Skip to main content
Log in

Secure simultaneous dense coding using \(\chi \)-type entangled state

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

A violation of a Bell inequality can formally be expressed as a witness for quantum nonlocality. A new four-qubit Bell inequality is optimally violated by \(\chi \)-type entangled state, but not by four-qubit GHZ, W and cluster state. Hence, \(\chi \)-type entangled state is a good candidate to implement simultaneous dense coding. In this paper, we propose a simultaneous dense coding protocol with genuine four-particle entangled state, \(\chi \)-type entangled state, in which two receivers can simultaneously obtain their respective classical information sent by a sender. The double controlled-NOT operator, which is used as the locking operator, play a crucial role in our protocol. The security of simultaneous dense coding is analyzed against the intercept-resend attack. The preparation of \(\chi \)-type entangled state has been studied in various physics systems, and it has been experimentally generated with nearly deterministic scheme and high generation rate. Thus, our protocol is feasible with the current experimental technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  2. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  3. Bennett, C.H., Wiesner, S.J.: Communication via one-and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  4. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  5. Verstraete, F., Dehaene, J., De Moor, B., Verschelde, H.: Four qubits can be entangled in nine different ways. Phys. Rev. A 65, 052112 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  6. Yeo, Y., Chua, W.K.: Teleportation and dense coding with genuine multipartite entanglement. Phys. Rev. Lett. 96, 060502 (2006)

    Article  ADS  Google Scholar 

  7. Wu, C., Yeo, Y., Kwek, L.C., Oh, C.H.: Quantum nonlocality of four-qubit entangled states. Phys. Rev. A 75, 032332 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  8. Wang, X.W., Yang, G.J.: Generation and discrimination of a type of four-partite entangled state. Phys. Rev. A 78, 024301 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  9. Dong, L., Wang, J.X., Li, Q.Y., Dong, H.K., Xiu, X.M., Gao, Y.J.: Teleportation of a general two-photon state employing a polarization-entangled \(\chi \)-type state with nondemolition parity analyses. Quantum Inf. Process. 15, 2955 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  10. Fu, H., Chen, G.B., Li, X.W., Ma, P.C., Zhan, Y.B.: Joint remote preparation of an arbitrary four-qubit \(\chi \)-type entangled state. arXiv preprint. arXiv: 1605.05446 (2016)

  11. Kang, S.Y., Chen, X.B., Yang, Y.X.: Multi-party quantum state sharing of an arbitrary multi-qubit state via \(\chi \)-type entangled states. Quantum Inf. Process. 13, 2081 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  12. Xiu, X.M., Dong, L., Gao, Y.J.: Secure four-site distribution and quantum communication of \(\chi \)-type entangled states. Opt. Commun. 7, 284 (2011)

    Google Scholar 

  13. Dong, L., Xiu, X.M., Gao, Y.J., Yi, X.X.: A nearly deterministic scheme for generating -type entangled states with weak cross-Kerr nonlinearities. Quantum Inf. Process. 12, 1787 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  14. Mozes, S., Oppenheim, J., Reznik, B.: Deterministic dense coding with partially entangled states. Phys. Rev. A 71, 012311 (2005)

    Article  ADS  Google Scholar 

  15. Pati, A.K., Parashar, P., Agrawal, P.: Probabilistic superdense coding. Phys. Rev. A 72, 012329 (2005)

    Article  ADS  Google Scholar 

  16. Liu, X.S., Long, G.L., Tong, D.M., Li, F.: General scheme for superdense coding between multiparties. Phys. Rev. A 65, 022304 (2002)

    Article  ADS  Google Scholar 

  17. Bruß, D., Lewenstein, M., Sen, A., Sen, U., D’ariano, G.M., Macchiavello, C.: Dense coding with multipartite quantum states. Int. J. Quantum Inf. 4, 415 (2006)

    Article  Google Scholar 

  18. Agrawal, P., Pati, A.: Perfect teleportation and superdense coding with W states. Phys. Rev. A 74, 062320 (2006)

    Article  ADS  Google Scholar 

  19. Li, L., Qiu, D.: The states of W-class as shared resources for perfect teleportation and superdense coding. J. Phys. A., Math. Theor. 40, 10871 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  20. Situ, H., Qiu, D.: Simultaneous dense coding. J. Phys. A, Math. Theor. 43, 055301 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  21. Situ, H., Qiu, D., Mateus, P., Paunković, N.: Secure N-dimensional simultaneous dense coding and applications. Int. J. Quantum Inf. 13, 1550051 (2015)

