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Abstract

In the quantum repeater networks of the quantum Internet, the varying stability of entangled
quantum links makes dynamic topology adaption an emerging issue. Here we define an efficient
topology adaption method for quantum repeater networks. The model assumes the random
failures of entangled links and several parallel demands from legal users. The shortest path
defines a set of entangled links for which the probability of stability is above a critical threshold.
The scheme is utilized in a base-graph of the overlay quantum network to provide an efficient
shortest path selection for the demands of all users of the network. We study the problem of
entanglement assignment in a quantum repeater network, prove its computational complexity,
and show an optimization procedure. The results are particularly convenient for future quantum
networking, quantum-Internet, and experimental long-distance quantum communications.

1 Introduction

In the quantum Internet [1–4], noise, eavesdropping and other random failures on the entangled
links lead to a time-varying link stability, which makes topology adaption of quantum repeater
networks an emerging issue [1–12, 16–30]. Because the failures of the entangled links are random,
the actual shortest paths must be updated dynamically, which is particularly important for a
seamless transmission of quantum information. In a quantum Internet scenario, the quantum
repeater nodes are connected through several different entanglement levels [1–4,8–12,20–24,30–45]
making the problem harder. In this multi-level quantum network, the entanglement level of a link
between the quantum nodes refers to the level of entanglement shared between the source and the
target nodes incident to that link. The level of an entangled link not only identifies the number of
spanned quantum nodes (hop-distance), but also provides a base-point on the stability of that link
between the nodes.

Here, we define a dynamic topology adapting method to efficiently manage the random link
errors of the quantum links of the quantum Internet. The vulnerability of the entangled links
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requires topology adaption to provide seamless communication between the quantum nodes. The
quantum links are characterized by a given probability of existence (stability) in an overlay quantum
network, which describes the probability of a given level of entanglement shared between nodes.
The proposed adapting algorithm determines a set of entangled links in a proactive way for the
formulation of a new shortest path in the updated topology of the overlay entangled quantum
network. Specifically, to minimize the risk of a possible failure, we introduce a threshold parameter
for each entanglement level to construct alternative paths in the network before a given entangled
link becomes critical. In particular, the shortest path is determined in a base-graph, which allows
us to perform efficient decentralized routing in the quantum repeater network [8]. The base-graph is
a k-dimensional n-size lattice graph that contains the mapped entangled overlay quantum network
so that all nodes and connections are preserved. The base-graph allows us to model the entangled
link in a distance-based manner and to perform efficient decentralized routing in the network.

The routing metric in the base-graph is the number of links between a source and the target
(diameter), while the set of new entangled links is determined with respect to their probability
of existence. Because the probability of the stability of a given quantum link depends on the
level of entanglement shared through that link, the metric of dynamic adaption depends on the
actual overlay quantum network setting. Therefore, the algorithm provides a consecutive update
of quantum links and prepares a network for changing link conditions to improve the reliability.

The updated configuration of links provides an input for the decentralized routing scheme,
which is performed purely in a base-graph [8]. We assume a multiuser scenario with multiple
parallel demands in the network; therefore, the task of the dynamic topology adaption algorithm
is to maximize the aggregate link probability over all the demanded paths of the users.

We also study the problem of entanglement assignment and define an optimization procedure.
The problem with entanglement assignment is that an intermediate quantum repeater node occurs
if the demands of two or more source nodes with respect to a given target node are interfering;
i.e., several source nodes would like to reserve a given resource entangled state in an intermediate
quantum node to establish entanglement with a target node through the intermediate node by the
operation of entanglement swapping. The solution to this problem requires the definition of disjoint
sets in an intermediate quantum node, a set of entangled resource states (resource set), and a set
of interfering entangled states (interference set). With the utilization of our base-graph approach,
we characterize the computational complexity of the problem and prove that efficient optimized
solutions exist.

This paper is organized as follows. In Section 2, we discuss the proposed topology adaption
algorithm for the quantum Internet. In Section 3, we study the problem of entanglement assignment
and provide an optimization for managing interfering demands. Finally, Section 4 concludes the
results. Supplemental information is included in the Appendix.

