Skip to main content
Log in

Quantum coherence of fermionic systems in noninertial frames beyond the single-mode approximation

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we investigate the behavior of the quantum coherence for bipartite fermionic systems in noninertial frames beyond the single-mode approximation. It is shown a redistribution of coherence between particle and antiparticle modes, and the behavior in terms of coherence for fermionic systems is convergent in the infinite acceleration limit. We demonstrate that the physical accessible coherence is not always destroyed with the increase in acceleration, which is different from the features of entanglement in the accelerated frame. Besides, we obtain a quantitative relationship about the redistribution of coherence via the \(l_1\)-norm measure. It is worth mentioning that a rotation operation can change the coherence values, since the amount of coherence is related to the selection of reference basis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ficek, Z., Swain, S.: Quantum Interference and Coherence: Theory and Experiments. Springer Series in Optical Sciences. Springer, Berlin (2005)

    MATH  Google Scholar 

  2. Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  3. Yuan, X., Zhou, H., Cao, Z., Ma, X.: Intrinsic randomness as a measure of quantum coherence. Phys. Rev. A 92, 022124 (2015)

    Article  ADS  Google Scholar 

  4. Qi, X., Gao, T., Yan, F.: Measuring coherence with entanglement concurrence. J. Phys. A Math. Theor. 50, 285301 (2017)

    Article  MathSciNet  Google Scholar 

  5. Rana, S., Parashar, P., Lewenstein, M.: Trace-distance measure of coherence. Phys. Rev. A 93, 012110 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  6. Shao, L.H., Xi, Z., Fan, H., Li, Y.: Fidelity and trace-norm distances for quantifying coherence. Phys. Rev. A 91, 042120 (2015)

    Article  ADS  Google Scholar 

  7. Chen, J., Grogan, S., Johnston, N., Li, C., Plosker, S.: Quantifying the coherence of pure quantum states. Phys. Rev. A 94, 042313 (2016)

    Article  ADS  Google Scholar 

  8. Hu, M.L., Hu, X., Wang, J.C., Peng, Y., Zhang, Y.R., Fan, H.: Quantum coherence and quantum correlations. arXiv:1703.01852 (2017)

  9. Yao, Y., Xiao, X., Ge, L., Sun, C.P.: Quantum coherence in multipartite systems. Phys. Rev. A 92, 022112 (2015)

    Article  ADS  Google Scholar 

  10. Wang, J., Tian, Z., Jing, J., Fan, H.: Irreversible degradation of quantum coherence under relativistic motion. Phys. Rev. A 93, 062105 (2016)

    Article  ADS  Google Scholar 

  11. Hu, X.: Channels that do not generate coherence. Phys. Rev. A 94, 012326 (2016)

    Article  ADS  Google Scholar 

  12. Hu, M.L., Fan, H.: Relative quantum coherence, incompatibility, and quantum correlations of states. Phys. Rev. A 95, 052106 (2017)

    Article  ADS  Google Scholar 

  13. Hu, M.L., Shen, S.Q., Fan, H.: Maximum coherence in the optimal basis. Phys. Rev. A 96, 052309 (2017)

    Article  ADS  Google Scholar 

  14. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)

    Article  ADS  Google Scholar 

  15. Streltsov, A., Adesso, G., Plenio, M.B.: Colloquium: quantum coherence as a resource. Rev. Mod. Phys. 89, 041003 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  16. Levi, F., Mintert, F.: A quantitative theory of coherent delocalization. New J. Phys. 16, 033007 (2014)

    Article  ADS  Google Scholar 

  17. Winter, A., Yang, D.: Operational resource theory of coherence. Phys. Rev. Lett. 116, 120404 (2016)

    Article  ADS  Google Scholar 

  18. Chitambar, E., Hsieh, M.H.: Relating the resource theories of entanglement and quantum coherence. Phys. Rev. Lett. 117, 020402 (2016)

    Article  ADS  Google Scholar 

  19. Chitambar, E., Gour, G.: Critical examination of incoherent operations and a physically consistent resource theory of quantum coherence. Phys. Rev. Lett. 117, 030401 (2016)

    Article  ADS  Google Scholar 

  20. Yadin, B., Ma, J., Girolami, D., Gu, M., Vedral, V.: Quantum processes which do not use coherence. Phys. Rev. X 6, 041028 (2016)

