Skip to main content
Log in

Concurrence and three-tangle of the graph

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this article, we study the entanglement properties of two-qubit quantum states based on concurrence using the graph-theoretic approach. Entanglement properties of a density operator are obtained from the combinatorial Laplacian matrix which is constructed for a given graph. In the study of entanglement, we found that measure of entanglement is either \( \frac{1}{ |{E}| } \) or zero for simple graphs. We further propose a simple method to evaluate the three-tangle and analyze inequivalent classes belonging to three-qubit pure states using graph-theoretic perspective. Our results allow a clear distinction between three-qubit separable states, genuinely entangled Greenberger–Horne–Zeilinger and W states, purely based on graphical interpretations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

\(|{E}| \) :

Cardinality of edge set E

\( ||a+ib || \) :

Absolute value of \(a+ib\)

\( |{\alpha }\rangle \) :

Ket vector or column vector \( |{0}\rangle = \left[ \begin{array}{r}1 \\ 0 \end{array}\right] \) and \( |{1}\rangle = \left[ \begin{array}{r} 0 \\ 1\end{array}\right] \)

\( \langle {\alpha }|\) :

Bra vector or row vector \( \langle {0}| = \left[ \begin{array}{rr} 1&0 \end{array}\right] \) and \( \langle {1}| = \left[ \begin{array}{rr} 0&1 \end{array}\right] \)

Tr(A) :

Trace of matrix A

\( \mathrm {null}(A) \) :

Null space of A

det(A) :

Determinant of matrix A

\(\rho _G\) :

Density operator of graph G

\(C(\rho )\) :

Concurrence of the density operator

\(\varTheta \) :

Measure of entanglement in \( {{\mathbb {C}}}^n\otimes {{\mathbb {C}}}^n \)

References

  1. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145 (2002)

    Article  ADS  Google Scholar 

  2. Nielsen, M.A., Chuang, I.L.: Quantum Information and Quantum Computation, vol. 2, no. 8, p. 23. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  3. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  4. Bennett, C.H., Wiesner, S.J.: Communication via one-and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69(20), 2881 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  5. Bapat, R.B.: Graphs and Matrices, vol. 27. Springer, New York (2010)

    Book  Google Scholar 

  6. West, D.B., et al.: Introduction to Graph Rheory, vol. 2. Prentice Hall, Upper Saddle River (2001)

    Google Scholar 

  7. Hall, B.C.: Quantum Theory for Mathematicians, vol. 267. Springer, New York (2013)

    MATH  Google Scholar 

  8. Berkolaiko, G., Kuchment, P.: Introduction to Quantum Graphs, vol. 186. American Mathematical Soc., Providence (2013)

    MATH  Google Scholar 

  9. Braunstein, S.L., Ghosh, S., Severini, S.: The laplacian of a graph as a density matrix: a basic combinatorial approach to separability of mixed states. Ann. Comb. 10(3), 291–317 (2006)

    Article  MathSciNet  Google Scholar 

  10. Dür, W., Aschauer, H., Briegel, H.-J.: Multiparticle entanglement purification for graph states. Phys. Rev. Lett. 91(10), 107903 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  11. Adhikari, B., Banerjee, S., Adhikari, S., Kumar, A.: Laplacian matrices of weighted digraphs represented as quantum states. Quantum Inf. Process. 16(3), 79 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  12. Hassan, A.S.M., Joag, P.S.: A combinatorial approach to multipartite quantum systems: basic formulation. J. Phys. A Math. Theor. 40(33), 10251 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  13. Bell, J.S.: Physics 1, vol. 195 (1964). Google Scholar (1966)

  14. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47(10), 777 (1935)

    Article  ADS  Google Scholar 

  15. Dutta, S., Adhikari, B., Banerjee, S.: Zero discord quantum states arising from weighted digraphs (2017). arXiv preprint arXiv:1705.00808

  16. Dutta, S., Adhikari, B., Banerjee, S., Srikanth, R.: Bipartite separability and nonlocal quantum operations on graphs. Phys. Rev. A 94(1), 012306 (2016)

    Article  ADS  Google Scholar 

  17. Wu, C.W.: Conditions for separability in generalized laplacian matrices and diagonally dominant matrices as density matrices. Phys. Lett. A 351(1), 18–22 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  18. Hall, M.J.W.: Random quantum correlations and density operator distributions. Phys. Lett. A 242(3), 123–129 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  19. Meyer, C.D.: Matrix Analysis and Applied Linear Algebra, vol. 71. SIAM, Philadelphia (2000)

    Chapter  Google Scholar 

  20. Mintert, F., Carvalho, A.R.R., Kuś, M., Buchleitner, A.: Measures and dynamics of entangled states. Phys. Rep. 415(4), 207–259 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  21. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81(2), 865 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  22. Nishizeki, T., Chiba, N.: Planar Graphs: Theory and Algorithms, vol. 32. Elsevier, Amsterdam (1988)

    MATH  Google Scholar 

  23. Braunstein, S.L., Ghosh, S., Mansour, T., Severini, S., Wilson, R.C.: Some families of density matrices for which separability is easily tested. Phys. Rev. A 73(1), 012320 (2006)

    Article  ADS  Google Scholar 

  24. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80(10), 2245 (1998)

    Article  ADS  Google Scholar 

  25. Hou, Q.-H., Mansour, T., Severini, S.: Partial transposes of permutation matrices. Integers: Electron. J. Comb. Number Theory 8(A49), A49 (2008)

    MathSciNet  MATH  Google Scholar 

  26. Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61(5), 052306 (2000)

    Article  ADS  Google Scholar 

  27. Eltschka, C., Siewert, J.: Quantifying entanglement resources. J. Phys. A Math. Theor. 47(42), 424005 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  28. Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62(6), 062314 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  29. Lee, S., Joo, J., Kim, J.: Entanglement of three-qubit pure states in terms of teleportation capability. Phys. Rev. A 72(2), 024302 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Satish Sangwan and Supriyo Dutta for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anoopa Joshi.

