, A., Aolita, L., Cavalcanti, D.: Detecting nonlocality of noisy multipartite states with the Clauser–Horne–Shimony–Holt inequality. Phys. Rev. A 89, 042106 (2014)

    ADS  Google Scholar 

  73. Laskowski, W., Vertesi, T., Wiesniak, M.: Highly noise resistant multiqubit quantum correlations. J. Phys. A 48, 465301 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  74. Sohbi, A., Zaquine, I., Diamanti, E., Markham, D.: Decoherence effects on the nonlocality of symmetric states. Phys. Rev. A 91, 022101 (2015)

    ADS  MathSciNet  Google Scholar 

  75. Divianszky, P., Trencsenyi, R., Bene, E., Vertesi, T.: Bounding the persistency of the nonlocality of W states. Phys. Rev. A 93, 042113 (2016)

    ADS  Google Scholar 

  76. Bennett, C.H., et al.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722–725 (1996)

    ADS  Google Scholar 

  77. Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046–2052 (1996)

    ADS  Google Scholar 

  78. Pan, J.W., Gasparoni, S., Ursin, R., Weihs, G., Zeilinger, A.: Experimental entanglement purification of arbitrary unknown states. Nature 423, 417–422 (2003)

    ADS  Google Scholar 

  79. Kwiat, P.G., Berglund, A.J., Alterpeter, J.B., White, A.G.: Experimental verification of decoherence-free subspaces. Science 290, 498–501 (2000)

    ADS  Google Scholar 

  80. Lidar, D.A., Chuang, I.L., Whaley, K.B.: Decoherence-free subspaces for quantum computation. Phys. Rev. Lett. 81, 2594–2597 (1998)

    ADS  Google Scholar 

  81. Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493–R2496 (1995)

    ADS  Google Scholar 

  82. Calderbank, A.R., Shor, P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 54, 1098–1105 (1996)

    ADS  Google Scholar 

  83. Knill, E., Laflamme, R.: Theory of quantum error-correcting codes. Phys. Rev. A 55, 900–911 (1997)

    ADS  MathSciNet  Google Scholar 

  84. Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793–797 (1996)

    ADS  MathSciNet  MATH  Google Scholar 

  85. Facchi, P., Lidar, D.A., Pascazio, S.: Unification of dynamical decoupling and the quantum Zeno effect. Phys. Rev. A 69, 032314 (2004)

    ADS  Google Scholar 

  86. Maniscalco, S., Francica, F., Zaffino, R.L., Gullo, N.L., Plastina, F.: Protecting entanglement via the quantum Zeno effect. Phys. Rev. Lett. 100, 090503 (2008)

    ADS  MathSciNet  MATH  Google Scholar 

  87. Korotkov, A.N., Keane, K.: Decoherence suppression by quantum measurement reversal. Phys. Rev. A 81, 040103 (2010)

    ADS  Google Scholar 

  88. Lee, J.C., et al.: Experimental demonstration of decoherence suppression via quantum measurement reversal. Opt. Express 19, 16309–16316 (2011)

    ADS  Google Scholar 

  89. Kim, Y.S.: Protecting entanglement from decoherence using weak measurement and quantum measurement reversal. Nat. Phys. 8, 117–120 (2012)

    Google Scholar 

  90. Kim, Y.S., Cho, Y.W., Ra, Y.S., Kim, Y.H.: Reversing the weak quantum measurement for a photonic qubit. Opt. Express 17, 11978–11985 (2009)

    ADS  Google Scholar 

  91. Korotkov, A.N., Jordan, A.N.: Undoing a weak quantum measurement of a solid-state qubit. Phys. Rev. Lett. 97, 166805 (2006)

    ADS  Google Scholar 

  92. Xiao, X., Li, Y.L.: Protecting qutrit-qutrit entanglement by weak measurement and reversal. Eur. Phys. J. D 67, 204 (2013)

    ADS  Google Scholar 

  93. Cheong, Y.W., Lee, S.W.: Balance between information gain and reversibility in weak measurement. Phys. Rev. Lett. 109, 150402 (2012)

