Skip to main content

Advertisement

Log in

Shortcuts to adiabatic for implementing controlled-not gate with superconducting quantum interference device qubits

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We propose a protocol to implement controlled-not (C-NOT) gates of two superconducting quantum interference device (SQUID) qubits in a cavity. The Rabi frequencies of driven pulses are designed by means of the shortcuts to adiabaticity. The numerical simulations show that the fidelities of the C-NOT gates are insensitive to the deviations of control parameters. Besides, the C-NOT gates are robust against the decoherent factors, such as spontaneous emissions and dephasings of the SQUID qubits and the decay of the cavity mode. Therefore, the protocol may be useful in the fields of quantum computations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lloyd, S.: Ultimate physical limits to computation. Nature 406, 1047 (2000)

    ADS  Google Scholar 

  2. Ng, Y.J.: From computation to black holes and space-time foam. Phys. Rev. Lett. 86, 2946 (2001)

    ADS  MathSciNet  Google Scholar 

  3. Wang, X.G., Sørensen, A., Mølmer, K.: Multibit gates for quantum computing. Phys. Rev. Lett. 86, 3907 (2001)

    ADS  Google Scholar 

  4. Ozawa, M.: Conservative quantum computing. Phys. Rev. Lett. 89, 057902 (2002)

    ADS  Google Scholar 

  5. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factoring. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science, vol. 124. IEEE Computer Society Press, Los Alamitos (1994)

  6. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26, 1484 (1997)

    MathSciNet  MATH  Google Scholar 

  7. Grover, L.K.: Quantum computers can search rapidly by using almost any transformation. Phys. Rev. Lett. 80, 4329 (1998)

    ADS  Google Scholar 

  8. Deng, Z.J., Zhang, X.L., Wei, H., Gao, K.L., Feng, M.: Implementation of a nonlocal N-qubit conditional phase gate by single-photon interference. Phys. Rev. A 76, 044305 (2007)

    ADS  Google Scholar 

  9. Bonato, C., Haupt, F., Oemrawsingh, S.S.R., Gudat, J., Ding, D., van Exter, M.P., Bouwmeester, D.: CNOT and Bell-state analysis in the weak-coupling cavity QED regime. Phys. Rev. Lett. 104, 160503 (2010)

    ADS  Google Scholar 

  10. Duan, L.M., Kimble, H.J.: Scalable photonic quantum computation through cavity-assisted interaction. Phys. Rev. Lett. 92, 127902 (2004)

    ADS  Google Scholar 

  11. Ren, B.C., Deng, F.G.: Hyper-parallel photonic quantum computation with coupled quantum dots. Sci. Rep. 4, 4623 (2014)

    Google Scholar 

  12. Ren, B.C., Wei, H.R., Deng, F.G.: Deterministic photonic spatial-polarization hyper-controlled-not gate assisted by quantum dot inside one-side optical microcavity. Laser Phys. Lett. 10, 2241 (2013)

    Google Scholar 

  13. Liu, B.J., Huang, Z.H., Xue, Z.Y., Zhang, X.D.: Superadiabatic holonomic quantum computation in cavity QED. Phys. Rev. A 95, 062308 (2017)

    ADS  Google Scholar 

  14. Chen, Y.H., Xia, Y., Chen, Q.Q., Song, J.: Fast and noise-resistant implementation of quantum phase gates and creation of quantum entangled states. Phys. Rev. A 91, 012325 (2015)

    ADS  Google Scholar 

  15. Shao, X.Q., Li, D.X., Ji, Y.Q., Wu, J.H., Yi, X.X.: Ground-state blockade of Rydberg atoms and application to multipartite entanglement. Phys. Rev. A 96, 012328 (2017)

    ADS  Google Scholar 

  16. Liang, Z.T., Yue, X., Lv, Q., Du, Y.X., Huang, W., Yan, H., Zhu, S.L.: Proposal for implementing universal superadiabatic geometric quantum gates in nitrogen-vacancy centers. Phys. Rev. A 93, 040305(R) (2016)

    ADS  Google Scholar 

  17. Du, Y.X., Liu, B.J., Lv, Q.X., Zhang, X.D., Yan, H., Zhu, S.L.: Degenerate eigensubspace in a triangle-level system and its geometric quantum control. Phys. Rev. A 96, 012333 (2017)

