Skip to main content
Log in

Enhanced least significant qubit watermarking scheme for quantum images

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum watermarking aims to protect the copyright of an image and authenticate its ownership by using visible or invisible signals embedded into the carrier image. An enhanced quantum watermarking scheme is proposed on the basis of the improved novel enhanced quantum representation of digital images. In contrast to previous quantum watermarking techniques where all the pixels of a carrier image are considered, the proposed scheme utilizes the edge pixels of a carrier image, which cannot be noticed visually as the embedding region. This was accomplished by embedding the scaled watermark image into the two least significant qubits of the selected pixels on the basis of a careful analysis of the size of the edge pixels of the carrier image and the watermark image. Then, the corresponding quantum realization circuits were obtained using some basic quantum operations. Theoretical analysis and simulation-based experimental results proved both the feasibility and the capabilities of the proposed watermarking scheme, which is keyless and blind, with higher visual quality and better robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  2. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of 35th Annual Symposium on Foundations of Computer Science, pp. 124–134 (1994)

  3. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, pp. 212–219 (1996)

  4. Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inf. Process. 10, 63–84 (2011)

    Article  MathSciNet  Google Scholar 

  5. Zhang, Y., Lu, K., Gao, Y., Wang, M.: NEQR: a novel enhanced quantum representation of digital images. Quantum Inf. Process. 12, 2833–2860 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  6. Zhang, Y., Lu, K., Xu, K., Gao, Y., Wilson, R.: Local feature point extraction for quantum images. Quantum Inf. Process. 14, 1573–1588 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  7. Zhang, Y., Lu, K., Gao, Y.H.: QSobel: a novel quantum image edge extraction algorithm. Sci. China Inf. Sci. 58, 1–13 (2014)

    MATH  Google Scholar 

  8. Jiang, N., Wang, L.: Quantum image scaling using nearest neighbor interpolation. Quantum Inf. Process. 14, 1559–1571 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  9. Sang, J., Wang, S., Niu, X.: Quantum realization of the nearest-neighbor interpolation method for FRQI and NEQR. Quantum Inf. Process. 15, 37–64 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  10. Zhou, R.-G., Hu, W., Fan, P., Ian, H.: Quantum realization of the bilinear interpolation method for NEQR. Sci. Rep. 53(7), 2511 (2017)

    Article  ADS  Google Scholar 

  11. Wang, J., Jiang, N., Wang, L.: Quantum image translation. Quantum Inf. Process. 14, 1589–1604 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  12. Zhou, R.G., Tan, C., Ian, H.: Global and local translation designs of quantum image based on FRQI. Int. J. Theor. Phys. 56, 1382–1398 (2017)

    Article  MathSciNet  Google Scholar 

  13. Li, H.S., Qingxin, Z., Lan, S., Shen, C.Y., Zhou, R., Mo, J.: Image storage, retrieval, compression and segmentation in a quantum system. Quantum Inf. Process. 12, 2269–2290 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  14. Caraiman, S., Manta, V.I.: Image segmentation on a quantum computer. Quantum Inf. Process. 14, 1693–1715 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  15. Jiang, N., Dang, Y., Wang, J.: Quantum image matching. Quantum Inf. Process. 15, 3543–3572 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  16. Luo, G., Zhou, R., Liu, X.: Fuzzy matching based on gray-scale difference for quantum images. Int. J. Theor. Phys. 57, 2447–2460 (2018)

    Article  MathSciNet  Google Scholar 

  17. Liang, H.R., Tao, X.Y., Zhou, N.R.: Quantum image encryption based on generalized affine transform and logistic map. Quantum Inf. Process. 15, 2701–2724 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  18. Zhou, N., Hu, Y., Gong, L., Li, G.: Quantum image encryption scheme with iterative generalized Arnold transforms and quantum image cycle shift operations. Quantum Inf. Process. 16, 164–186 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  19. Song, X.H., Wang, S., Abd El-Latif, A.A., Niu, X.M.: Quantum image encryption based on restricted geometric and color transformations. Quantum Inf. Process. 13, 1765–1787 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  20. Gong, L.H., He, X.T., Cheng, S., Hua, T.X., Zhou, N.R.: Quantum image encryption algorithm based on quantum image XOR operations. Int. J. Theor. Phys. 55, 3234–3250 (2016)

    Article  MathSciNet  Google Scholar 

  21. Li, P., Zhao, Y.: A Simple Encryption Algorithm for Quantum Color Image. Int. J. Theor. Phys. 56, 1961–1982 (2017)

    Article  MathSciNet  Google Scholar 

  22. Yan, F., Iliyasu, A.M., Le, P.Q.: Quantum image processing: a review of advances in its security technologies. Int. J. Quantum Inf. 15, 1730001 (2017)

    Article  MathSciNet  Google Scholar 

  23. Iliyasu, A.M., Le, P.Q., Dong, F., Hirota, K.: Watermarking and authentication of quantum images based on restricted geometric transformations. Inf. Sci. (Ny) 186, 126–149 (2012)