    ADS  Google Scholar 

  94. Sun, Q., Al-Amri, M., Suhail Zubairy, M.: Reversing the weak measurement of an arbitrary field with finite photon number. Phys. Rev. A 80, 033838 (2009)

    ADS  Google Scholar 

  95. Paraoanu, G.S.: Interaction-free measurements with superconducting qubits. Phys. Rev. Lett. 97, 180406 (2006)

    ADS  Google Scholar 

  96. Bellomo, B., Lo Franco, R., Maniscalco, S., Compagno, G.: Entanglement trapping in structured environments. Phys. Rev. A 78, 060302(R) (2008)

    ADS  Google Scholar 

  97. Barreiro, J.T., et al.: Experimental multiparticle entanglement dynamics induced by decoherence. Nat. Phys. 6, 943–946 (2010)

    Google Scholar 

  98. Lo Franco, R., Bellomo, B., Andersson, E., Compagno, G.: Revival of quantum correlations without system-environment back-action. Phys. Rev. A 85, 032318 (2012)

    ADS  Google Scholar 

  99. Katz, N., et al.: Reversal of the weak measurement of a quantum state in a superconducting phase qubit. Phys. Rev. Lett. 101, 200401 (2008)

    ADS  Google Scholar 

  100. Sun, Q., Al-Amri, M., Davidovich, L., Zubairy, M.S.: Reversing entanglement change by a weak measurement. Phys. Rev. A 82, 052323 (2010)

    ADS  Google Scholar 

  101. Paraoanu, G.S.: Extraction of information from a single quantum. Phys. Rev. A 83, 044101 (2011)

    ADS  Google Scholar 

  102. Singh, P., Kumar, A.: Correlations, nonlocality and usefulness of an efficient class of two-qubit mixed entangled states. Z. Naturforsch. A 73, 191–206 (2018)

    ADS  Google Scholar 

  103. Xu, X.Y., et al.: Phase estimation with weak measurement using a white light source. Phys. Rev. Lett. 111, 033604 (2013)

    ADS  Google Scholar 

  104. Katz, N., et al.: Coherent state evolution in a superconducting qubit from partial-collapse measurement. Science 312, 1498–1500 (2006)

    ADS  Google Scholar 

  105. Groen, J.P., et al.: Partial-measurement backaction and nonclassical weak values in a superconducting circuit. Phys. Rev. Lett. 111, 090506 (2013)

    ADS  Google Scholar 

  106. Dur, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000)

    ADS  MathSciNet  Google Scholar 

  107. Agarwal, P., Pati, A.K.: Perfect teleportation and superdense coding with W states. Phys. Rev. A 74, 062320 (2006)

    ADS  Google Scholar 

  108. Adhikari, S., Gangopadhyay, S.: A study of the efficiency of the class of W-states as a quantum channel. IJTP 48, 403–408 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  109. Singh, P., Adhikari, S., Kumar, A.: Usefulness of multiqubit W-type states in quantum information processing. JTEP 123, 572–581 (2016)

    Google Scholar 

  110. Laflamme, R., Knill, E., Zurek, W., Catasti, P., Mariappan, S.V.S.: NMR Greenberger–Horne–Zeilinger states. Philos. Trans. R. Soc. A 356, 1941–1948 (1998)

    ADS  MathSciNet  Google Scholar 

  111. Bouwmeester, D., Pan, J.W., Daniell, M., Weinfurter, H., Zeilinger, A.: Observation of three-photon Greenberger–Horne–Zeilinger entanglement. Phys. Rev. Lett. 82, 1345–1349 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  112. Pan, J.W., Daniell, M., Gasparoni, S., Weihs, G., Zeilinger, A.: Experimental demonstration of four-photon entanglement and high-fidelity teleportation. Phys. Rev. Lett. 86, 4435–4438 (2001)

    ADS  Google Scholar 

  113. Dogra, S., Dorai, K.: Arvind: experimental construction of generic three-qubit states and their reconstruction from two-party reduced states on an NMR quantum information processor. Phys. Rev. A 91, 022312 (2015)