Appendix

Appendix

  1. 1.

    \( det( L^A) = 0 \Rightarrow C(\rho ) = 0.\)

Proof

Laplacian matrix of four vertices graph is given as

$$\begin{aligned} L = \left[ \begin{array}{r@{\quad }r@{\quad }r@{\quad }r} a &{} b &{} c &{} d \\ b &{} e &{} f &{} g \\ c &{} f &{} h &{} i \\ d &{} g &{} i &{} j \end{array}\right] . \end{aligned}$$

The reduced form of Laplacian matrix is defined by

$$\begin{aligned} L^A = \left[ \begin{array}{rr} a+e &{} c+g \\ c+g &{} h+j \end{array}\right] . \end{aligned}$$

Since, \(M = \rho \times p\times {\rho }^* \times p\) and \(p = \sigma _y \otimes \sigma _y \).

$$\begin{aligned} M= & {} \frac{1}{a+e+h+j}\left[ \begin{array}{r@{\quad }r@{\quad }r@{\quad }r} a &{} b &{} c &{} d \\ b &{} e &{} f &{} g \\ c &{} f &{} h &{} i \\ d &{} g &{} i &{} j \end{array}\right] \left[ \begin{array}{r@{\quad }r@{\quad }r@{\quad }r} 0 &{} 0 &{} 0 &{} -1 \\ 0 &{} 0 &{} 1 &{} 0\\ 0 &{} 1 &{} 0 &{} 0\\ -1 &{} 0 &{} 0 &{} 0 \end{array}\right] \\&\frac{1}{a+e+h+j} \left[ \begin{array}{r@{\quad }r@{\quad }r@{\quad }r} a &{} b &{} c &{} d \\ b &{} e &{} f &{} g \\ c &{} f &{} h &{} i \\ d &{} g &{} i &{} j \end{array}\right] \left[ \begin{array}{r@{\quad }r@{\quad }r@{\quad }r} 0 &{} 0 &{} 0 &{} -1 \\ 0 &{} 0 &{} 1 &{} 0\\ 0 &{} 1 &{} 0 &{} 0\\ -1 &{} 0 &{} 0 &{} 0 \end{array}\right] .\\ M= & {} \frac{1}{({a+e+h+j)}^2} \\&\left[ \begin{array}{rrrrrrrrrr} d^2-cg+aj-bi &{} &{} &{} cf-cd-ai+bh &{} &{} &{} bf-ag-bd+ce &{} &{} &{} 2ad-2bc\\ dg+bj-fg-ei &{} &{} &{} f^2-cg-bi+eh &{} &{} &{} 2ef-2bg &{} &{} &{} bd+ag-bf-ce\\ cj+di-fi-gh &{} &{} &{} 2fh-2ci &{} &{} &{} f^2-cg-bi+eh &{} &{} &{} cd-cf+ai-bh \\ 2dj-2gi &{} &{} &{} fi-di-cj+gh &{} &{} &{} fg-bj-dg+ei &{} &{} &{} d^2-cg+aj-bi \end{array}\right] . \end{aligned}$$

For a Laplacian matrix

  1. (a)

    \( \sum _{j=1}^{n} a_{ij} = 0 , ~~~ \forall ~i\) and \(\sum _{i=1}^{n} a_{ij} = 0 , ~~~ \forall ~j \);

  2. (b)

    All non-diagonal elements are either negative or zero.

$$\begin{aligned} a+b+c+d= & {} 0. \end{aligned}$$
(25)
$$\begin{aligned} b+e+f+g= & {} 0. \end{aligned}$$
(26)
$$\begin{aligned} c+f+h+i= & {} 0. \end{aligned}$$
(27)
$$\begin{aligned} d+g+i+j= & {} 0. \end{aligned}$$
(28)

If \( det(L^A)=0\), then

$$\begin{aligned} (a+e)(h+j)=(c+g)^2. \end{aligned}$$
(29)

\(\square \)

From Eqs. (25), (26), (27), (28), and (29), we get

$$\begin{aligned} \left[ \frac{2b+f+d}{c+g} +1 \right] \left[ \frac{2i+f+d}{c+g} +1 \right] = 1. \end{aligned}$$

\(\Rightarrow b=d=f=i =0 \).

Using all these conditions, we can prove that all the elements of matrix M are zero. \(\Rightarrow C(\rho ) = 0. \)

  1. 2.

    \( det( L^A) \ne 0 \Rightarrow C(\rho ) = {\left\{ \begin{array}{ll} 0 &{}\quad {D(G) = D(G')},\\ \frac{1}{|{E}|} &{}\quad {D(G) \ne D(G')} \end{array}\right. }\).

Proof

This observation can be proved using Theorem 6 and Theorem 7. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, A., Singh, R. & Kumar, A. Concurrence and three-tangle of the graph. Quantum Inf Process 17, 327 (2018). https://doi.org/10.1007/s11128-018-2085-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-2085-5

Keywords

Navigation