    Article  MathSciNet  Google Scholar 

  24. Zhang, W.-W., Gao, F., Liu, B., Wen, Q.-Y., Chen, H.: A watermark strategy for quantum images based on quantum fourier transform. Quantum Inf. Process. 12, 793–803 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  25. Song, X.H., Wang, S., Liu, S., Abd El-Latif, A.A., Niu, X.M.: A dynamic watermarking scheme for quantum images using quantum wavelet transform. Quantum Inf. Process. 12, 3689–3706 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  26. Song, X., Wang, S., Abd El-Latif, A., Niu, X.: Dynamic watermarking scheme for quantum images based on Hadamard transform. Multimed. Syst. 20, 379–388 (2014)

    Article  Google Scholar 

  27. Yang, Y.G., Jia, X., Xu, P., Tian, J.: Analysis and improvement of the watermark strategy for quantum images based on quantum Fourier transform. Quantum Inf. Process. 12, 2765–2769 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  28. Yang, Y.G., Xu, P., Tian, J., Zhang, H.: Analysis and improvement of the dynamic watermarking scheme for quantum images using quantum wavelet transform. Quantum Inf. Process. 13, 1931–1936 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  29. Yang, Y.G., Wang, Y., Zhao, Q.Q.: Letter to the Editor regarding “Dynamic watermarking scheme for quantum images based on Hadamard transform” by Song et al. Multimed. Syst. 22, 304 (2016)

    Article  Google Scholar 

  30. Jiang, N., Wang, L.: A novel strategy for quantum image steganography based on Moire pattern. Int. J. Theor. Phys. 54, 1021–1032 (2015)

    Article  Google Scholar 

  31. Jiang, N., Zhao, N., Wang, L.: LSB based quantum image steganography algorithm. Int. J. Theor. Phys. 55, 107–123 (2015)

    Article  Google Scholar 

  32. Sang, J., Wang, S., Li, Q.: Least significant qubit algorithm for quantum images. Quantum Inf. Process. 15, 4441–4460 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  33. Miyake, S., Nakamae, K.: A quantum watermarking scheme using simple and small-scale quantum circuits. Quantum Inf. Process. 15, 1849–1864 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  34. Heidari, S., Naseri, M.: A novel LSB based quantum watermarking. Int. J. Theor. Phys. 55, 4205–4218 (2016)

    Article  Google Scholar 

  35. Naseri, M., Heidari, S., Baghfalaki, M., Fatahi, N., Gheibi, R., Farouk, A., Habibi, A.: A new secure quantum watermarking scheme. Optik (Stuttg) 139, 77–86 (2017)

    Article  ADS  Google Scholar 

  36. Li, P., Zhao, Y., Xiao, H., Cao, M.: An improved quantum watermarking scheme using small-scale quantum circuits and color scrambling. Quantum Inf. Process. 16, 127–160 (2017)

    Article  ADS  Google Scholar 

  37. Zhou, R.G., Hu, W., Fan, P.: Quantum watermarking scheme through Arnold scrambling and LSB steganography. Quantum Inf. Process. 16, 212–232 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  38. Zhou, R.G., Zhou, Y., Zhu, C., Wei, L., Zhang, X., Ian, H.: Quantum watermarking scheme based on INEQR. Int. J. Theor. Phys. 57, 1120–1131 (2018)

    Article  MathSciNet  Google Scholar 

  39. Tirkel, A.Z., Rankin, G.A., van Schyndel, R.G., Ho, W.J., Osborne, C.F.: Electronic watermark. Dicta 93, 666–672 (1993)

    Google Scholar 

  40. Dong, W., Kaifeng, H.: Design of quantum comparator based on extended general toffoli gates with multiple targets. Comput. Sci. 39, 302–306 (2012)

    Google Scholar 

  41. Barenco, A., Bennett, C.H., Cleve, R., Divincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457–3467 (1995)

    Article  ADS  Google Scholar 

  42. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  43. Hung, W.N.N., Song, X., Yang, G., Yang, J., Perkowski, M.: Optimal synthesis of multiple output Boolean functions using a set of quantum gates by symbolic reachability analysis. IEEE Trans. Comput. Des. Integr. Circuits Syst. 25, 1652–1663 (2006)

    Article  Google Scholar 

  44. Jiang, N., Wang, J., Mu, Y.: Quantum image scaling up based on nearest-neighbor interpolation with integer scaling ratio. Quantum Inf. Process. 14, 4001–4026 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  45. Zhou, R.-G., Hu, W., Fan, P., Luo, G.: Quantum color image watermarking based on Arnold transformation and LSB steganography. Int. J. Quantum Inf. 16, 1850021 (2018)

    Article  MathSciNet  Google Scholar 

  46. Zhou, R.G., Luo, J., Liu, X.A., Zhu, C., Wei, L., Zhang, X.: A novel quantum image steganography scheme based on LSB. Int. J. Theor. Phys. 57, 1848–1863 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. 61463016, 61763014, “Science and technology innovation action plan” of Shanghai in 2017 under Grant No. 17510740300, and the Aid program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province. H.I. acknowledges the support by FDCT of Macau under grant 013/2013/A1, University of Macau under Grants MRG022/IH/2013/FST and MYRG2014-00052-FST, and National Natural Science Foundation of China under Grant No. 11404415.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaofeng Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, G., Zhou, RG., Hu, W. et al. Enhanced least significant qubit watermarking scheme for quantum images. Quantum Inf Process 17, 299 (2018). https://doi.org/10.1007/s11128-018-2075-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-2075-7

Keywords

Navigation