    ADS  Google Scholar 

  114. Dong, L., et al.: Nearly deterministic preparation of the perfect W state with weak cross-Kerr nonlinearities. Phys. Rev. A 93, 012308 (2016)

    ADS  Google Scholar 

  115. Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000)

    ADS  Google Scholar 

  116. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)

    ADS  MATH  Google Scholar 

  117. Emary, C., Beenakker, C.W.J.: Relation between entanglement measures and Bell inequalities for three qubits. Phys. Rev. A 69, 032317 (2004)

    ADS  MathSciNet  Google Scholar 

  118. Carteret, H.A., Sudbery, A.: Local symmetry properties of pure three-qubit states. J. Phys. A 33, 4981 (2000)

    ADS  MathSciNet  MATH  Google Scholar 

  119. Gottesman, D., Chuang, I.L.: Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature 402, 390–393 (1999)

    ADS  Google Scholar 

  120. Raussendorf, R., Browne, D.E., Briegel, H.J.: Measurement-based quantum computation on cluster states. Phys. Rev. A 68, 022312 (2003)

    ADS  Google Scholar 

  121. Browne, D.E., Rudolf, T.: Resource-efficient linear optical quantum computation. Phys. Rev. Lett. 95, 010501 (2005)

    ADS  Google Scholar 

  122. Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  123. Lee, H., Lim, J., Yang, H.: Quantum direct communication with authentication. Phys. Rev. A 73, 042305 (2006)

    ADS  Google Scholar 

  124. Karlsson, A., Bourennane, M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A 58, 4394–4400 (1998)

    ADS  MathSciNet  Google Scholar 

  125. Shi, B.S., Tomita, A.: Teleportation of an unknown state by W state. Phys. Lett. A 296, 161–164 (2002)

    ADS  MathSciNet  MATH  Google Scholar 

  126. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  127. Mermin, N.D.: Extreme quantum entanglement in a superposition of macroscopically distinct states. Phys. Rev. Lett. 65, 1838–1840 (1990)

    ADS  MathSciNet  MATH  Google Scholar 

  128. Ajoy, A., Rungta, P.: Svetlichnys inequality and genuine tripartite nonlocality in three-qubit pure states. Phys. Rev. A 81, 052334 (2010)

    ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank MHRD and IIT Jodhpur for providing the research facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atul Kumar.

Appendix

Appendix

1.1 Maximization of the expectation value of the three-qubit Svetlichny operator for W states

For maximizing the value of Svetlichny operator in Eq. (34) described in Sec. V, we assume \(\phi _{i}=0\) [128], and then add the first four terms in Eq. (8) to get

$$\begin{aligned} \left\langle M \right\rangle= & {} \frac{1}{4}\left[ \left( - \Delta -C_{12}-C_{23}-C_{31}\right) \left\{ \cos \left( \theta _{a}+\theta _{b}+\theta _{c'}\right) \right. \right. \nonumber \\&\left. \left. +\,\cos \left( \theta _{a'}+\theta _{b}+\theta _{c}\right) +\cos \left( \theta _{a}+\theta _{b'}+\theta _{c}\right) -\cos \left( \theta _{a'}+\theta _{b'}+\theta _{c'}\right) \right\} \right. \nonumber \\&\left. +\left( -\, \Delta +C_{12}-C_{23}+C_{31}\right) \left\{ \cos \left( \theta _{a}+\theta _{b}-\theta _{c'}\right) \right. \right. \nonumber \\&\left. \left. +\,\cos \left( \theta _{a'}+\theta _{b}-\theta _{c}\right) +\cos \left( \theta _{a}+\theta _{b'}-\theta _{c}\right) -\cos \left( \theta _{a'}+\theta _{b'}-\theta _{c'}\right) \right\} \right. \nonumber \\&\left. + \left( -\,\Delta +C_{12}+C_{23}-C_{31}\right) \left\{ \cos \left( \theta _{a}-\theta _{b}+\theta _{c'}\right) \right. \right. \nonumber \\&\left. \left. +\,\cos \left( \theta _{a'}-\theta _{b}+\theta _{c}\right) +\cos \left( \theta _{a}-\theta _{b'}+\theta _{c}\right) -\cos \left( \theta _{a'}-\theta _{b'}+\theta _{c'}\right) \right\} \right. \nonumber \\&\left. +\, \left( -\, \Delta -C_{12}+C_{23}+C_{31}\right) \left\{ \cos \left( \theta _{a}-\theta _{b}-\theta _{c'}\right) \right. \right. \nonumber \\&\left. \left. +\,\cos \left( \theta _{a'}-\theta _{b}-\theta _{c}\right) +\cos \left( \theta _{a}-\theta _{b'}-\theta _{c}\right) -\cos \left( \theta _{a'}-\theta _{b'}-\theta _{c'}\right) \right\} \right] \nonumber \\ \end{aligned}$$
(A.1)

