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The quantum Fourier transformation based on
quantum vision representation

Hai-Sheng Li, Ping Fan, Hai-ying Xia, Shuxiang Song, Xiangjian He

Abstract—Quantum Fourier transform (QFT) plays a key role
in many quantum algorithms, but the existing circuits of QFT are
incomplete and lacking the proof of correctness. Furthermore,
it is difficult to apply QFT to the concrete field of information
processing. Thus, we firstly investigate quantum vision represen-
tation (QVR) and develop a model of QVR (MQVR). Then, we
design four complete circuits of QFT and inverse QFT (IQFT)
and describe the functions of their components. Meanwhile, we
prove the correctness of the four complete circuits using formula
derivation. Next, 2D QFT and 3D QFT based on QVR are
proposed for the first time. Experimental results with simulation
show the proposed QFTs are valid and useful in processing
quantum images and videos. In conclusion, this paper develops
a complete framework of QFT based on QVR and provides
a feasible scheme for QFT to be applied in quantum vision
information processing.

Index Terms—Quantum Fourier transformation, quantum
information processing, quantum image processing, quantum
computing.

I. INTRODUCTION

IN recent years, with the rapid development in many fields
such as optical imaging, internet technology, high perfor-

mance computing etc., the sizes of visual data have been
increasing explosively. How to store and process the massive
visual data efficiently is the key technology to be developed ur-
gently. Quantum information processing (QIP) [1] uses qubits
as its basic information units with two outstanding merits. One
is that quantum storage capacity increases exponentially in
comparison with the traditional storage as n qubits can store
2n data at the same time [2], and the other relies on the unique
computing performances of quantum coherence, entanglement
and superposition of quantum states. In fact, utilizing the
unique properties, the algorithms, including Shor’s discrete
logarithms and integer factoring algorithms in the polynomial
time [3], Deutsh’s parallel computing algorithm with quantum
parallelism and coherence [4], and Grover’s quadratic speed-
up for unordered database search algorithm [5], are insur-
mountable so far by any known classical algorithms. We define
a quantum vision information processing (QVIP) as a subfield
of QIP in visual information, thus QVIP also has the above two
merits and is a possible solution to store and process massive
visual data efficiently.
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QVIP mainly includes quantum image processing and quan-
tum video processing. QVIP originated from the US Air Force
Research Laboratory shows Grover’s algorithm is applicable
to image processing task, and describes Cybernet’s model-
based vision system [6]. At present, the development of
QVIP is mainly in two directions: research on quantum image
representation and quantum transformation, and extension in
the field of information processing.

The model of quantum image representation is a stored
pattern by which data are stored in a quantum computer. The
first of quantum image representation is called Qubit Lattice
[7], [8], which stores a 2n × 2n color image in quantum
systems with 22n qubits. The characteristic of Qubit Lattice is
to represent a color using the frequency of an electromagnetic
wave and convert the frequency into the amplitude of a one-
qubit quantum state by a physical device. Next, Le et al. [9]
proposed a flexible representation of quantum images (FRQI),
which stored a 2n × 2n gray-scale image with 2n+ 1 qubits.
To further improve the storage performance of quantum states,
a normal arbitrary superposition state (NASS) was proposed
[10], [11], which stored a 2n×2n color image with 2n qubits.
FRQI and NASS store the color information using amplitudes
of quantum states, so they are suitable for an efficient quan-
tum Fourier transform (QFT). For the convenience of color
processing, a novel enhanced quantum representation (NEQR)
was proposed to store a gray-scale value in 8-qubit states [12].
It is similar to classical color processing algorithms. There-
fore, many classical image processing algorithms are more
easily converted to their corresponding quantum algorithms.
However, the key quantum algorithms, such as QFT and the
quantum wavelet transform [13], are difficult to be directly
applied to the image of NEQR. By adding a time dimension,
quantum image representation can be expanded into quantum
video representation, as in the FRQI version of quantum video
representation [14], [15]. Through the above analysis, quantum
image representation can be divided into two categories. The
first category is to store color information using the amplitudes
of a quantum state [16] - [20], and the second one is to store
color information using the quantum states of multiple qubits
[21] - [24].