    ADS  Google Scholar 

  18. DiVincenzo, D.P.: Two-bit gates are universal for quantum computation. Phys. Rev. A 51, 1015 (1995)

    ADS  Google Scholar 

  19. Sleator, T., Weinfurter, H.: Realizable universal quantum logic gates. Phys. Rev. Lett. 74, 4087 (1995)

    ADS  MathSciNet  MATH  Google Scholar 

  20. Nemoto, K., Munro, W.J.: Nearly deterministic linear optical controlled-NOT gate. Phys. Rev. Lett. 93, 250502 (2004)

    ADS  Google Scholar 

  21. Shao, X.Q., Chen, L., Zhang, S., Yeon, K.H.: Distributed CNOT gate via quantum Zeno dynamics. J. Phys. B 42, 165507 (2009)

    ADS  Google Scholar 

  22. Wu, J.L., Ji, X., Zhang, S.: Dressed-state scheme for a fast CNOT gate. Quantum Inf. Process. 16, 294 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  23. Galiautdinov, A.: Generation of high-fidelity controlled-not logic gates by coupled superconducting qubits. Phys. Rev. A 75, 052303 (2007)

    ADS  Google Scholar 

  24. Rigetti, C., Devoret, M.: Fully microwave-tunable universal gates in superconducting qubits with linear couplings and fixed transition frequencies. Phys. Rev. B 81, 134507 (2010)

    ADS  Google Scholar 

  25. Rigetti, C., Blais, A., Devoret, M.: Controlled-NOT logic with nonresonant Josephson phase qubits. Phys. Rev. Lett. 94, 240502 (2005)

    ADS  Google Scholar 

  26. Chow, J.M., Córcoles, A.D., Gambetta, J.M., Rigetti, C., Johnson, B.R., Smolin, J.A., Rozen, J.R., Keefe, G.A., Rothwell, M.B., Ketchen, M.B., Steffen, M.: Universal quantum gate set approaching fault-tolerant thresholds with superconducting qubits. Phys. Rev. Lett. 109, 060501 (2012)

    ADS  Google Scholar 

  27. Chow, J.M., Gambetta, J.M., Córcoles, A.D., Merkel, S.T., Smolin, J.A., Rigetti, C., Poletto, S., Keefe, G.A., Rothwell, M.B., Rozen, J.R., Ketchen, M.B., Steffen, M.: Universal quantum gate set approaching fault-tolerant thresholds with superconducting qubits. Phys. Rev. Lett. 109, 060501 (2012)

    ADS  Google Scholar 

  28. Goto, H., Ichimura, K.: Multiqubit controlled unitary gate by adiabatic passage with an optical cavity. Phys. Rev. A 70, 012305 (2004)

    ADS  Google Scholar 

  29. Chow, J.M., Gambetta, J.M., Cross, A.W., Merkel, S.T., Rigetti, C., Steffen, M.: Microwave-activated conditional-phase gate for superconducting qubits. New J. Phys. 15, 115012 (2013)

    ADS  Google Scholar 

  30. Iakoupov, I., Borregaard, J., Sørensen, A.S.: Controlled-phase gate for photons based on stationary light. Phys. Rev. Lett. 120, 010502 (2018)

    ADS  Google Scholar 

  31. Liang, Y., Wu, Q.C., Su, S.L., Ji, X., Zhang, S.: Shortcuts to adiabatic passage for multiqubit controlled phase gate. Phys. Rev. A 91, 032304 (2015)

    ADS  Google Scholar 

  32. Xue, Z.Y., Zhang, G., Dong, P., Yi, Y.M., Cao, Z.L.: Quantum controlled phase gate and cluster states generation via two superconducting quantum interference devices in a cavity. Eur. Phys. J. B 52, 333 (2006)

    ADS  Google Scholar 

  33. Song, K.H., Xiang, S.H., Liu, Q., Lu, D.H.: Quantum computation and W-state generation using superconducting flux qubits coupled to a cavity without geometric and dynamical manipulation. Phys. Rev. A 75, 032347 (2007)

    ADS  Google Scholar 

  34. Yang, C.P., Chu, S.-I., Han, S.: Possible realization of entanglement, logical gates, and quantum-information transfer with superconducting-quantum-interference-device qubits in cavity QED. Phys. Rev. A 67, 042311 (2003)