2 Topology Adaption

Let N be an entangled overlay quantum network, N = (V,S), where S is an initial set of entangled
links S = {Ei}, i = 0, . . . , h−1, where Ei is Ll-level entangled link, l = 1, 2, . . . , r, while V is the set
of quantum nodes of the overlay quantum network N . Assuming a quantum repeater network with
the doubling architecture [1–4], for an Ll-level entangled link the d(x, y)Ll

hop distance between
x and y, where x, y ∈ V , is d(x, y)Ll

= 2l−1 [1, 8], and each Ll-level entangled link E(x, y) can be
established only with a given probability, PrLl

(E(x, y)), that is defined without loss of generality
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as
PrLl

(E(x, y)) = Pr(S(E(x, y))) · (1− Pr(L(E(x, y)))) · F (|ψ(E(x,y))〉), (1)

where Pr(S(E(x, y))) is the success probability of the S(E(x, y)) entanglement swapping procedure
between x and y, Pr(L(E(x, y))) is the photon loss probability of the quantum link between nodes x
and y, while F (|ψ(E(x,y))〉) is the fidelity of the d-dimensional maximally entangled system |ψ(E(x,y))〉
associated to link E(x, y), respectively.

Note, our proposed scheme can be extended to next-generation quantum repeater networks [34]
that do not rely on the doubling architecture [1, 8].

The aim of the link configuration algorithm is to determine the shortest path between a trans-
mitter node A and a target node B via the updated link set S∗ = {E∗i }, i = 0, . . . , h∗ − 1 of
Ll-level entangled links, where set S∗ identifies those links which have the highest probability in
the network. Each link of S∗ is characterized by a metric called entanglement throughput, which
specifically is the number of d-dimensional maximally entangled states per second of a particular
fidelity F [1], and it is denoted by Q(F )(E∗i ) for a given E∗i in the modified entangled overlay
quantum network N = (V,S∗).

To describe the entangled connections between the quantum nodes, we characterize a base-
graph. The base-graph is an abstracted graph that contains all information about the overlay
(physical) quantum network (node positions, hop-distances, established entangled links, link prop-
erties). As it has been shown in [8], the base-graph approach allows us to perform efficient decen-
tralized routing in a quantum Internet scenario.

Let Gk be a k-dimensional n-size base-graph of an entangled overlay quantum network N [8].
Let x, y ∈ V two nodes in N , and let φ(x) and φ(y) be the maps of x, y in Gk, where φ : V → Gk

is a mapping function [8] that maps from V onto Gk. As it can be verified [8], the p(φ(x), φ(y))
probability that φ(x) and φ(y) are connected through an Ll-level entanglement in Gk is as

p(φ(x), φ(y)) =
d(φ(x), φ(y))−k

Hn
+ cφ(x),φ(y), (2)

where d(φ(x), φ(y)) is the L1 distance between φ(x) and φ(y) in Gk, Hn =
∑

z d(φ(x), φ(z)) is
a normalizing term [8] taken over all entangled contacts of node φ(x) in Gk, while cφ(x),φ(y) is a
constant defined [8, 13,14] as

cφ(x),φ(y) = PrLl
(E(x, y))− d(φ(x), φ(y))−k

Hn
, (3)

where PrLl
(E(x, y)) is the probability that nodes x, y ∈ V are connected through an Ll-level

entangled link E(x, y) in the overlay quantum network N .
Due to noise or other random link failure, the PrLl

(E(x, y)) probability of a given Ll-level
entangled link E(x, y) is not constant in the overlay quantum network N . This fact has the
consequence that an actual shortest path determined for set S cannot be used further, and a
new shortest path needs to be determined. The aim of the adaption algorithm is to update the
p(φ(x), φ(y)) probabilities in the base-graph according to a threshold Pr∗Ll

for a given Ll-level
entangled link E(x, y) to determine the actual shortest path for S∗. Only that E(x, y) link will
be included in the updated set S∗ of links for which the condition PrLl

(x, y) ≥ Pr∗Ll
holds. The

algorithm is performed for all entangled contacts of a given node φ(x) for ∀x. Then, we apply the
decentralized routing method A defined in [8] to determine the shortest path by at most O(log n)2

steps in a k-dimensional n-size base-graph Gk.
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Algorithm 1 Topology Adaption.