QFT is one of the core algorithms of quantum information
processing. For instance, QFT plays the key role in Shor’s
prime factorization and discrete logarithms [25]. Literatures
[2], [26] - [29] have designed the quantum circuits of QFT, but
these circuits are not complete, and lack the bit reversal circuit.
In addition, the semiclassical Fourier transform [30] and the
approximate Fourier transform [31] have been proposed. The
complexity of the QFT implementation on 2n elements is
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O(n2) [2]. In contrast, Fast Fourier Transform [32], one of
the best classical algorithms, computes the discrete Fourier
transform (DFT) with the complexity O(n2n). QFT can ex-
ponentially speed up the computation of Fourier transforms
than the Fourier transforms on a classical computer, but QFT
is difficult to be applied in the concrete information processing
field [2]. The emergence of the first category of quantum image
representation makes it possible for QFT to be applied in
image processing for compression, de-noising and encryption.
The classical 2D and 3D DFTs can be applied directly to
image processing [33], [34], but there are no counterparts for
QVIP.

In the aspect of information processing, quantum image
algorithms based on QFT are research hotspots, and their
examples include the watermarking algorithms of quantum
images [35], [36], the compression algorithm [10], and the
encryption and decryption algorithm [37]. However, all of
these algorithms are under the assumption that QFT is suitable
for quantum information processing and has been already
implemented.

The focus of this paper is to implement QFT based on QVR
and provide a feasible scheme for QFT to be applied in the
field of QVIP.

The contributions of this paper include:
• We firstly study a quantum vision representation (QVR)

and build a model of QVR (MQVR), which is the
foundation of applications of QFT on QVIP. As a typical
example of quantum image representation of the first
category, NASS [10] is extended into QVR.

• Then, we analyze the iteration formula of the classical
Fourier transform by a generalized tensor product and
design four complete circuits of QFT and inverse QFT
(IQFT).

• Last, we design and implement 2D and 3D QFTs based
on QVR, for the first time, that can be applied on quantum
images and videos, respectively.

The rest of this paper is organized as follows. Section
2 introduces some related works. Section 3 describes the
model of QVR of the first category. Section 4 designs the
implementation circuits of QFT. Section 5 implements the
2D and 3D QFTs based on QVR. Experiment results with
simulation are given in Section 6 and the conclusions are
drawn in Section 7.

II. THE GENERALIZED TENSOR PRODUCT

In quantum computing, the tensor product, also called
Kronecker product and denoted by ⊗, is a way of putting
vector spaces together to form larger vector spaces. The tensor
product is defined as follows. Let A be an n× n matrix and
B be an m×m matrix, then the tensor product

A⊗B =

 A0,0B · · · A0,n−1B
...

. . .
...

An−1,0B · · · An−1,n−1B

 (1)

is an mn×mn block matrix.
Suppose that A =

{
A0, A1, . . . , Am−1

}
and B ={

B0, B1, . . . , Bn−1
}

are two sets of matrices, where Ai is

an n × n matrix, 0 ≤ i < m, and Bj is an m × m
matrix, 0 ≤ j < n. Then, the generalized tensor product
C = A ⊗B is an mn×mn matrix and can be calculated by
Cum+w,vm+z = awu,vb

v
w,z with 0 ≤ u, v < n, 0 ≤ w, z < m,

where Cum+w,vm+z , awu,v and bvw,z are the elements of ma-
trices C, Aw and Bv, respectively. More details are described
in references [38], [39].

Next, we introduce the perfect shuffle permutation to factor-
ize the generalized tensor product. Let Pn,m be an mn×mn
matrix of the perfect shuffle permutation, then Pn,m satisfies
that (Pn,m)k,l = δv,z′δz,v′ where k = vn+ z, l = v′m+ z′,
0 ≤ v, z′ < m, 0 ≤ v′, z < n, δx,y is the Kronecker delta
function, i.e., δx,y = 0 if x ̸= y, otherwise δx,y = 1.
Pn,m shuffles n packs of m cards into m packs of n cards.

If Ai and Bj are unitary matrices, then A ⊗ B is a unitary
matrix and can be factorized into

A ⊗ B = Pm,nDiag(A )Pn,mDiag(B), (2)

where Diag(A ) = Diag(A0, A1, . . . , Am−1) and
Diag(B) = Diag(B0, B1, . . . , Bn−1) are block diagonal
matrices [39].

In order to build the relatively complete system of a
generalized tensor product, some new concepts are defined
as follows.

Definition 1. Let A =
{
A0, A1, . . . , Am−1

}
and

D =
{
D0, D1, . . . , Dm−1

}
be two sets of matrices

where Ai and Di are n × n matrices. Then, the gen-
eralized product is defined as A × D = A D ={
A0 ×D0, A1 ×D1, . . . , Am−1 ×Dm−1

}
.