    ADS  Google Scholar 

  35. Song, K.H., Zhao, Y.J., Shi, Z.G., Xiang, S.H., Chen, X.W.: Simultaneous implementation of n SWAP gates using superconducting charge qubits coupled to a cavity. Opt. Commun. 283, 506 (2010)

    ADS  Google Scholar 

  36. Wu, T., Ye, L.: Implementing two-qubit SWAP gate with SQUID qubits in a microwave cavity via adiabatic passage evolution. Int. J. Theor. Phys. 51, 1076 (2012)

    MATH  Google Scholar 

  37. Zhang, F.Y., Pei, P., Wang, Z., Song, H.S.: Realizing a SWAP gate and generating cluster states in a controllable superconducting coupling system. Phys. Scr. 82, 065010 (2010)

    ADS  MATH  Google Scholar 

  38. Sangouard, N., Lacour, X., Guérin, S., Jauslin, H.R.: Fast SWAP gate by adiabatic passage. Phys. Rev. A 72, 062309 (2005)

    ADS  Google Scholar 

  39. Liang, L., Li, C.: Realization of quantum SWAP gate between flying and stationary qubits. Phys. Rev. A 72, 024303 (2005)

    ADS  Google Scholar 

  40. Duan, L.M., Kuzmich, A., Kimble, H.J.: Cavity QED and quantum-information processing with “hot” trapped atoms. Phys. Rev. A 67, 032305 (2003)

    ADS  Google Scholar 

  41. van den Brink, A.M.: Hamiltonian for coupled flux qubits. Phys. Rev. B 71, 064503 (2005)

    ADS  Google Scholar 

  42. You, J.Q., Hu, X., Ashhab, S., Nori, F.: Low-decoherence flux qubit. Phys. Rev. B 75, 140515(R) (2007)

    ADS  Google Scholar 

  43. Kakuyanagi, K., Meno, T., Saito, S., Nakano, H., Semba, K., Takayanagi, H., Deppe, F., Shnirman, A.: Dephasing of a superconducting flux qubit. Phys. Rev. Lett. 98, 047004 (2007)

    ADS  Google Scholar 

  44. Saito, S., Meno, T., Ueda, M., Tanaka, H., Semba, K., Takayanagi, H.: Parametric control of a superconducting flux qubit. Phys. Rev. Lett. 96, 107001 (2006)

    ADS  Google Scholar 

  45. Duty, T., Gunnarsson, D., Bladh, K., Delsing, P.: Coherent dynamics of a Josephson charge qubit. Phys. Rev. B 69, 140503(R) (2004)

    ADS  Google Scholar 

  46. Astafiev, O., Pashkin, Y.A., Nakamura, Y., Yamamoto, T., Tsai, J.S.: Quantum noise in the Josephson charge qubit. Phys. Rev. Lett. 93, 267007 (2004)

    ADS  Google Scholar 

  47. Ralph, J.F., Griffith, E.J., Clark, T.D., Everitt, M.J.: Guidance and control in a Josephson charge qubit. Phys. Rev. B 70, 214521 (2004)

    ADS  Google Scholar 

  48. Li, J., Johansson, G.: Simultaneous readout of two charge qubits. Phys. Rev. B 75, 085312 (2007)

    ADS  Google Scholar 

  49. Amin, M.H.S., Smirnov, A.Y., van den Brink, A.M.: Josephson-phase qubit without tunneling. Phys. Rev. B 67, 100508(R) (2003)

    ADS  Google Scholar 

  50. Kosugi, N., Matsuo, S., Fujii, T., Hatakenaka, N.: Josephson phase qubit with an optimal point. Phys. Rev. B 81, 024507 (2010)

    ADS  Google Scholar 

  51. Steffen, M., Martinis, J.M., Chuang, I.L.: Accurate control of Josephson phase qubits. Phys. Rev. B 68, 224518 (2003)

    ADS  Google Scholar 

  52. Galiautdinov, A.: Controlled-NOT logic with nonresonant Josephson phase qubits. Phys. Rev. A 79, 042316 (2009)

    ADS  MathSciNet  Google Scholar 

  53. Schutjens, R., Dagga, F.A., Egger, D.J., Wilhelm, F.K.: Single qubit gates in frequency-crowded transmon systems. Phys. Rev. A 88, 052330 (2013)