Step 1. Let φ(A) refer to the map of a source node A in the overlay network N , and let
φ(B) be the map of a target node B ∈ V in Gk. For each pair of neighboring nodes φ(x)
and φ(y) in Gk, estimate PrLl

(E(x, y)) of an Ll-level entangled link E(x, y), where x and y
are nodes in the overlay network N , while Ll is the level of entanglement between x and y.
Let S refer to the initial set of entangled links.

Step 2. Using a threshold probability Pr∗Ll
of an Ll-level entangled link, update

p(φ(x), φ(y)) for all node pairs {φ(x), φ(y)} ∈ Gk via the following rule:

p (φ (x) , φ (y))∗ =

{
d(φ(x),φ(y))−k

Hn
+ c∗φ(x),φ(y), if PrLl

(x, y) ≥ Pr∗Ll

0, otherwise
,

where c∗φ(x),φ(y) = Pr∗Ll
(E (x, y))− d(φ(x),φ(y))−k

Hn
.

Step 3. Using the results of Step 2, determine a new set S∗ of entangled links for all node
pairs of Gk.

Step 4. Using the new link configuration S∗ determined in Step 3, find the new shortest
path via A of [8] between source node φ(A) and target node φ(B) in terms of diameter
D(φ(A), φ(B)).

The topology adaption algorithm R in Gk is given in Algorithm 1.
The R topology adaption algorithm performed on an initial overlay quantum network N =

(V,S) is illustrated in Fig. 1. The algorithm S∗ in the k-dimensional n-size base-graph Gk results
in the modified topology overlay network N = (V,S∗). A shortest path for S∗ is determined by the
decentralized routing algorithm A of [8].

3 Entanglement Assignment

In this section, we formulate the problem of entanglement assignment for an entangled overlay
quantum network N = (V,S∗), where S∗ is determined by the R topology adaption algorithm in
the Gk, the k-dimensional base-graph of the entangled overlay quantum network N .

Let φ(A)Uk
and φ(B)Uk

refer to the source and target nodes associated with the demand of a
user Uk in Gk, k = 1 . . .K. Let Eh refer to the entangled link Eh(φ(xi), φ(xj)), and let Lh be the
set (resource set) of d-dimensional maximally entangled states shared between φ(xi), φ(xj) through
link Eh, as [1, 8]

Lh = {|ψ0〉, . . . , |ψg−1〉}, (4)

where g is the number of entangled states established between nodes φ(xi) and φ(xj) through Eh.
Let the set S∗ = {E∗h},h = 0, . . . , h∗ − 1 of entangled links determined in Gk by Step 2 of R.

The problem of the entanglement assignment between φ(A)Uk
and φ(B)Uk

for all Uk is subject to
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Figure 1: The topology adaption scheme in an overlay quantum repeater network. The initial
network N = (V,S) consists of a transmitter node (A) a distant target node (B), and q intermediate
repeater nodes Ri, i = 1, . . . , q. The set of S contains Ll-level entangled links, l = 1, 2, . . . , r. Nodes
A and B have an actual shortest path in S (a). The random link failures (noise, other link damage)
leads to modified overlay network N = (V,S∗), with Ri, i = 1, . . . , q∗ repeater nodes and link set S∗.
The new shortest path (newer links are depicted by the red lines) is determined by decentralized
routing in the base-graph Gk (b).

the following minimization, precisely:

ζ(C) = min
∑
k∈K

∑
f∈Lh

∑
h∈E

(1− PrLl
(E*

h))Cfk,h

= min
∑
k∈K

∑
f∈Lh

∑
h∈E

(1− p*h)Cfk,h,
(5)

where K is the number of users, Lh is the resource set of d-dimensional maximally entangled states
available through the entangled link E∗h ∈ S∗, E is a set of edges, PrLl

(E∗h) is the probability
of existence of the Ll-level entangled link E∗h in the overlay network N , p∗h is the corresponding

probability of the Ll-level entangled link E∗h in the base-graph Gk, and Cfk,h is a variable which
equals 1 if the f ∈ Lh maximally entangled resource state |ψf 〉 is assigned to the k-th user Uk
through link E∗h or 0 otherwise.