Definition 2. The transpose, conjugate transpose and inverse
of the matrix set A are defined as follows:

A T =
{
(A0)

T
, (A1)

T
, . . . , (Am−1)

T
}
,

A + =
{
(A0)

+
, (A1)

+
, . . . , (Am−1)

+
}
,

A −1 =
{
(A0)

−1
, (A1)

−1
, . . . , (Am−1)

−1
}
,

where (Ai)T , (Ai)+ and (Ai)−1 denote the transpose, conju-
gate transpose and inverse of the matrix Ai, respectively.

The following equations hold using equations (2), defini-
tions 1 and 2.

(A ⊗ B)T = Pm,n(BT ⊗ A T )Pn,m, (3)

(A ⊗ B)+ = Pm,n(B+ ⊗ A +)Pn,m, (4)

(A ⊗ B)−1 = Pm,n(B−1 ⊗ A −1)Pn,m. (5)

Let A and C be two sets of matrices containing m matrices
with size n× n, B and D be two sets of matrices containing
n matrices with size m×m, Im and In be m×m and n×n
identity matrices, respectively. Then, the following equation
holds [38]:

(A ×C )⊗(B×D) = (A ⊗Im)×(C ⊗B)×(In⊗D). (6)
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III. MQVR

MQVR is the stored pattern by which visual data are stored
in a quantum computer, and is the foundation of applications of
QFT on QVIP. We introduce MQVR by extending NASS into
a quantum vision representation. Firstly, we briefly describe
NASS.

A. The representation of a quantum image NASS

An angle set can be used to represent a gray-scale set or a
color set in the RGB model:

ϕi =
iπ

2(M − 1)
(7)

and
Y = {ϕ0, . . . , ϕM−1} , (8)

where 0 ≤ i < M . For a gray-scale set, M = 256, and ϕi
corresponds to the gray-scale value i. For an RGB color set,
M = 224, and ϕi corresponds to a RGB color (r, g, b) and
i = 256× 256× r + 256× g + b.

A NASS state |ψ⟩ can store colors and coordinates of 2n

pixels:

|ψ⟩=
2n−1∑
i=0

θi |i⟩ =
2n−1∑
i=0

θi |in · · · i2i1⟩, (9)

where θi = ai

/√∑2n−1
j=0 a2j and |i⟩ = |in · · · i2i1⟩ are the

color and coordinate of the i-th pixel. Here, ai ∈ Y in
equation (8), and i =

∑n
j=1 ij × 2j−1 and ij ∈ {0, 1}, i.e.,

in · · · i2i1 is the binary expansion of integer i.
Substituting |i⟩= |xm⟩ |yk⟩ into equation (9), we obtain the

NASS state |ψ2⟩ of an image

|ψ2⟩=
2n−1∑
i=0

θi |xm⟩ |yk⟩

=
2n−1∑
i=0

θxm,yk
|in . . . ik+1⟩ |ik . . . i1⟩ ,

(10)

where |xm⟩ = |in . . . ik+1⟩ and |yk⟩ = |ik . . . i1⟩ are the X-
axis and Y-axis of the image, and n = m + k. More details
are shown in our previous work [10].

B. The representation of a quantum video

Substituting |i⟩= |xm⟩ |yk⟩ |th⟩ into equation (9), we obtain
the NASS state |ψ3⟩ of a video

|ψ3⟩=
2n−1∑
i=0

θi |xm⟩ |yk⟩ |th⟩

=
2n−1∑
i=0

θxm,yk,th |in. . .ih+k+1⟩ |ih+k. . .ih+1⟩ |ih. . .i1⟩ ,
(11)

where |xm⟩, |yk⟩ and |th⟩ are the X-axis , Y-axis and time-axis
of a video, and n = m+ k + h.

Thus, we have constructed MQVR based on NASS to store
visual data including images and videos. For instance, the
NASS state

|ψ2⟩=θ0,0 |000⟩ |00⟩+ θ0,1 |000⟩ |01⟩+ · · ·+ θ7,3 |111⟩ |11⟩
(12)

X
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Fig. 1. A sample color image.
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Fig. 2. A sample video with 4 frames.

represents the color image of 8× 4 (height multiplies weight)
shown in Fig. 1.

The NASS state

|ψ3⟩ = θ0,0,0 |00⟩ |0⟩ |00⟩+ θ0,0,1 |00⟩ |0⟩ |01⟩
+ · · ·+ θ3,1,3 |11⟩ |1⟩ |11⟩

(13)

represents the video with four frames shown in Fig. 2 where
each frame is a 4× 2 image.

The same string can have different meanings for different
data types in classic computers. For instance, a binary string
0100001 can express a char ‘A’ or a number 65. Similarly,
using the circuit in reference [10], we can store an image
(shown in Fig. 1 ) or a video (shown in Fig. 2 ) in the following
state

|ψ⟩=
25−1∑
i=0

θi |i⟩. (14)

Meanwhile, the priori knowledge ‘x3, y2’ or ‘x2, y1, t2’ is
equivalently a data type, implying an image or a video stored
in the state |ψ⟩.