    Google Scholar 

  21. Åberg, J.: Catalytic coherence. Phys. Rev. Lett. 113, 150402 (2014)

    Article  ADS  Google Scholar 

  22. Lostaglio, M., Jennings, D., Rudolph, T.: Description of quantum coherence in thermodynamic processes requires constraints beyond free energy. Nat. Commun. 6, 6383 (2015)

    Article  ADS  Google Scholar 

  23. Narasimhachar, V., Gour, G.: Low-temperature thermodynamics with quantum coherence. Nat. Commun. 6, 7689 (2015)

    Article  ADS  Google Scholar 

  24. Lostaglio, M., Korzekwa, K., Jennings, D., Rudolph, T.: Quantum coherence, time-translation symmetry, and thermodynamics. Phys. Rev. X 5, 021001 (2015)

    Google Scholar 

  25. Ćwikliński, P., Studziński, M., Horodecki, M., Oppenheim, J.: Limitations on the evolution of quantum coherences: towards fully quantum second laws of thermodynamics. Phys. Rev. Lett. 115, 210403 (2015)

    Article  ADS  Google Scholar 

  26. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum-enhanced measurements: beating the standard quantum limit. Science 306, 1330 (2004)

    Article  ADS  Google Scholar 

  27. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum metrology. Phys. Rev. Lett. 96, 010401 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  28. Demkowicz-Dobrzaski, R., Maccone, L.: Using entanglement against noise in quantum metrology. Phys. Rev. Lett. 113, 250801 (2014)

    Article  ADS  Google Scholar 

  29. Lambert, N., Chen, Y.N., Cheng, Y.C., Li, C.M., Chen, G.Y., Nori, F.: Quantum biology. Nat. Phys. 9, 10–18 (2013)

    Article  Google Scholar 

  30. Lloyd, S.: Quantum coherence in biological systems. J. Phys. Conf. Ser. 302, 012037 (2011)

    Article  Google Scholar 

  31. Peres, A., Terno, D.R.: Quantum information and relativity theory. Rev. Mod. Phys. 76, 93–123 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  32. Bruschi, D.E., Louko, J., Martín-Martínez, E., Dragan, A., Fuentes, I.: Unruh effect in quantum information beyond the single-mode approximation. Phys. Rev. A 82, 042332 (2010)

    Article  ADS  Google Scholar 

  33. Hwang, M.R., Park, D., Jung, E.: Tripartite entanglement in a noninertial frame. Phys. Rev. A 83, 012111 (2011)

    Article  ADS  Google Scholar 

  34. Martín-Martínez, E., Fuentes, I.: Redistribution of particle and antiparticle entanglement in noninertial frames. Phys. Rev. A 83, 052306 (2011)

    Article  ADS  Google Scholar 

  35. Montero, M., Martín-Martínez, E.: Fermionic entanglement ambiguity in noninertial frames. Phys. Rev. A 83, 062323 (2011)

    Article  ADS  Google Scholar 

  36. Montero, M., León, J., Martín-Martínez, E.: Fermionic entanglement extinction in noninertial frames. Phys. Rev. A 84, 042320 (2011)

    Article  ADS  Google Scholar 

  37. Friis, N., Köhler, P., Martín-Martínez, E., Bertlmann, R.A.: Residual entanglement of accelerated fermions is not nonlocal. Phys. Rev. A 84, 062111 (2011)

    Article  ADS  Google Scholar 

  38. Chang, J., Kwon, Y.: Entanglement behavior of quantum states of fermionic systems in an accelerated frame. Phys. Rev. A 85, 032302 (2012)

    Article  ADS  Google Scholar 

  39. Wang, J., Jing, J., Fan, H.: Quantum discord and measurement-induced disturbance in the background of dilaton black holes. Phys. Rev. D 90, 025032 (2014)

    Article  ADS  Google Scholar 

  40. Tian, Z., Jing, J.: Measurement-induced-nonlocality via the Unruh effect. Ann. Phys. 333, 76–89 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  41. Ghorashi, S.A.A., Aminjavaheri, M.H., Harouni, M.B.: Quantum decoherence of Dirac fields in non-inertial frames beyond the single-mode approximation. Quantum Inf Process. 13, 527–545 (2014)