    Article  MathSciNet  Google Scholar 

  22. Zhang, C., Situ, H., Li, Q., He, G.P.: Efficient simultaneous dense coding and teleportation with two-photon four-qubit cluster states. Int. J. Quantum Inf. 14, 1650023 (2016)

    Article  MathSciNet  Google Scholar 

  23. Situ, H.: Controlled simultaneous teleportation and dense coding. Int. J. Theor. Phys. 53, 1003 (2014)

    Article  Google Scholar 

  24. Huang, Z., Zhang, C., Situ, H.: Performance analysis of simultaneous dense coding protocol under decoherence. Quantum Inf. Process. 16, 227 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  25. Oh, C., Kim, H., Jeong, K., Jeong, H.: Minimal control power of controlled dense coding and genuine tripartite entanglement. Sci. Rep. 7, 3765 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 11671284), Sichuan Provincial Natural Science Foundation of China (Grant Nos. 2015JY0002, 2017JY0197) and the Research Foundation of the Education Department of Sichuan Province (Grant No. 15ZA0032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-wen Mo.

Appendix

Appendix

In this appendix, we present a detailed proof of theorem mentioned in Sect. 3. In following theorem, we can see that the reduced density matrix in subsystem \(A_1B\) and in subsystem \(A_2C\) are the same, which are independent of \(b_1,b_2,b_3,b_4,c_1,c_2,c_3,c_4\). That means Bob and Charlie can know nothing about their respective information that Alice wants to send to them unless they collaborate.

Theorem

For each \(b_1,b_2,b_3,b_4,c_1,c_2,c_3,c_4\in \{0,1\}\), \(\rho _{3214}=\rho _{3^{\prime }2^{\prime }1^{\prime }4^{\prime }}=\frac{I}{16}\), where \(\rho _{3214}\) and \(\rho _{3^{\prime }2^{\prime }1^{\prime }4^{\prime }}\) are the reduced density matrices in subsystems \(A_1B\) and \(A_2C\), after step (2) (but before step (3)).

Proof

Case 1 When \(i=j\), or \(i=00, j=01\), or \(i=01, j=00\), or \(i=10, j=11\), or \(i=11, j=10\), after step (2), the state of the composite system becomes

$$\begin{aligned} \begin{aligned} |\psi (2)\rangle&=\mathrm{DCNOT}_{2,2^{\prime }}\mathrm{DCNOT}_{3,3^{\prime }}|\phi (b_1b_2b_3b_4)\rangle _{3214}\otimes |\phi (c_1c_2c_3c_4)\rangle _{3^{\prime }2^{\prime }1^{\prime }4^{\prime }}\\&=\frac{1}{8}\sum _{p=0}^1\sum _{q=0}^1\sum _{p^{\prime }=0}^1\sum _{q^{\prime }=0}^1(-\,1)^{f(b_1b_2b_3b_4pq)+f(c_1c_2c_3c_4p^{\prime }q^{\prime })}\\&\quad \left( |c_2\oplus p^{\prime }\oplus 1\rangle _3|c_4\oplus q^{\prime }\oplus 1\rangle _2|p\rangle _1|q\rangle _4\otimes |b_2\oplus p\oplus c_2\oplus p^{\prime }\rangle _{3^{\prime }}|b_4\oplus q\oplus c_4 \right. \left. \oplus q^{\prime }\rangle _{2^{\prime }}|p^{\prime }\rangle _{1^{\prime }}|q^{\prime }\rangle _{4^{\prime }}\right. \\&\left. \quad +\,(-\,1)^{q^{\prime }}|c_2\oplus p^{\prime }\rangle _3|c_4\oplus q^{\prime }\rangle _2|p\rangle _1|q\rangle _4\otimes |b_2\oplus p\oplus c_2\oplus p^{\prime }\right. \left. \oplus 1\rangle _{3^{\prime }}|b_4\oplus q\oplus c_4\oplus q^{\prime }\oplus 1\rangle _{2^{\prime }}|p^{\prime }\rangle _{1^{\prime }}|q^{\prime }\rangle _{4^{\prime }}\right. \\&\left. \quad +\,(-\,1)^q|c_2\oplus p^{\prime }\oplus 1\rangle _3|c_4\oplus q^{\prime }\oplus 1\rangle _2|p\rangle _1|q\rangle _4\otimes |b_2\oplus p\oplus c_2\right. \left. \oplus p^{\prime }\oplus 1\rangle _{3^{\prime }}|b_4\oplus q\oplus c_4\oplus q^{\prime }\oplus 1\rangle _{2^{\prime }}|p^{\prime }\rangle _{1^{\prime }}|q^{\prime }\rangle _{4^{\prime }}\right. \\&\left. \quad +\,(-\,1)^{q+q^{\prime }}|c_2\oplus p^{\prime }\rangle _3|c_4\oplus q^{\prime }\rangle _2|p\rangle _1|q\rangle _4\otimes |b_2\oplus p\oplus c_2\oplus p^{\prime }\rangle _{3^{\prime }}|b_4\right. \left. \oplus q\oplus c_4\oplus q^{\prime }\rangle _{2^{\prime }}|p^{\prime }\rangle _{1^{\prime }}|q^{\prime }\rangle _{4^{\prime }}\right) . \end{aligned} \end{aligned}$$
(14)