IV. THE QUANTUM FOURIER TRANSFORM

Quantum computing can be implemented by using quantum
gates, and universal quantum gates can be expressed as combi-
nations of single-qubit and two-qubit gates. We introduce some
of base gates and their corresponding matrices shown in Fig.3.
The identity I2, Hadamard H and Swap gates are well-known
and can be found in reference [2]. The gate U corresponds
to a unitary matrix. I2 and H are two examples of a unitary
matrix U . The 2n × 2n identity matrix (I2)

⊗n = I2n denotes
the circuit of n qubits.
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Gate Notation Matrix

2I

1 11

1 12
HH

00 01

10 11

u u

u uUU

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

Swap

the circuit of  qubitsn
2( ) n
I

n

1 0

0 1

Fig. 3. Notations for some of base gates with their corresponding matrices.

The QFT’s F2n on 2n elements is defined by [41]

F2n : |k⟩ → 1√
2n

2n−1∑
j=0

e2πijk/2
n

|j⟩ , (15)

where i is the imaginary unit, and k, j ∈ [0, 2n − 1].
Acting on the quantum state |ψ⟩ in equation (9), the result

is

F2n |ψ⟩ =
2n−1∑
k=0

αk |k⟩, (16)

where αk = 1√
2n

2n−1∑
j=0

θke
2πijk/2n . Its corresponding matrix

form is

F2n
[
θ0 · · · θ2n−1

]T
=

[
α0 · · · α2n−1

]T
. (17)

By using the iteration formula of the Fourier transform in
[36], the iteration formulas of QFT and IQFT can be given

F2n =
({
F 0, F 1, . . . , F 2n−1−1

}
⊗ F2n−1

)
P2n−1,2, (18)

(F2n)
−1 =

(
{(F 0)

−1
, (F 1)

−1
, . . . , (F 2n−1−1)

−1
}

⊗ (F2n−1)
−1

)
P2n−1,2,

(19)

where P2n−1,2 is a perfect shuffle permutation, the initial value
F2 = H , n ≥ 2 and

F k =

√
2

2

[
1 e2πik/2

n

1 −e2πik/2n
]
, k = 0, 1, . . . , 2n−1−1. (20)

Two special matrices of the perfect shuffle permutation
P2n−1,2 and P2,2n−1 act on the quantum state |jn . . . j2j1⟩ of
n qubits:

P2n−1,2 |jn . . . j2j1⟩ = |j1jn . . . j2⟩ , (21)

P2,2n−1 |jnjn−1 . . . j1⟩ = |jn−1 . . . j1jn⟩ . (22)

Thus, we derive their iterative equations

P2n−1,2 = (P2n−2,2 ⊗ I2)(I2n−2 ⊗ Swap) (23)

and
P2,2n−1 = (I2 ⊗ P2,2n−2)(Swap⊗ I2n−2) (24)

with the initial values of the iteration P2,2 = Swap, where the
swap gate Swap, identity gate I2 and I2n−2 = (I2)

⊗n−2 are
shown in Fig.3. We design the implement circuits of P2n−1,2

and P2,2n−1 with the complexity of O(n) shown in Fig.4.

nj

1nj

3j

2j

1j

nj

1nj

2nj

2j

1j

2n
P

2n
P

( )a ( )b12 ,2nP 12,2n
P

Fig. 4. The implement circuits of P2n−1,2 and P2,2n−1 . In (a), the right
one corresponds to the abbreviation notation of P2,2n−1 , and the dotted box
is the circuit of P2n−2,2; In (b), the right one is the abbreviation notation of
P2,2n−1 , and the dotted box is the circuit of P2,2n−2 .

1nj

2j

1j

j-1n

U

U

( )a ( )b

1nj

2j

1j

j

U

U

1( )j

nC U 1( )j

nV U

1

0
-1n

( )c Control qubit

Fig. 5. Quantum controlled-U gates of n-qubits. The equivalent representation
of the control qubit is shown in (c).

Quantum gates are the same in Figs.4 (a) and (b), but these
quantum gates are in reverse order. Therefore, the results are
the same by running circuits (a) and (b) in the direction of
the black box. We also adopt similar abbreviation notations to
denote the circuits which are composed of the same quantum
gates with reverse order in the following sections.