The expression for \(M'\) can be written in a similar fashion. For simplicity and mathematical convenience, let us define \(\Sigma =\left( \theta '_{a}+\theta '_{b}+\theta '_{c}\right) \) , \(\Sigma _{k}=\Sigma -2\theta '_{k}\), \(\tilde{\theta _{k}}=(\theta _{k}+\theta _{k'})/2\), and \(\theta '_{k}=(\theta _{k'}-\theta _{k})/2\) where \(k\epsilon \left\{ a,b,c\right\} \) such that

$$\begin{aligned} S_{v}\left( \rho ^{wk}_{W}\right) _\mathrm{opt}= & {} \frac{1}{2}\left[ \left( - \Delta -C_{12}-C_{23}-C_{31}\right) \right. \nonumber \\&\left. \times \sin \left( \tilde{\theta }_{a}+\tilde{\theta }_{b}+\tilde{\theta }_{c}\right) \left\{ K-2\sin \left( \theta '_{a}-\theta '_{b}-\theta '_{c}\right) \right\} \right. \nonumber \\&+ \left. \left( - \Delta +C_{12}-C_{23}+C_{31}\right) \right. \nonumber \\&\left. \times \sin \left( \tilde{\theta }_{a}+\tilde{\theta }_{b}-\tilde{\theta }_{c}\right) \left\{ K-2\sin \left( \theta '_{a}-\theta '_{b}+\theta '_{c}\right) \right\} \right. \nonumber \\&+ \left. \left( - \Delta +C_{12}+C_{23}-C_{31}\right) \right. \nonumber \\&\left. \times \sin \left( \tilde{\theta }_{a}-\tilde{\theta }_{b}+\tilde{\theta }_{c}\right) \left\{ K-2\sin \left( \theta '_{a}+\theta '_{b}-\theta '_{c}\right) \right\} \right. \nonumber \\&+ \left. \left( - \Delta -C_{12}+C_{23}+C_{31}\right) \right. \nonumber \\&\left. \times \sin \left( \tilde{\theta }_{a}-\tilde{\theta }_{b}-\tilde{\theta }_{c}\right) \left\{ K-2\sin \left( \theta '_{a}+\theta '_{b}+\theta '_{c}\right) \right\} \right] \nonumber \\= & {} \Delta \left\{ \sin \Sigma _{a}+\sin \Sigma _{b}+\sin \Sigma _{c}-\sin \Sigma \right\} \nonumber \\&+ C_{12}\left\{ \sin \Sigma -\sin \Sigma _{a}+\sin \Sigma _{b}+\sin \Sigma _{c}\right\} \nonumber \\&+ C_{23}\left\{ \sin \Sigma +\sin \Sigma _{a}+\sin \Sigma _{b}-\sin \Sigma _{c}\right\} \nonumber \\&+ C_{31}\left\{ \sin \Sigma +\sin \Sigma _{a}-\sin \Sigma _{b}+\sin \Sigma _{c}\right\} \end{aligned}$$
(A.2)
$$\begin{aligned}\equiv & {} 4\left( s_{1} \Delta + s_{2} C_{12} +s_{3} C_{23} +s_{4} C_{31}\right) \end{aligned}$$
(A.3)

where

$$\begin{aligned} K= & {} \left\{ \sin \left( \theta '_{a}+\theta '_{b}+\theta '_{c}\right) +\sin \left( \theta '_{a}-\theta '_{b}+\theta '_{c}\right) \right. \nonumber \\&+ \left. \sin \left( \theta '_{a}+\theta '_{b}-\theta '_{c}\right) \sin \left( \theta '_{a}-\theta '_{b}-\theta '_{c}\right) \right\} \end{aligned}$$
(A.4)

and the equality in Eq. (A.2) can be achieved by considering \(\tilde{\theta }_{a}=\tilde{\theta }_{b}=\tilde{\theta }_{c}=\pi /2\).