The reduced density matrix in subsystem \(A_1B\) is

$$\begin{aligned} \begin{aligned} \rho _{A_1B}&=\rho _{3214}\\&=Tr_{3^{\prime }2^{\prime }1^{\prime }4^{\prime }}(|\psi (2)\rangle \langle \psi (2)|)\\&=\frac{1}{64}\sum _{p=0}^1\sum _{q=0}^1\sum _{p^{\prime }=0}^1\sum _{q^{\prime }=0}^1 \left( |c_2\oplus p^{\prime }\oplus 1\rangle _3|c_4\oplus q^{\prime }\oplus 1\rangle _2|p\rangle _1|q\rangle _4\langle q|{_1}\langle p|{_2}\langle c_4\right. \left. \oplus q^{\prime }\oplus 1|{_3}\langle c_2\oplus p^{\prime }\oplus 1|\right. \\&\left. \quad +\,|c_2\oplus p^{\prime }\rangle _3|c_4\oplus q^{\prime }\rangle _2|p\rangle _1|q\rangle _4 \langle q|{_1}\langle p|{_2}\langle c_4\oplus q^{\prime }|{_3}\langle c_2\oplus p^{\prime }|\right. \\&\left. \quad +\,|c_2\oplus p^{\prime }\oplus 1\rangle _3|c_4\oplus q^{\prime }\oplus 1\rangle _2|p\rangle _1|q\rangle _4\langle q|{_1}\langle p|{_2}\langle c_4\oplus q^{\prime }\oplus 1|{_3}\langle c_2\oplus p^{\prime }\oplus 1|\right. \\&\left. \quad +\, |c_2\oplus p^{\prime }\rangle _3|c_4\oplus q^{\prime }\rangle _2|p\rangle _1|q\rangle _4 \langle q|{_1}\langle p|{_2}\langle c_4\oplus q^{\prime }|{_3}\langle c_2\oplus p^{\prime }|\right) \\&=\frac{I}{16}. \end{aligned} \end{aligned}$$
(15)

Similarly, the reduced density matrix in subsystem \(A_2C\) is also \(\frac{I}{16}\).

Case 2 When any one of these conditions of \(i=j\), or \(i=00, j=01\), or \(i=01, j=00\), or \(i=10, j=11\), or \(i=11, j=10\) is not satisfied, after step (2), the state of the composite system becomes