    ADS  Google Scholar 

  54. Lu, X.J., Li, M., Zhao, Z.Y., Zhang, C.L., Han, H.P., Feng, Z.B., Zhou, Y.Q.: Nonleaky and accelerated population transfer in a transmon qutrit. Phys. Rev. A 96, 023843 (2017)

    ADS  Google Scholar 

  55. Houck, A.A., Schreier, J.A., Johnson, B.R., Chow, J.M., Koch, J., Gambetta, J.M., Schuster, D.I., Frunzio, L., Devoret, M.H., Girvin, S.M., Schoelkopf, R.J.: Controlling the spontaneous emission of a superconducting transmon qubit. Phys. Rev. Lett. 101, 080502 (2008)

    ADS  Google Scholar 

  56. Feng, Z.B., Lu, X.J., Li, M., Yan, R.Y., Zhou, Y.Q.: Speeding up adiabatic population transfer in a Josephson qutrit via counter-diabatic driving. New J. Phys. 19, 123023 (2017)

    ADS  Google Scholar 

  57. Viola, G., Catelani, G.: Collective modes in the fluxonium qubit. Phys. Rev. B 92, 224511 (2015)

    ADS  Google Scholar 

  58. Herrera-Martí, D.A., Nazir, A., Barrett, S.D.: Tradeoff between leakage and dephasing errors in the fluxonium qubit. Phys. Rev. B 88, 094512 (2013)

    ADS  Google Scholar 

  59. Zhu, G., Ferguson, D.G., Manucharyan, V.E., Koch, J.: Circuit QED with fluxonium qubits: theory of the dispersive regime. Phys. Rev. B 87, 024510 (2013)

    ADS  Google Scholar 

  60. Meier, H., Brierley, R.T., Kou, A., Girvin, S.M., Glazman, L.I.: Signatures of quantum phase transitions in the dynamic response of fluxonium qubit chains. Phys. Rev. B 92, 064516 (2015)

    ADS  Google Scholar 

  61. Deng, Z.J., Gao, K.L., Feng, M.: Generation of N-qubit W state with rf-SQUID qubits by adiabatic passage. Phys. Rev. A 74, 064303 (2006)

    ADS  Google Scholar 

  62. Yang, C.P., Chu, S.-I., Han, S.: Quantum information transfer and entanglement with SQUID qubits in cavity QED: a dark-state scheme with tolerance for nonuniform device parameter. Phys. Rev. Lett. 92, 117902 (2004)

    ADS  Google Scholar 

  63. Kis, Z., Paspalakis, E.: Arbitrary rotation and entanglement of flux SQUID qubits. Phys. Rev. B 69, 024510 (2004)

    ADS  Google Scholar 

  64. Genov, G.T., Vitanov, N.V.: Dynamical suppression of unwanted transitions in multistate quantumsystems. Phys. Rev. Lett. 110, 133002 (2013)

    ADS  Google Scholar 

  65. Torosov, B.T., Vitanov, N.V.: Smooth composite pulses for high-fidelity quantum information processing. Phys. Rev. A 83, 053420 (2011)

    ADS  Google Scholar 

  66. Zheng, S.B.: Nongeometric conditional phase shift via adiabatic evolution of dark eigenstates: a new approach to quantum computation. Reply Phys. Rev. Lett. 95, 080502 (2005)

    ADS  Google Scholar 

  67. Král, P., Thanopulos, I., Shapiro, M.: Colloquium: coherently controlled adiabatic passage. Rev. Mod. Phys. 79, 53 (2007)

    ADS  Google Scholar 

  68. Bergmann, K., Theuer, H., Shore, B.W.: Coherent population transfer among quantum states of atoms and molecules. Rev. Mod. Phys. 70, 1003 (1998)

    ADS  Google Scholar 

  69. Fewell, M.P., Shore, B.W., Bergmann, K.: Coherent population transfer among three states: full algebraic solutions and the relevance of non adiabatic processes to transfer by delayed pulses. Aust. J. Phys. 50, 281 (1997)