    Article  ADS  Google Scholar 

  42. Huang, Z., Situ, H.: Dynamics of quantum correlation and coherence for two atoms coupled with a bath of fluctuating massless scalar field. Ann. Phys. 377, 484–492 (2017)

    Article  ADS  Google Scholar 

  43. Huang, Z.: Dynamics of quantum correlation and coherence in de Sitter universe. Quantum Inf. Process. 16, 207 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  44. Huang, Z., Situ, H.: Non-Markovian dynamics of quantum coherence of two-level system driven by classical field. Quantum Inf. Process. 16, 222 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  45. Huang, Z.: Quantum correlation and coherence in the background of dilaton black hole. J. Phys. Soc. Jpn. 86, 124007 (2017)

    Article  ADS  Google Scholar 

  46. Ding, Z.Y., Shi, J.D., Wu, T., He, J.: Tripartite nonlocality for an open Dirac system in the background of Schwarzschild space-time. Laser Phys. Lett. 14, 125201 (2017)

    Article  ADS  Google Scholar 

  47. He, J., Xu, S., Yu, Y., Ye, L.: Measurement-induced-nonlocality for Dirac particles in Garfinkle–Horowitz–Strominger dilation space-time. Phys. Lett. B 740, 322–328 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  48. He, J., Xu, S., Ye, L.: Property of various correlation measures of open Dirac system with Hawking effect in Schwarzschild space-time. Phys. Lett. B 756, 278–282 (2016)

    Article  ADS  Google Scholar 

  49. Huang, Z., Situ, H.: Quantum coherence behaviors of fermionic system in non-inertial frame. Quantum Inf. Process. 17, 95 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  50. Alsing, P.M., Milburn, G.J.: Teleportation with a uniformly accelerated partner. Phys. Rev. Lett. 91, 180404 (2003)

    Article  ADS  Google Scholar 

  51. Alsing, P.M., Fuentes-Schuller, I., Mann, R.B., Tessier, T.E.: Entanglement of Dirac fields in noninertial frames. Phys. Rev. A 74, 032326 (2006)

    Article  ADS  Google Scholar 

  52. Plenio, M.B., Virmani, S.: An introduction to entanglement measures. Quantum Inf. Comput. 7, 1–51 (2007)

    MathSciNet  MATH  Google Scholar 

  53. Vedral, V., Plenio, M.B.: Entanglement measures and purification procedures. Phys. Rev. A 57, 1619–1633 (1998)

    Article  ADS  Google Scholar 

  54. Xu, Z.Y., Yang, W.L., Feng, M.: Quantum-memory-assisted entropic uncertainty relation under noise. Phys. Rev. A 86, 012113 (2012)

    Article  ADS  Google Scholar 

  55. Horodecki, R., Horodecki, M.: Information-theoretic aspects of inseparability of mixed states. Phys. Rev. A 54, 1838 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  56. Kay, A.: Using separable Bell-diagonal states to distribute entanglement. Phys. Rev. Lett. 109, 080503 (2012)

    Article  ADS  Google Scholar 

  57. Cen, L.X., Wu, N.J., Yang, F.H., An, J.H.: Local transformation of mixed states of two qubits to Bell diagonal states. Phys. Rev. A 65, 052318 (2002)

    Article  ADS  Google Scholar 

  58. Svozilík, J., Vallés, A., Peřina, J., Torres, J.P.: Revealing hidden coherence in partially coherent light. Phys. Rev. Lett. 115, 220501 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China (Grant Nos. 11575001 and 11605028), the Natural Science Research Project of Education Department of Anhui Province of China under Grant No. KJ2018A0343, the Open Foundation for CAS Key Laboratory of Quantum Information under Grant Nos. KQI201702 and KQI201804, the Key Program of Excellent Youth Talent Project of the Education Department of Anhui Province of China under Grant No. gxyqZD2018065, the Key Program of Excellent Youth Talent Project of Fuyang Normal University under Grant No. rcxm201804, the Research Center for Quantum Information Technology of Fuyang Normal University under Grant No. kytd201706, and also the Doctoral Foundation of Fuyang Normal University under Grant No. FYNU1602.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juan He or Liu Ye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, ZY., Liu, CC., Sun, WY. et al. Quantum coherence of fermionic systems in noninertial frames beyond the single-mode approximation. Quantum Inf Process 17, 279 (2018). https://doi.org/10.1007/s11128-018-2043-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-2043-2

Keywords

Navigation