Let Q(F )(E∗h) refer to the number of d-dimensional maximally entangled states per second of a
particular fidelity F available through the entangled link E∗h, and let Q(F )(Uk) be the demand of
user Uk with respect to the number of d-dimensional maximally entangled states per second of a
particular fidelity F through link E∗h. Specifically, for a given E∗h, the following relation holds [15]:∑

k∈K

∑
f∈Lh

Cfk,hQ
(F )(Uk) ≤ Q(F )(E∗h) . (6)

As it can be verified via the flow conservation rules (Kirchhoff’s law) [15], for all users Uk, a quantity
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∆(Cfk,h) can be defined with respect to Cfk,h, without loss of generality, as

∆(Cfk,h) =
∑
f∈Lh

∑
Wh,j

Cfk,h −
∑
f∈Lh

∑
Wh,i

Cfk,h, (7)

where

Wh,j :h ∈ {h : E*
h(φ(xt)Uk

, φ(xj)Uk
) ∈ E;

φ(xj)Uk
∈ V ;

φ(xj)Uk
6= φ(xt)Uk

},
(8)

where φ(xt)Uk
∈ Gk is a node associated to a given user k ∈ K, such that E∗h(φ(xt)Uk

, φ(xj)Uk
)

is a link incident out of φ(xt)Uk
∈ Gk, while E∗h(φ(xi)Uk

, φ(xt)Uk
) is a link incident onto node

φ(xt)Uk
∈ Gk in the base-graph [15], while

Wh,i :h ∈ {h : E*
h(φ(xi)Uk

, φ(xt)Uk
) ∈ E;

φ(xi)Uk
∈ V ;

φ(xi)Uk
6= φ(xt)Uk

}.
(9)

As one can readily check, using (8) and (9), ∆(Cfk,h) is yielded as

∆(Cfk,h) =


1, if φ (xt)Uk

= φ (A)Uk

−1, if φ (xt)Uk
= φ (B)Uk

0, otherwise

, (10)

where φ(A)Uk
and φ(B)Uk

are the source and target nodes of Uk.
Let’s assume the situation of a source node φ(A)Ui = φ(si) of user Ui, and a source node

φ(B)Uj = φ(sj) of user Uj would like to share entanglement with a target node φ(yi) through an
φ(xi) intermediate node. Let Lh refer to the resource set of entangled states shared between φ(xi)
and φ(yi) through an entangled link E∗h. Let each source node be associated to a given entangled
state f from Lh (resource state) in φ(xi).

Let’s index the interfering queries of φ(si), φ(sj) as {q, q′} ∈ I, where q refers to the demand
of φ(si), q

′ is the interfering demand of φ(sj), and I is a set of interfering demands (interference
set) with respect to f ∈ Lh.

The next constraint assures that for a given maximally entangled resource state f ∈ Lh, at
most one interfering entangled state (i.e., q or q′) is assigned from I for each {q, q′} as∑

k∈K
Kf
k,q +

∑
k∈K

Kf
k,q′ ≤ 1, (11)

where Kf
k,h is a variable equal to 1 if q ∈ I is assigned to resource state f ∈ Lh or 0 otherwise. The

parallel serving of the interfering demands is trivial if |I| ≤ |Lh|. On the other hand, if |I| > |Lh|,
the problem requires an optimization procedure to achieve an optimal assignment.
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Method 1 Optimization (assignment of interfering demands).

Problem 1 Determine S∗ via R. At a given set I and Lh, where |I| > |Lh|, determine the
optimal assignment of the entangled states of I in a given node φ(xi).

Constraint 1. For a given resource state f of set Lh, assign at most one entangled state q
from I.
Constraint 2. If all resource states of Lh are assigned, define multiple sets Li,
0 < i ≤ z − 2, where z is the degree of φ(xi). For a given resource state w of Li, assign at
most one entangled state u from I. Stop the procedure as |Lh|+ |L0|+ . . .+ |Li| ≥ |I|.
Constraint 3. To achieve the minimization of the number of resource states |Lh| and |Li|,
0 < i ≤ z − 1 in φ(xi), minimize |I|.