1.2 Derivation for the relationship between \(t_{1}\) and \(t_{2}\)

For evaluating the relationship between \(t_{1}\) and \(t_{2}\), we further consider two unit vectors p and \(p'\) where \(\vec {b}+\vec {b'}=2\vec {p}\cos \theta _{1}\) and \(\vec {b}-\vec {b'}=2\vec {p'}\sin \theta _{1}\) such that

$$\begin{aligned} \vec {p}.\vec {p'}=\cos \theta _{p}\cos \theta _{p'}+\sin \theta _{p}\sin \theta _{p'}\cos (\phi _{p}-\phi _{p'})=0 \end{aligned}$$
(B.1)

Therefore, \(t_{1}\) and \(t_{2}\) can be re-expressed as

$$\begin{aligned} \vert t_{1}\vert= & {} \vert l_{ap'cd}\sin \theta _{1}-l_{apcd'}\cos \theta _{1}-l_{apc'd}\cos \theta _{1} \nonumber \\&-\, l_{ap'c'd'}\sin \theta _{1} + l_{a'pc'd'}\cos \theta _{1}\nonumber \\&-\,l_{a'p'c'd}\sin \theta _{1}-l_{a'pcd}\cos \theta _{1}-l_{a'p'cd'}\sin \theta _{1}\vert \end{aligned}$$
(B.2)

and

$$\begin{aligned} \vert t_{2}\vert= & {} \vert s_{ap'cd}\sin \theta _{1}-s_{apcd'}\cos \theta _{1}-s_{apc'd}\cos \theta _{1} \nonumber \\&-\, s_{ap'c'd'}\sin \theta _{1} +s_{a'pc'd'}\cos \theta _{1} \nonumber \\&-\, s_{a'p'c'd}\sin \theta _{1}-s_{a'pcd}\cos \theta _{1}-s_{a'p'cd'}\sin \theta _{1}\vert \end{aligned}$$
(B.3)

where

$$\begin{aligned} l_{ap'cd}= & {} 2\cos \theta _{a}\cos \theta _{p'}\cos \theta _{c}\cos \theta _{d} \end{aligned}$$
(B.4)
$$\begin{aligned} s_{ap'cd}= & {} 2\sin \theta _{a}\sin \theta _{p'}\sin \theta _{c}\sin \theta _{d}\cos \phi _{ap'cd} \end{aligned}$$
(B.5)

The other coefficients \(l_{apcd'}\), \(s_{apcd'}\) etc. can be defined in a similar fashion with prime on different angles. In order to simplify and optimize the expressions further, we assume \(\theta _{c}=\theta _{c'}\), and define two unit vectors q and \(q'\) such that \(\vec {d}+\vec {d'}=2\vec {q}\cos \theta _{2}\) and \(\vec {d}-\vec {d'}=2\vec {q'}\sin \theta _{2}\), i.e.,

$$\begin{aligned} \vec {q}\cdot \vec {q'}=\cos \theta _{q}\cos \theta _{q'}+\sin \theta _{q}\sin \theta _{q'}\cos (\phi _{q}-\phi _{q'})=0 \end{aligned}$$
(B.6)