In order to facilitate the implementation of QFT in (18),
two controlled-U gates of n-qubits Cj

n−1(U) and V j
n−1(U)

are defined by

Cj
n−1(U) = (|j⟩ ⟨j|)⊗ U +

2n−1−1∑
i=0,i ̸=j

((|i⟩ ⟨i|)⊗ I2) (25)

and

V j
n−1(U) = (U ⊗ |j⟩ ⟨j|) +

2n−1−1∑
i=0,i ̸=j

(I2 ⊗ (|i⟩ ⟨i|)). (26)

The notations of Cj
n−1(U) and V j

n−1(U) are shown in Fig.5,
where jn−1 · · · j2j1 is the binary expansion of integer j, and
numbers 1 and 0 represent the black and white points of the
control qubit in the controlled gates (see (c) of Fig.5).

Suppose that the matrix set A =
{
A0, A1, . . . , A

2n−1
}

satisfies Ai = I2 for i ̸= j, then we have

A ⊗I2n−1 = Aj⊗(|j⟩ ⟨j|)+
2n−1−1∑
i=0,i ̸=j

I2 ⊗ (|i⟩ ⟨i|) = V j
n−1(A

j)

(27)
and

I2n−1⊗A = (|j⟩ ⟨j|)⊗Aj+
2n−1−1∑
i=0,i ̸=j

(|i⟩ ⟨i|)⊗I2 = Cj
n−1(A

j).

(28)
We can derive two useful equations from (6):

A ⊗D = (A × In)⊗ (Im×D) = (A ⊗ Im)(In⊗D), (29)
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(A × C )⊗ Im=(A ⊗ Im)(C ⊗ Im). (30)

Let Rn =

[
1 0
0 e2πi/2

n

]
, F k in (20) is rewritten as

F k = H × (Rn)
k. (31)

By using equations (29), (30) and (31), equation (18) is
rewritten as

F2n = (H ⊗ I2n−1)S2n(Rn)(I2 ⊗ F2n−1)P2n−1,2 (32)

and

S2n(Rn) =
{
I2, Rn, (Rn)

2
, . . . , (Rn)

2n−1−1
}
⊗ I2n−1 (33)

with initial values of the iteration P2,2 = Swap, F2 = H and
S4(R2) = {I2, R2}⊗I2, where (Rn)

i is the i-th power of the
matrix Rn.

According to the analysis of the difference between e-
quations (18) and (19), we obtain the iteration of IQFT by
replacing Rn with (Rn)

−1 in (32)

(F2n)
−1

= (H ⊗ I2n−1)S2n

(
(Rn)

−1
)

×
(
I2 ⊗ (F2n−1)

−1
)
P2n−1,2.

(34)

Next, we describe the four circuits of QFT in detail.

A. The first circuit of QFT

We have the following proposition to implement the first
circuit of QFT.

Proposition 1. The iteration equation of S2n(Rn) is

S2n(Rn) = (Rn ⊗ I2n−2 ⊗ |1⟩ ⟨1|+ I2n−1 ⊗ |0⟩ ⟨0|)
×S2n−1(Rn−1)⊗ I2.

(35)

Proof. By using equations (27), (30) and (33), we obtain

S2n(Rn)
= ({I2, Rn, I2, Rn, . . . , I2, Rn} ⊗ I2n−1)

×({I2, I2, (Rn)
2, (Rn)

2, . . . , (Rn)
2n−1−2} ⊗ I2n−1)

= (
∏

jisodd

V j
n−1(Rn))(S2n−1((Rn)

2)⊗ I2).

(36)

j is odd when j = in−1 · · · i21, thus the circuit of∏
j is odd

V j
n−1(Rn) is shown in Fig.6. The left circuit can be

simplified to the right circuit in Fig.6 and it equals with a
tensor product in (37).∏

jisodd

V j
n−1(Rn)

= Rn ⊗ I2n−2 ⊗ |1⟩ ⟨1|+ I2n−1 ⊗ |0⟩ ⟨0|
. (37)

Substituting (37) and (Rn)
2
= Rn−1 into (36), we obtain

the equation (35).

We design the quantum circuit of QFT in equations (32) and
(33) with the complexity of O(n2) shown in Fig.7 by using
Proposition 1 and the circuit of P2n−1,2 in Fig.4.

To facilitate designs of three other circuits of QFT, we define

F 2
2m = F 3

2m = F 4
2m = F2m , (38)

where F i
2m corresponds to the i-th circuit of QFT, i ∈ {2, 3, 4}

and m ∈ {2, 3, . . . , n}.