3.1 Optimization

The optimal assignment of the interfering entangled states of I at a given set of S∗ = {E∗h},h =
0, . . . , h∗ − 1 is characterized by the following constraints.

The constraints of the optimization method is defined in Method 1.
The optimization problem for a quantum node φ(xi) is illustrated in Fig. 2. Source nodes φ(si),

φ(sj) are associated with the resource entangled state |ψf 〉 from set Lh = {|ψf 〉} via demands
{q, q′} ∈ I in an intermediate node φ(xi) to establish entanglement with a distant target node
φ(yi).

Set Lh consists of the stored entangled resource states of φ(xi), which are established between
φ(xi) and φ(yi) through link E∗h, while set Li = {|ψt〉} refers to the stored entangled resource
states of φ(xi) and φ(xj) established via E∗i . The entangled resource states between {φ(si), φ(xi)}
and {φ(sj), φ(xi)} form the set I of interfering entangled states. The link configuration S∗ is
determined by the link selection algorithm R. As the allocation of the resource entanglement is
achieved, the entanglement is extended from the source nodes φ(si), φ(sj) to the target node φ(yi)
through the intermediate node φ(xi) by the US entanglement swapping operation (not shown). The
US operation is applied on the entangled states of I and Lh and I and Li, respectively.

3.2 Computational Complexity

Let’s assume an entangled overlay quantum network N with |V | nodes. At a given interfering set I
and resource set Lh of E∗h, the aim is to determine the optimal assignment of the entangled states
of I. Let |I| = k, where k is a minimized value.

An assignment of the k states of I to a resource set Lh of link E∗h is referred as valid if Lh
consists of exactly k entangled states, |I| = |Lh| = k. If |Lh| < k, then |I| = k > |Lh|, in which
case the assignment is referred to as not valid. Assignments for all Li sets can be performed in
at most O(|E∗h|) ≤ O(|V |2) steps by some fundamental theory. By a similar assumption, whether
different states from I are assigned to different states of given set Li can also be determined in
at most O(|V |2) steps. In fact, these complexities prove that the problem of assignment of the
entangled states belongs to the class of NP problems [15].

In particular, it can also be verified that there exists a known NP-complete problem, which
polynomially reduces to the entanglement assignment problem. Precisely, this problem is the
optimal vertex-coloring of a graph of conflicts G (graph-coloring) [15] and is discussed as follows.
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Figure 2: A |Lh| < |I| network situation in node φ(xi) at a given S∗. Source nodes φ(si), φ(sj)
are associated with the resource state |ψf 〉 from set Lh = {|ψf 〉} via demands {q, q′} ∈ I in an
intermediate node φ(xi) to establish entanglement with a distant target node φ(yi). The conflicting
nodes φ(si), φ(sj) define a set of I at a given resource set Lh.

3.3 Polynomial Reduction

Let G = (V,E) a graph of conflicts, where V is a set of vertices, while E is a set of edges, |E| = |S∗|.
If two vertices i, j ∈ V are connected by an edge e(i, j) ∈ E, the vertices i, j are referred to as
conflicting vertices. The problem is therefore to find the optimal assignment of colors to vertices
from V using exactly k colors such that any two conflicting vertices of V receive different colors.

As it can be verified, identifying the vertices of V by the entangled states of φ(xi) via set Zi,
i = 0, . . . , |V |−1, where a set Zi consist of all entangled states of node φ(xi), an edge e(i, j) between
i, j ∈ V represents a situation when two states q, q′ ∈ I are interfering with respect to a given state
in f ∈ Zi, thus vertices i, j require different colors.

Let
Z∗ = Z0

⋃
Z1, . . . ,

⋃
Zi, i = 0, . . . , |V | − 1, (12)

and a set
I∗ = I0

⋃
I1, . . . ,

⋃
Ii, i = 0, . . . , |V | − 1, (13)

of all interfering entangled states, where

|I∗| = k∗. (14)

8



Specifically, the problem for a given N = (V,S∗) is therefore that the conflicting vertices of Z∗
have to be assigned to different states from a corresponding set I∗.