    ADS  Google Scholar 

  70. Vitanov, N.V., Halfmann, T., Shore, B.W., Bergmann, K.: Laser-induced population transfer by adiabatic passage thchniques. Annu. Rev. Phys. Chem. 52, 763 (2001)

    ADS  Google Scholar 

  71. Daems, D., Ruschhaupt, A., Sugny, D., Guérin, S.: Robust quantum control by a single-shot shaped pulse. Phys. Rev. Lett. 111, 050404 (2013)

    ADS  Google Scholar 

  72. Sugny, D., Kontz, C.: Optimal control of a three-level quantum system by laser fields plus von Neumann measurements. Phys. Rev. A 77, 063420 (2008)

    ADS  Google Scholar 

  73. Van Damme, L., Schraft, D., Genov, G., Sugny, D., Halfmann, T., Guérin, S.: Robust not gate by single-shot-shaped pulses: demonstration of the efficiency of the pulses in rephasing atomic coherences. Phys. Rev. A 96, 022309 (2017)

    ADS  Google Scholar 

  74. Peirce, A.P., Dahleh, M.A., Rabitz, H.: Optimal control of quantum-mechanical systems: existence, numerical approximation, and applications. Phys. Rev. A 37, 4950 (1988)

    ADS  MathSciNet  Google Scholar 

  75. Lu, M., Xia, Y., Song, J., Song, H.S.: Driving three atoms into a singlet state in an optical cavity via adiabatic passage of a dark state. J. Phys. B 46, 015502 (2013)

    ADS  Google Scholar 

  76. Berry, M.V.: Transitionless quantum driving. J. Phys. A 42, 365303 (2009)

    MathSciNet  MATH  Google Scholar 

  77. Chen, X., Lizuain, I., Ruschhaupt, A., Guéry-Odelin, D., Muga, J.G.: Shortcut to adiabatic passage in two- and three-level atoms. Phys. Rev. Lett. 105, 123003 (2010)

    ADS  Google Scholar 

  78. del Campo, A.: Shortcuts to adiabaticity by counterdiabatic driving. Phys. Rev. Lett. 111, 100502 (2013)

    Google Scholar 

  79. Chen, Y.H., Wu, Q.C., Huang, B.H., Song, J., Xia, Y.: Arbitrary quantum state engineering in three-state systems via counterdiabatic driving. Sci. Rep. 6, 38484 (2016)

    ADS  Google Scholar 

  80. Chen, X., Torrontegui, E., Muga, J.G.: Lewis–Riesenfeld invariants and transitionless quantum driving. Phys. Rev. A 83, 062116 (2011)

    ADS  Google Scholar 

  81. del Campo, A., Rams, M.M., Zurek, W.H.: Assisted finite-rate adiabatic passage across a quantum critical point: exact solution for the quantum Ising model. Phys. Rev. Lett. 109, 115703 (2012)

    ADS  Google Scholar 

  82. Chen, X., Ruschhaupt, A., Schmidt, S., del Campo, A., Guéry-Odelin, D., Muga, J.G.: Fast optimal frictionless atom cooling in harmonic traps: shortcut to adiabaticity. Phys. Rev. Lett. 104, 063002 (2010)

    ADS  Google Scholar 

  83. Torrontegui, E., Ibáñez, S., Martínez-Garaot, S., Modugno, M., del Campo, A., Guéry-Odelin, D., Ruschhaupt, A., Chen, X., Muga, J.G.: Shortcuts to adiabaticity. Adv. At. Mol. Opt. Phys. 62, 117 (2013)

    ADS  Google Scholar 

  84. Muga, J.G., Chen, X., Ruschhaupt, A., Guéry-Odelin, D.: Frictionless dynamics of Bose–Einstein condensates under fast trap variations. J. Phys. B 42, 241001 (2009)

    ADS  Google Scholar 

  85. del Campo, A., Boshier, M.G.: Shortcuts to adiabaticity in a time-dependent box. Sci. Rep. 2, 648 (2012)

    Google Scholar 

  86. Martínez-Garaot, S., Torrontegui, E., Chen, X., Muga, J.G.: Shortcuts to adiabaticity in three-level systems using Lie transforms. Phys. Rev. A 89, 053408 (2014)

    ADS  Google Scholar 

  87. Torrontegui, E., Martínez-Garaot, S., Muga, J.G.: Hamiltonian engineering via invariants and dynamical algebra. Phys. Rev. A 89, 043408 (2014)