This allows us to re-express Eqs. (B.2) and (B.3) as

$$\begin{aligned} \vert t_{1}\vert= & {} \vert l'_{ap'cq'}\sin \theta _{1}\sin \theta _{2}-l'_{apcq}\cos \theta _{1}\cos \theta _{2}\nonumber \\&-\, l'_{a'pcq'}\cos \theta _{1}\sin \theta _{2}- l'_{a'p'cq}\sin \theta _{1}\cos \theta _{2} \vert \end{aligned}$$
(B.7)

and

$$\begin{aligned} \vert t_{2}\vert= & {} \vert s'_{ap'cq'}\sin \theta _{1}\sin \theta _{2}-s'_{apcq}\cos \theta _{1}\cos \theta _{2}\nonumber \\&-\, s'_{a'pcq'}\cos \theta _{1}\sin \theta _{2}- s'_{a'p'cq}\sin \theta _{1}\cos \theta _{2} \vert \end{aligned}$$
(B.8)

where

$$\begin{aligned} l'_{apcq}= & {} 4\cos \theta _{a}\cos \theta _{p}\cos \theta _{c}\cos \theta _{q} \end{aligned}$$
(B.9)
$$\begin{aligned} s'_{apcq}= & {} 4\sin \theta _{a}\sin \theta _{p}\sin \theta _{c}\sin \theta _{q}\cos \phi _{apcq} \end{aligned}$$
(B.10)

From Eqs. (B.7) and (B.8), one can get

$$\begin{aligned} \vert t_{1}\vert\le & {} \vert l'_{ap'cq'}\vert \vert \sin \theta _{1}\vert \vert \sin \theta _{2}\vert +\vert l'_{apcq}\vert \vert \cos \theta _{1}\vert \vert \cos \theta _{2}\vert \nonumber \\&+\, \vert l'_{a'pcq'}\vert \vert \cos \theta _{1}\vert \vert \sin \theta _{2}\vert +\vert l'_{a'p'cq}\vert \vert \sin \theta _{1}\vert \vert \cos \theta _{2}\vert \end{aligned}$$
(B.11)
$$\begin{aligned} \vert t_{2}\vert\le & {} \vert s'_{ap'cq'}\vert \vert \sin \theta _{1}\vert \vert \sin \theta _{2}\vert +\vert s'_{apcq}\vert \vert \cos \theta _{1}\vert \vert \cos \theta _{2}\vert \nonumber \\&+\, \vert s'_{a'pcq'}\vert \vert \cos \theta _{1}\vert \vert \sin \theta _{2}\vert +\vert s'_{a'p'cq}\vert \vert \sin \theta _{1}\vert \vert \cos \theta _{2}\vert \end{aligned}$$
(B.12)

Using these inequalities, the iterative maximization of Eq. (39) can be summarized below as

$$\begin{aligned} 2\sqrt{2}\kappa \vert t_{1}\vert +\vert t_{2} \vert\le & {} \left[ \left\{ (2\sqrt{2} \kappa \vert l'_{apcq}\vert + \vert s'_{apcq}\vert ) \vert \cos \theta _{1}\vert \right. \right. \nonumber \\&\left. \left. +\,(2\sqrt{2} \kappa \vert l'_{a'p'cq}\vert + \vert s'_{a'p'cq}\vert ) \vert \sin \theta _{1}\vert \right\} \vert \cos \theta _{2}\vert \right. \nonumber \\&\left. +\, \left\{ (2\sqrt{2} \kappa \vert l'_{a'pcq'}\vert + \vert s'_{a'pcq'}\vert ) \vert \cos \theta _{1}\vert \right. \right. \nonumber \\&\left. \left. +\,(2\sqrt{2} \kappa \vert l'_{ap'cq'}\vert + \vert s'_{ap'cq'}\vert ) \vert \sin \theta _{1}\vert \right\} \vert \sin \theta _{2}\vert \right] \end{aligned}$$
(B.13)
$$\begin{aligned} 2\sqrt{2}\kappa \vert t_{1}\vert +\vert t_{2} \vert\le & {} \left[ \left\{ (2\sqrt{2} \kappa \vert l'_{apcq}\vert + \vert s'_{apcq}\vert ) \vert \cos \theta _{1}\vert \right. \right. \nonumber \\&\left. \left. +\,(2\sqrt{2} \kappa \vert l'_{a'p'cq}\vert + \vert s'_{a'p'cq}\vert ) \vert \sin \theta _{1}\vert \right\} ^{2} \right. \nonumber \\&\left. +\, \left\{ (2\sqrt{2} \kappa \vert l'_{a'pcq'}\vert + \vert s'_{a'pcq'}\vert ) \vert \cos \theta _{1}\vert \right. \right. \nonumber \\&\left. \left. +\,(2\sqrt{2} \kappa \vert l'_{ap'cq'}\vert + \vert s'_{ap'cq'}\vert ) \vert \sin \theta _{1}\vert \right\} ^{2}\right] ^{\frac{1}{2}} \end{aligned}$$
(B.14)
$$\begin{aligned} 2\sqrt{2}\kappa \vert t_{1}\vert +\vert t_{2} \vert\le & {} \left[ (2\sqrt{2} \kappa \vert l'_{apcq}\vert + \vert s'_{apcq}\vert )^{2}+(2\sqrt{2} \kappa \vert l'_{a'p'cq}\vert + \vert s'_{a'p'cq}\vert )^{2} \right. \nonumber \\&\left. +\, (2\sqrt{2} \kappa \vert l'_{a'pcq'}\vert + \vert s'_{a'pcq'}\vert )^{2}+(2\sqrt{2} \kappa \vert l'_{ap'cq'}\vert \right. \nonumber \\&\left. +\, \vert s'_{ap'cq'}\vert )^{2}\right] ^{\frac{1}{2}} \end{aligned}$$
(B.15)