Without loss of generality, since the sets Zi depends only on the determination of the link set
S∗, using a k-dimensional n-size base-graph Gk, the entanglement assignation problem for a given
Uk can be solved in at most O(log n)2 steps by our algorithm. As follows, if it is feasible to color
vertices from G using k∗ different colors, then any valid coloring proper the assignment of the k∗

different states from Z∗ for the interfering states of I∗.
The graph coloring problem [15] for an entangled overlay quantum network N = (V,S∗) at Z∗

and |I∗| = k∗ is depicted in Fig. 3.

0

1

2

1V

*

Figure 3: A graph of conflicts of set Z∗ = Z0
⋃
Z1, . . . ,

⋃
Zi at |I∗| = k∗, where I∗ =

I0
⋃
I1, . . . ,

⋃
Ii, i = 0, . . . , |V | − 1, of an entangled overlay quantum network N = (V,S∗). The

vertices connected by edge represent interfering states. Since there are k∗ interfering states in I∗,
the vertices of G have to be colored by exactly k∗ different colors such that connected vertices have
to receive different colors.

In particular, these prove that the known NP-complete problem of vertex-coloring of a graph
of conflicts can be transformed in polynomial time to the entanglement assignment problem, thus
it polynomially reduces to our problem.

These facts prove that the entanglement assignment problem is NP-complete; therefore, to
provide a time-efficient solution, an optimized approach is required.

In our case, the time complexity is determined only by A, as the problem is to find a shortest
path between a neighbor of the intermediate node, which is not the target node, and the target
node. As follows, the overall complexity to solve (5) is bounded from above by O(log n)2 [8]. If the
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intermediate node has no other neighbor besides the target node, then no other path exists between
the intermediate node and the target node, requiring the establishment of a new entangled state
between the intermediate node and the target node.

4 Conclusions

We defined a dynamic topology adaption algorithm for the quantum Internet. The method deter-
mines a set of entangled links to establish a new shortest path between the nodes. We utilized a
base-graph construction for the efficient determination of the shortest paths required by the parallel
demands of a multiuser network scenario. We studied the problem of entanglement assignment and
defined an optimization procedure. The results can be applied directly for routing optimization
problems in entangled quantum networks and allow for the provision of reliable quantum commu-
nications in the presence of time-varying stability quantum links of the quantum Internet.
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A Appendix

A.1 Notations

The notations of the manuscript are summarized in Table A.1.

Table A.1: Summary of notations.

Notation Description

L1 Manhattan distance (L1 metric).

l Level of entanglement.

Ll An l-level entangled link. For an Ll link, the hop-distance is 2l−1.

d(x, y)Ll
Hop-distance of an l-level entangled link between nodes x and y.

F Fidelity of entanglement.

L1 L1-level (direct) entanglement, d(x, y)L1 = 20 = 1.

L2 L2-level entanglement, d(x, y)L2 = 21 = 2.

L3 L3-level entanglement, d(x, y)L3 = 22 = 4.

E(x, y) An edge between quantum nodes x and y, refers to an Ll-level en-
tangled link.

PrLl
(E(x, y)) Probability of existence of E(x, y), 0 < PrLl

(E(x, y)) ≤ 1.

N Overlay quantum network, N = (V,E), where V is the set of nodes,
E is the set of edges.

V Set of nodes of N .

E Set of edges of N .

Gk An n-size, k-dimensional base-graph.

n Size of base-graph Gk.

k Dimension of base-graph Gk.

A Transmitter node, A ∈ V .

B Receiver node, B ∈ V .

Ri A repeater node in V , Ri ∈ V .

Ej Identifies an Ll-level entanglement, l = 1, . . . , r, between quantum
nodes xj and yj .

E = {Ej} Let E = {Ej}, j = 1, . . . ,m refer to a set of edges between the nodes
of V .
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φ(x) Position assigned to an overlay quantum network node x ∈ V in a
k-dimensional, n-sized finite square-lattice base-graph Gk.

φ : V → Gk Mapping function that achieves the mapping from V onto Gk.

d(φ(x), φ(y)) L1 distance between φ(x) and φ(y) in Gk. For φ(x) = (j, k), φ(y) =
(m, o) evaluated as
d((j, k), (m, o)) = |m− j|+ |o− k|.

p(φ(x), φ(y)) The probability that φ(x) and φ(y) are connected through an Ll-level
entanglement in Gk.