    ADS  Google Scholar 

  88. Saberi, H., Opatrný, T., Mølmer, K., del Campo, A.: Adiabatic tracking of quantum many-body dynamics. Phys. Rev. A 90, 060301(R) (2014)

    ADS  Google Scholar 

  89. Torosov, B.T., DellaValle, G., Longhi, S.: Non-Hermitian shortcut to adiabaticity. Phys. Rev. A 87, 052502 (2013)

    ADS  Google Scholar 

  90. Torosov, B.T., DellaValle, G., Longhi, S.: Non-Hermitian shortcut to stimulated Raman adiabatic passage. Phys. Rev. A 89, 063412 (2014)

    ADS  Google Scholar 

  91. Ibáñez, S., Chen, X., Torrontegui, E., Muga, J.G., Ruschhaupt, A.: Multiple schrodinger pictures and dynamics in shortcuts to adiabaticity. Phys. Rev. Lett. 109, 100403 (2012)

    ADS  Google Scholar 

  92. Ibáñez, S., Chen, X., Muga, J.G.: Improving shortcuts to adiabaticity by iterative interaction pictures. Phys. Rev. A 87, 043402 (2013)

    ADS  Google Scholar 

  93. Song, X.K., Ai, Q., Qiu, J., Deng, F.G.: Physically feasible three-level superadiabatic quantum driving with multiple Schrödinger dynamics. Phys. Rev. A 93, 052324 (2016)

    ADS  Google Scholar 

  94. Baksic, A., Ribeiro, H., Clerk, A.A.: Speeding up adiabatic quantum state transfer by using dressed states. Phys. Rev. Lett. 116, 230503 (2016)

    ADS  Google Scholar 

  95. Torrontegui, E., Ibáñez, S., Chen, X., Ruschhaupt, A., Guéry-Odelin, D., Muga, J.G.: Fast atomic transport without vibrational heating. Phys. Rev. A 83, 013415 (2011)

    ADS  Google Scholar 

  96. Muga, J.G., Chen, X., Ibáñez, S., Lizuain, I., Ruschhaupt, A.: Transitionless quantum drivings for the harmonic oscillator. J. Phys. B 43, 085509 (2010)

    ADS  Google Scholar 

  97. Torrontegui, E., Chen, X., Modugno, M., Ruschhaupt, A., Guéry-Odelin, D., Muga, J.G.: Fast transitionless expansions of cold atoms in optical Gaussian beam traps. Phys. Rev. A 85, 033605 (2012)

    ADS  Google Scholar 

  98. Masuda, S., Nakamura, K.: Acceleration of adiabatic quantum dynamics in electromagnetic fields. Phys. Rev. A 84, 043434 (2011)

    ADS  Google Scholar 

  99. Masuda, S., Rice, S.A.: Fast-forward assisted STIRAP. J. Phys. Chem. A 119, 3479 (2015)

    Google Scholar 

  100. Chen, X., Muga, J.G.: Transient energy excitation in shortcuts to adiabaticity for the time dependent harmonic oscillator. Phys. Rev. A 82, 053403 (2010)

    ADS  Google Scholar 

  101. Chen, X., Torrontegui, E., Stefanatos, D., Li, J.S., Muga, J.G.: Optimal trajectories for efficient atomic transport without final excitation. Phys. Rev. A 84, 043415 (2011)

    ADS  Google Scholar 

  102. del Campo, A.: Fast frictionless dynamics as a toolbox for low-dimensional Bose–Einstein condensates. Eur. Phys. Lett. 96, 60005 (2011)

    Google Scholar 

  103. Schaff, J.F., Song, X.L., Vignolo, P., Labeyrie, G.: Fast optimal transition between two equilibrium states. Phys. Rev. A 82, 033430 (2010)

    ADS  Google Scholar 

  104. Chen, X., Muga, J.G.: Engineering of fast population transfer in three-level systems. Phys. Rev. A 86, 033405 (2012)