where Eq. (B.13) is maximized with respect to \(\theta _{2}\), and the first and second terms in Eq. (B.14) are maximized separately with respect to \(\theta _{1}\). To simplify and optimize Eq. (B.15), we use Eqs. (B.9) and (B.10), such that

$$\begin{aligned} (2\sqrt{2} \kappa \vert l'_{apcq}\vert + \vert s'_{apcq}\vert )= & {} 8\sqrt{2}\kappa \vert \cos \theta _{a}\cos \theta _{p}\cos \theta _{c}\cos \theta _{q}\vert \nonumber \\&+\, 4\vert \sin \theta _{a}\sin \theta _{p}\sin \theta _{c}\sin \theta _{q}\cos \phi _{apcq}\vert \end{aligned}$$
(B.16)

Equation (B.16) when maximized with respect to \(\theta _{a}\), where we have used the inequality (15), gives

$$\begin{aligned} (2\sqrt{2} \kappa \vert l'_{apcq}\vert + \vert s'_{apcq}\vert )\le & {} 4\left[ 8\kappa ^{2}\cos ^{2}\theta _{c}\cos ^{2}\theta _{p}\cos ^{2}\theta _{q}\right. \nonumber \\&\left. +\,\sin ^{2}\theta _{c}\sin ^{2}\theta _{p}\sin ^{2}\theta _{q}\cos ^{2}\phi _{apcq}\right] ^{\frac{1}{2}} \end{aligned}$$
(B.17)

Similarly, the other terms in Eq. (B-15) can be evaluated as

$$\begin{aligned} (2\sqrt{2} \kappa \vert l'_{ap'cq'}\vert + \vert s'_{ap'cq'}\vert )\le & {} 4\left[ 8\kappa ^{2}\cos ^{2}\theta _{c}\cos ^{2}\theta _{p'}\cos ^{2}\theta _{q'}\right. \nonumber \\&\left. +\,\sin ^{2}\theta _{c}\sin ^{2}\theta _{p'}\sin ^{2}\theta _{q'}\cos ^{2}\phi _{ap'cq'}\right] ^{\frac{1}{2}} \end{aligned}$$
(B.18)
$$\begin{aligned} (2\sqrt{2} \kappa \vert l'_{a'p'cq}\vert + \vert s'_{a'p'cq}\vert )\le & {} 4\left[ 8\kappa ^{2}\cos ^{2}\theta _{c}\cos ^{2}\theta _{p'}\cos ^{2}\theta _{q}\right. \nonumber \\&\left. +\,\sin ^{2}\theta _{c}\sin ^{2}\theta _{p'}\sin ^{2}\theta _{q}\cos ^{2}\phi _{a'p'cq}\right] ^{\frac{1}{2}} \end{aligned}$$
(B.19)
$$\begin{aligned} (2\sqrt{2} \kappa \vert l'_{a'pcq'}\vert + \vert s'_{a'pcq'}\vert )\le & {} 4\left[ 8\kappa ^{2}\cos ^{2}\theta _{c}\cos ^{2}\theta _{p}\cos ^{2}\theta _{q'}\right. \nonumber \\&\left. +\,\sin ^{2}\theta _{c}\sin ^{2}\theta _{p}\sin ^{2}\theta _{q'}\cos ^{2}\phi _{a'pcq'}\right] ^{\frac{1}{2}} \end{aligned}$$
(B.20)