Hn Normalizing term, defined as Hn =
∑

z d(φ(x), φ(z)).

cφ(x),φ(y) Constant defined as
cφ(x),φ(y) = PrLl

(E(x, y))− d(φ(x),φ(y))−k

Hn
,

where PrLl
(E(x, y)) is the probability that nodes x, y ∈ V are con-

nected through an Ll-level entanglement in the overlay quantum net-
work N .

R Topology adaption algorithm in base-graph Gk.

S∗ Updated set of links, S∗ = {E∗i }, i = 0, . . . , h∗ − 1 of Ll-level entan-
gled links, l = 1, 2, . . . , r. Set of entangled links that have the highest
probability in the network.

Q(F )(·) Entanglement throughput. Number of d-dimensional maximally en-
tangled states per second of a particular fidelity F .

Pr∗Ll
Threshold for a given Ll-level entangled link E(x, y) from set S∗ to
determine the actual shortest path, PrLl

(x, y) ≥ Pr∗Ll
.

D(φ(A), φ(B)) Diameter between source node φ(A) and target node φ(B). Refers
to the maximum value of the shortest path (total number of edges
on a path) between φ(A) and φ(B).

Lh Resource set, a set of d-dimensional maximally entangled states
shared between φ(xi), φ(xj) through link Eh,
Lh = {|ψ0〉, . . . , |ψg−1〉},
where g is the number of entangled states established between nodes
φ(xi) and φ(xj) through Eh.

ζ(C) Parameter subject to a minimization.

Uk User.

K Number of users.

PrLl
(E∗h) Probability of existence of an Ll-level entangled link E∗h in the overlay

network N .
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p∗h Probability of the Ll-level entangled link E∗h in the base-graph Gk.

Cfk,h Variable, equals 1 if the f ∈ Lh maximally entangled resource state
|ψf 〉 is assigned to the k-th user Uk through link E∗h, 0 otherwise.

Q(F )(Uk) A demand of user Uk with respect to the number of d-dimensional
maximally entangled states per second of a particular fidelity F
through link E∗h.

φ(xt)Uk
∈ Gk A node, associated to a given user k ∈ K such that

E∗h(φ(xt)Uk
, φ(xj)Uk

) is a link incident out of φ(xt)Uk
∈ Gk, while

E∗h(φ(xi)Uk
, φ(xt)Uk

) is a link incident onto node φ(xt)Uk
∈ Gk in

the base-graph.

∆(Cfk,h) Parameter for flow conservation rules (from Kirchhoff’s law).

Wh,j Parameter for flow conservation rules (from Kirchhoff’s law).

Wh,i Parameter for flow conservation rules (from Kirchhoff’s law).

φ(A)Uk
A source node of Uk.

φ(B)Uk
A target node of Uk.

φ(si) Source node of user Ui.

φ(sj) Source node of user Uj .

φ(xi) An intermediate node.

f Resource state, an entangled state from the Lh resource set.

q A demand from a source node φ(si).

q′ An interfering demand from a source node φ(sj).

I Interference set, a set of interfering demands with respect to resource
state f ∈ Lh.

Kf
k,h A variable, equal to 1 if q ∈ I is assigned to resource state f ∈ Lh,

0 otherwise.

k Cardinality of interference set I, |I| = k.

G = (V,E) A graph of conflicts, where V is a set of vertices, while E is a set of
edges, |E| = |S∗|.

e(i, j) ∈ E An edge in a graph of conflicts G = (V,E), the vertices i, j are
conflicting vertices.

Zi A set of entangled states of node φ(xi).

Z∗ A set of vertices of in a graph of conflicts G, Z∗ = Z0
⋃
Z1, . . . ,

⋃
Zi,

i = 0, . . . , |V | − 1.
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I∗ Set of interfering entangled states, I∗ = I0
⋃
I1, . . . ,

⋃
Ii, i =

0, . . . , |V | − 1.

k∗ Variable, identifies the number of interfering states in set I∗.
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