0
-2n

n
R

1

1

n
R

1

n
R

1

2
2 1
n

-2n

n
R

-2n

n
R

1

Fig. 6. The circuit of
∏

j is odd
V j
n−1(Rn). The circuit of V j

n−1(Rn) is shown

in Fig.5 (b) by replacing the matrix U with Rn.

B. The second circuit of QFT

The inversion of IQFT in (34) is given

F 2
2n = F2n = [(F2n)

−1]−1

= {(H ⊗ I2n−1)[I2 ⊗ (F2n−1)−1]P2n−1,2}−1

= P2,2n−1(I2 ⊗ F2n−1)S2n(Rn)(H ⊗ I2n−1)
= P2,2n−1(I2 ⊗ F 2

2n−1)S2n(Rn)(H ⊗ I2n−1)

(39)

with same initial values of the iteration in equations (32) and
(33), and its implementation circuit is shown in Fig.8. The
quantum gates are the same with reverse order in Fig.7 and
Fig.8, so the two abbreviation notations of QFT are similar
with that of the perfect shuffle permutations in Fig.4.

C. The third circuit of QFT

We define

T2n(Rn) = I2n−1 ⊗
{
(Rn)

0
, (Rn)

1
, . . . , (Rn)

2n−1−1
}

(40)

and have the following proposition to implement the third
circuit of the QFT .

Proposition 2. The iteration equation of T2n(Rn) is

T2n(Rn) = [I2n−2 ⊗ (|1⟩ ⟨1| ⊗Rn + |0⟩ ⟨0| ⊗ I2)]
×T2n−1(I2 ⊗Rn−1)

(41)

with the initial value T22(I2n−2 ⊗ R2) = I2 ⊗
{I2n−1 , I2n−2 ⊗R2}.

Proof. From equation (6), we can derive

Im ⊗ (A × C ) = (Im ⊗ A )(Im ⊗ C ). (42)

We use equation (42) to rewrite T2n(Rn) to

T2n(Rn) = (I2n−1 ⊗ {I2, Rn, I2, Rn, . . . , Rn})
×(I2n−1 ⊗ {I2, I2, (Rn)

2, (Rn)
2, . . . , (Rn)

2n−1−2}) . (43)

Using the similar method in Proposition 1, we have

I2n−1 ⊗
{
I2, I2, (Rn)

2
, (Rn)

2
, . . . , (Rn)

2n−1−2
}

= I2n−2⊗
{
I22 , (I2⊗Rn−1)

1
,. . ., (I2⊗Rn−1)

2n−2−1
}

= T2n−1(I2 ⊗Rn−1)

(44)

and
I2n−1 ⊗ {I2, Rn, I2, Rn, . . . , Rn}
=

∏
j is odd

Cj
n(Rn)

= I2n−2 ⊗ (|1⟩ ⟨1| ⊗Rn + |0⟩ ⟨0| ⊗ I2),

(45)

where Cj
n(Rn) is shown in equation (25) by replacing the

matrix U with Rn.
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2
2
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2
nF

Fig. 7. The first circuit of QFT in (32). The circuits in the dashed box 1 and box 2 implement the QFT F2n−1 in (32) and S2n (Rn) in (33), respectively.
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1n

R
2n

R

H

21
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1
2
nP
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Fig. 8. The second circuit of QFT in (39). The circuits in the dashed box 1 and box 2 implement the QFT F2n−1 and S2n (Rn), respectively.

Substituting (44) and (45) into (43), so equation (41) holds.
The initial value is given by equation (40)

T22(I2n−2 ⊗R2) = I2 ⊗ {I2n−1 , I2n−2 ⊗R2} .

Thus, the proposition has been proven.

Since QFT is symmetric, we have the following equation
by using (3) and (32)

F 3
2n = F2n = (F2n)

T

= ((F2n−1)⊗ I2)T2n(Rn)(I2n−1 ⊗H)P2,2n−1

= (F 3
2n−1 ⊗ I2)T2n(Rn)(I2n−1 ⊗H)P2,2n−1

. (46)

According to Proposition 2, the third circuit of QFT in (46)
with the complexity of O(n2) is shown in Fig.9.

D. The fourth circuit of QFT

Similarly with (46), QFT can be changed to

F 4
2n = F 2

2n = (F 2
2n)

T

= P2n−1,2(I2n−1 ⊗H)T2n(Rn)(F
2
2n−1 ⊗ I2)

= P2n−1,2(I2n−1 ⊗H)T2n(Rn)(F
4
2n−1 ⊗ I2)

. (47)

By using Proposition 2, the fourth circuit of QFT in (47)
with the complexity of O(n2) is shown in Fig.10.