where, for optimization, we consider \(\cos ^{2}\phi _{apcq}=\cos ^{2}\phi _{ap'cq'}=\cos ^{2}\phi _{a'p'cq}=\cos ^{2}\phi _{a'pcq'}=1\). Therefore, using Eqs. (B.17B.20), Eq. (B.15) can be re-expressed as

$$\begin{aligned} 2\sqrt{2}\kappa \vert t_{2}\vert +\vert t_{1} \vert\le & {} 4\left[ 8\kappa ^{2}\cos ^{2}\theta _{c}\cos ^{2}\theta _{q}(\cos ^{2}\theta _{p}+\cos ^{2}\theta _{p'})\right. \nonumber \\&\left. +\,\sin ^{2}\theta _{c}\sin ^{2}\theta _{q}(\sin ^{2}\theta _{p}+\sin ^{2}\theta _{p'})\right. \nonumber \\&\left. +\, 8\kappa ^{2}\cos ^{2}\theta _{c}\cos ^{2}\theta _{q'}(\cos ^{2}\theta _{p}+\cos ^{2}\theta _{p'})\right. \nonumber \\&\left. +\,\sin ^{2}\theta _{c}\sin ^{2}\theta _{q'}(\sin ^{2}\theta _{p}+\sin ^{2}\theta _{p'}) \right] ^{\frac{1}{2}} \end{aligned}$$
(B.21)

Considering the orthogonality of unit vectors \(\vec {p}\) and \(\vec {p'}\), the maximum value of \((\sin ^{2}\theta _{p}+\sin ^{2}\theta _{p'})\) is 2 and maximum value of \((\cos ^{2}\theta _{p}+\cos ^{2}\theta _{p'})\) is 1, i.e.,

$$\begin{aligned} 2\sqrt{2}\kappa \vert t_{1}\vert +\vert t_{2} \vert\le & {} 4\left[ 8\kappa ^{2}\cos ^{2}\theta _{c}(\cos ^{2}\theta _{q}+\cos ^{2}\theta _{q'})\right. \nonumber \\&\left. +\,2\sin ^{2}\theta _{c}(\sin ^{2}\theta _{q}+\sin ^{2}\theta _{q'})\right] ^{\frac{1}{2}} \end{aligned}$$
(B.22)

Similarly from the orthogonality of unit vectors \(\vec {q}\) and \(\vec {q'}\), Eq. (B.22) can be further optimized as

$$\begin{aligned} 2\sqrt{2}\kappa \vert t_{1}\vert +\vert t_{2} \vert \le 4\left[ 8\kappa ^{2}\cos ^{2}\theta _{c}+4\sin ^{2}\theta _{c}\right] ^{\frac{1}{2}} \end{aligned}$$
(B.23)

A further maximization on the parameter \(\kappa \) gives

$$\begin{aligned} 2\sqrt{2}\vert t_{1}\vert +\vert t_{2} \vert\le & {} 8\left[ 1+\cos ^{2}\theta _{c}\right] ^{\frac{1}{2}} \le 8\sqrt{2} \end{aligned}$$
(B.24)

Therefore, the relationship between \(t_{1}\) and \(t_{2}\) can be defined as

$$\begin{aligned} \vert t_{2} \vert \le 8\sqrt{2}-2\sqrt{2}\vert t_{1} \vert \end{aligned}$$
(B.25)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P., Kumar, A. Analysing nonlocality robustness in multiqubit systems under noisy conditions and weak measurements. Quantum Inf Process 17, 249 (2018). https://doi.org/10.1007/s11128-018-2016-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-2016-5

Keywords

Navigation