$$\begin{aligned} \begin{aligned} |\psi (2)\rangle&=\mathrm{DCNOT}_{2,2^{\prime }}\mathrm{DCNOT}_{3,3^{\prime }}|\phi (b_1b_2b_3b_4)\rangle _{3214}\otimes |\phi (c_1c_2c_3c_4)\rangle _{3^{\prime }2^{\prime }1^{\prime }4^{\prime }}\\&=\frac{1}{8}\sum _{p=0}^1\sum _{q=0}^1\sum _{p^{\prime }=0}^1\sum _{q^{\prime }=0}^1(-1)^{f(b_1b_2b_3b_4pq)+f(c_1c_2c_3c_4p^{\prime }q^{\prime })}\\&\,\quad \left( |c_2\oplus p^{\prime }\oplus 1\rangle _3|c_4\oplus q^{\prime }\oplus 1\rangle _2|p\rangle _1|q\rangle _4\otimes |b_2\oplus p\oplus c_2\oplus p^{\prime }\rangle _{3^{\prime }}|b_4\oplus q\right. \left. \oplus c_4\oplus q^{\prime }\rangle _{2^{\prime }}|p^{\prime }\rangle _{1^{\prime }}|q^{\prime }\rangle _{4^{\prime }}\right. \\&\left. \quad +\, (-\,1)^{q^{\prime }+1}|c_2\oplus p^{\prime }\rangle _3|c_4\oplus q^{\prime }\rangle _2|p\rangle _1|q\rangle _4\otimes |b_2\oplus p\oplus c_2\oplus p^{\prime }\oplus 1\rangle _{3^{\prime }}|b_4\oplus q\right. \left. \oplus c_4\oplus q^{\prime }\oplus 1\rangle _{2^{\prime }}|p^{\prime }\rangle _{1^{\prime }}|q^{\prime }\rangle _{4^{\prime }}\right. \\&\left. \quad +\, (-\,1)^{q+1}|c_2\oplus p^{\prime }\oplus 1\rangle _3|c_4\oplus q^{\prime }\oplus 1\rangle _2|p\rangle _1|q\rangle _4\otimes |b_2\oplus p\oplus c_2\right. \left. \oplus p^{\prime }\oplus 1\rangle _{3^{\prime }}|b_4\oplus q\oplus c_4\oplus q^{\prime }\oplus 1\rangle _{2^{\prime }}|p^{\prime }\rangle _{1^{\prime }}|q^{\prime }\rangle _{4^{\prime }}\right. \\&\left. \quad +\,(-\,1)^{q+q^{\prime }}|c_2\oplus p^{\prime }\rangle _3|c_4\oplus q^{\prime }\rangle _2|p\rangle _1|q\rangle _4\otimes |b_2\oplus p\oplus c_2\right. \left. \oplus p^{\prime }\rangle _{3^{\prime }}|b_4\oplus q\oplus c_4\oplus q^{\prime }\rangle _{2^{\prime }}|p^{\prime }\rangle _{1^{\prime }}|q^{\prime }\rangle _{4^{\prime }}\right) . \end{aligned} \end{aligned}$$
(16)

The reduced density matrix in subsystem \(A_1B\) is

$$\begin{aligned} \begin{aligned} \rho _{A_1B}&=\rho _{3214}\\&=Tr_{3'2'1'4'}(|\psi (2)\rangle \langle \psi (2)|)\\&=\frac{1}{64}\sum _{p=0}^1\sum _{q=0}^1\sum _{p'=0}^1\sum _{q'=0}^1\left( |c_2\oplus p'\oplus 1\rangle _3|c_4\right. \left. \oplus q'\oplus 1\rangle _2|p\rangle _1|q\rangle _4\langle q|{_1}\langle p|{_2}\langle c_4\oplus q'\oplus 1|{_3}\langle c_2\oplus p'\oplus 1|\right. \\&\left. \quad +\, |c_2\oplus p'\rangle _3|c_4\oplus q'\rangle _2|p\rangle _1|q\rangle _4 \langle q|{_1}\langle p|{_2}\langle c_4\oplus q'|{_3}\langle c_2\oplus p'|\right. \\&\left. \quad +\, |c_2\oplus p'\oplus 1\rangle _3|c_4\oplus q'\oplus 1\rangle _2|p\rangle _1|q\rangle _4\langle q|{_1}\langle p|{_2}\langle c_4\oplus q'\oplus 1|{_3}\langle c_2\oplus p'\oplus 1|\right. \\&\left. \quad +\,|c_2\oplus p'\rangle _3|c_4\oplus q'\rangle _2|p\rangle _1|q\rangle _4 \langle q|{_1}\langle p|{_2}\langle c_4\oplus q'|{_3}\langle c_2\oplus p'|\right) \\&=\frac{I}{16}. \end{aligned} \end{aligned}$$
(17)

Similarly, the reduced density matrix in subsystem \(A_2C\) is also \(\frac{I}{16}\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Bai, Mq., Zuo, Zc. et al. Secure simultaneous dense coding using \(\chi \)-type entangled state. Quantum Inf Process 17, 261 (2018). https://doi.org/10.1007/s11128-018-2022-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-2022-7

Keywords

Navigation