    ADS  Google Scholar 

  105. Santos, A.C., Silva, R.D., Sarandy, M.S.: Shortcut to adiabatic gate teleportation. Phys. Rev. A 93, 012311 (2016)

    ADS  Google Scholar 

  106. Hen, I.: Quantum gates with controlled adiabatic evolutions. Phys. Rev. A 91, 022309 (2015)

    ADS  Google Scholar 

  107. Deffner, S., Jarzynski, C., del Campo, A.: Classical and quantum shortcuts to adiabaticity for scale-invariant driving. Phys. Rev. X 4, 021013 (2014)

    Google Scholar 

  108. del Campo, A.: Frictionless quantum quenches in ultracold gases: a quantum dynamical microscope. Phys. Rev. A 84, 031606(R) (2011)

    ADS  Google Scholar 

  109. Song, X.K., Zhang, H., Ai, Q., Qiu, J., Deng, F.G.: Shortcuts to adiabatic holonomic quantum computation in decoherence-free subspace with transitionless quantum driving algorithm. New J. Phys. 18, 023001 (2016)

    ADS  Google Scholar 

  110. Wu, Q.C., Chen, Y.H., Huang, B.H., Shi, Z.C., Song, J., Xia, Y.: Protecting quantum state in time-dependent decoherence-free subspaces without the rotating-wave approximation. Ann. Phys. 529, 1700186 (2017)

    MathSciNet  MATH  Google Scholar 

  111. Chen, Y.H., Wu, Q.C., Huang, B.H., Xia, Y., Zheng, S.B.: Improving shortcuts to non-hermitian adiabaticity for fast population transfer in open quantum systems. Ann. Phys. 530, 1700247 (2017)

    MathSciNet  Google Scholar 

  112. Kang, Y.H., Chen, Y.H., Huang, B.H., Song, J., Xia, Y.: Invariant-based pulse design for three-level systems without the rotating-wave approximation. Ann. Phys. 529, 1700004 (2017)

    Google Scholar 

  113. Kang, Y.H., Shi, Z.C., Huang, B.H., Song, J., Xia, Y.: Fast and robust quantum information transfer in annular and radial superconducting networks. Ann. Phys. 529, 1700154 (2017)

    MathSciNet  Google Scholar 

  114. Friedman, J.R., Patel, V., Chen, W., Tolpygo, S.K., Lukens, J.E.: Quantum superposition of distinct macroscopic states. Nature 406, 43 (2000)

    ADS  Google Scholar 

  115. Zhou, Z., Chu, S.I., Han, S.: Quantum computing with superconducting devices: a three-level SQUID qubit. Phys. Rev. B 66, 054527 (2002)

    ADS  Google Scholar 

  116. Chen, Y.H., Shi, Z.C., Xia, Y., Zheng, S.B.: Optimal shortcut approach based on an easily obtained intermediate Hamiltonian. Phys. Rev. A 95, 062319 (2017)

    ADS  Google Scholar 

  117. Yang, C.P., Su, Q.P., Zheng, S.B., Han, S.: Generating entanglement between microwave photons and qubits in multiple cavities coupled by a superconducting qutrit. Phys. Rev. A 87, 022320 (2013)

    ADS  Google Scholar 

  118. Xiang, Z.L., Ashhab, S., You, J.Q., Nori, F.: Hybrid quantum circuits. Rev. Mod. Phys. 85, 623 (2013)

    ADS  Google Scholar 

  119. Shao, X.Q., Wang, H.F., Chen, L., Zhang, S., Yeon, K.H.: One-step implementation of the Toffoli gate via quantum Zeno dynamics. Phys. Lett. A 374, 28 (2009)

    ADS  MATH  Google Scholar 

  120. Yang, C.P., Chu, S.I., Han, S.: Efficient scheme for quantum entanglement, quantum information transfer, and quantum gate with three-level SQUID qubits in cavity QED. arXiv:quant-ph/0305130

Download references

Acknowledgements

The authors thank Dr. Ye-Hong Chen, Dr. Bi-Hua Huang, and Dr. Du Ran for many fruitful discussions and very useful comments. This work was supported by the National Natural Science Foundation of China under Grants Nos. 11575045, 11374054 and 11674060.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Xia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Lh., Kang, YH., Shi, ZC. et al. Shortcuts to adiabatic for implementing controlled-not gate with superconducting quantum interference device qubits. Quantum Inf Process 17, 292 (2018). https://doi.org/10.1007/s11128-018-2056-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-2056-x

Keywords

Navigation