E. The circuits of IQFT

Comparing (32) with (34), and substituting Rn with (Rn)
−1

in Fig.7, we get the first circuit of IQFT shown in Fig.11.
Similarly, we design the rest three circuits of IQFT by

substituting Rn with (Rn)
−1 in Fig.8, Fig.9 and Fig.10.

Abbreviation notations of the four circuits of IQFT are shown
in Fig.12.

1

2n
F

1

2n
F

3 1

2
( )nF

3 1

2
( )nF

Fig. 12. The abbreviation notations of the circuits of IQFT. From left to
right, the abbreviation notations are corresponding to the first, second. third
and fourth circuits of IQFT.

n
R1n

R
2
RH

H 2
R

H
1n

R
2n

R

H

Fig. 13. The circuit of QFT in reference [2].

F. The comparison of circuits of QFT

In this section, we analyze and compare the circuits in
references [2], [26], and [27] with our proposed ones.

Firstly, the circuit in references [2] is shown in Fig.13. We
find that it is the second circuit of QFT without the bit reversal,
lacking the description of the components in the circuit of
QFT, such as box 1 and box2 in Fig.8.

Next, the circuits in references [26] and [27] are shown in
Fig.14 and Fig.15, respectively.
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Fig. 9. The third circuit of QFT in (46). The circuits in the dashed box 2 and box 1 implement the QFT F2n−1 and T2n (Rn), respectively.
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Fig. 10. The fourth circuit of QFT in (47). The circuits in the dashed box 1 and box 2 implement the QFT F2n−1 and T2n (Rn), respectively.
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n
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n
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1
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2( )R H

1

1
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21
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Fig. 11. The first circuit of IQFT. The circuits in the dashed box 1 and box 2 implement the IQFT (F2n−1 )−1 and S2n

(
(Rn)

−1
)

, respectively.

30

20

10

A

A
32

A

31

21

A

( )a ( )b

jk

Fig. 14. The circuit of the QFT in reference [26]. In this figure, A = H and
θjk = π

2j−k .

Two gates in (b) of Fig.14 and Fig.15 are both
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiθjk

 ,
and are equal with C1

1 (Rj−k+1). Therefore, the circuit in (a)
of Fig.15 is same with the fourth circuit of QFT without the
bit reversal and formula derivation to proves its correctness.

1na

2na

3na

0a CP

CP

CP

H

H

CP H

CP

CP

H

( )a ( )b

jkCP

Fig. 15. The circuit of the QFT in reference [27]. In (b), CPjk symbolizes
a controlled phase-shift gate acting on the j-th and k-th qbits, of which the
first is the control and the second the target.

Furthermore, we derive that C1
1 (Rj−k+1) = V 1

1 (Rj−k+1),
thus, the first circuit of the QFT for n = 4 is redesigned
and shown in Fig.16, and the circuit of the dashed box is
exactly same with one in Fig.14. Therefore, we can conclude
that the circuit of the QFT in the reference [26] is same with
the second circuit of the QFT without the bit reversal, lacking
formula derivation to proves its correctness.

As mentioned above, we have designed four complete
circuits of QFT and IQFT, and described the functions of their
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Fig. 16. The first circuit of QFT for n = 4.

components. Meanwhile, we have proved the correctness of
the four complete circuits from their formula derivations.

V. THE 2D AND 3D QFTS BASED ON QVR
We now design 2D and 3D QFTs, which can be applied on

the quantum images and quantum videos, in the section.

A. The 2D QFT based on QVR

According to MQVR in Section 3, a natural image with size
of 2n × 2m can be expressed as an angle matrix

Λ2n,2m =


θ0,0 θ0,1 · · · θ0,2m−1

θ1,0 θ1,1 · · · θ1,2m−1

...
... · · ·

...
θ2n−1,0 θ2n−1,1 · · · θ2n−1,2m−1

 , (48)

where θx,y is the color information of the pixel on the
coordinate (x, y) and an example is shown in Fig.1. Thus,
the 2D DFT on Λ2n,2m is defined as

ft2(Λ2n,2m) = F2nΛ2n,2m(F2m)T = F2nΛ2n,2mF2m . (49)

An image can be stored in the state NASS |ψ2⟩ in (10) by
using a quantum circuit in reference [10]. Suppose that the
function f(·) is equivalent to the quantum circuit implement-
ing the storage of the image Λ2n,2m , that is,

f(Λ2n,2m) = |ψ2⟩ =

 BT
1
...

BT
2n

 , (50)

where Bj =
[
θj,0 θj,1 · · · θj,2m−1

]
is the row vector

of Λ2n,2m in (48).
Applying the function f(·) on Λ2n,2m × F2m , the result is

f(Λ2n,2mF2m) =

 F2mB
T
1

...
F2mB

T
2n

 . (51)

From (50) and (51), we have

f(Λ2n,2mF2m) = (I2n ⊗ F2m) f(Λ2n,2m) (52)

and
f(Λ2n,2m) = P2m,2nf

(
(Λ2n,2m)

T
)
. (53)

Then, we have

f(F2nΛ2n,2m)

= P2m,2nf
(
(Λ2n,2m)

T
F2n

)
= P2m,2n (I2m ⊗ F2n)P2n,2mf(A2n,2m)
= (F2n ⊗ I2m) f(A2n,2m).

(54)

n

m

2n
F

2

2m
F

n

m
3

p

( )a 2D QFT

2p
F

2m
F

2n
F

( )b 3D QFT

Fig. 17. The circuits of 2D QFT and 3D QFT.

From equations (49), (52) and (54), the 2D QFT is given
by

ft2(Λ2n,2m)=f(F2nΛ2n,2mF2m)=(F2n ⊗ F2m) |ψ2⟩ (55)

and its quantum circuit is shown in (a) of Fig.17 with the
complexity of O(n2 +m2) for a 2n × 2m image.

B. The 3D QFT based on QVR

With MQVR in Section 3, a video of 2p frames of size
2n × 2m corresponds to the following angle matrix.

A2n,2m,2p =
(
Λ1
2n,2m ,Λ

2
2n,2m , · · · ,Λ2p

2n,2m

)
, (56)

where the angle matrix Λk
2n,2m is the k-th frame.

We firstly define the following DFTs: F x(·), F y(·) and
F t(·) below.

F x(A2n,2m,2p) =
(
F2nΛ

1
2n,2m , · · · , F2nΛ

2p

2n,2m

)
, (57)

F y(A2n,2m,2p) =
(
Λ1
2n,2mF2m , · · · ,Λ2p

2n,2mF2m

)
, (58)

F t(A2n,2m,2p) =
(
C1

2n,2m , C
2
2n,2m , · · · , C2p

2n,2m

)
(59)

with the row vectors[
C1

x,y C2
x,y · · · C2p

x,y

]
= ux,y × F2p (60)

and
ux,y =

[
θ1x,y θ2x,y · · · θ2

p

x,y

]
, (61)

where Cj
x,y and θjx,y are the elements of the matrices Cj

2n,2m

and Λj
2n,2m on the position (x, y), respectively.

Next, the 3D DFT of A2n,2m,2p can be defined as

ft3(A2n,2m,2p) = F t(F y(F x(A2n,2m,2p))). (62)

Similar to (50), we utilize the equivalent function of the
quantum circuit to create the QVP of A2n,2m,2p , so we have

|ψ3⟩ = f(A2n,2m,2p)
=

[
u0,0 · · · u0,2m−1 u1,0 · · · u1,2m−1

· · · u2n−1,0 · · · u2n−1,2m−1

]T
,

(63)
where the row vector ux,y is shown in equation (61).

Applying the function f(·) in (63) on F t(A2n,2m,2p),
F y(A2n,2m,2p) and F x(A2n,2m,2p) respectively, we have the
following three equations:

f(F t(A2n,2m,2p)) = (I2n+m ⊗ F2p) |ψ3⟩ , (64)
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f(F y(A2n,2m,2p)) = (I2n ⊗ F2m ⊗ I2p) |ψ3⟩ , (65)

f(F x(A2n,2m,2p)) = (F2n ⊗ I2m ⊗ I2p) |ψ3⟩ . (66)

Using equations (62), (64), (65) and (66), we drive the 3D
QFT

f(ft3(A2n,2m,2p)) = (F2n ⊗ F2m ⊗ F2p) |ψ3⟩ . (67)

That is, the 3D QFT on the videos in equation (56) is F2n ⊗
F2m ⊗ F2p , and its quantum circuit is shown in (b) of Fig.17
with the complexity of O(n2 +m2 + p2).

Analyzing the multidimensional (i.e., 2D and 3D) QFT and
DFT, we draw the conclusion: the multidimensional QFT can
be implemented by parallel unning multiple one-dimension
QFTs while the multidimensional DFT executes multiple one-
dimension DFTs in sequence. It is one of the advantages of
the QFT.

VI. SIMULATION EXPERIMENTS

In the absence of the quantum computer, experiments on
quantum images and videos are simulated in Matlab version
2010a on a classical computer.

Let Ag and Ac be the 128 × 128 and 128 × 128 × 3
matrices of the gray-scale and color images shown in Fig.18
(a), respectively. We can obtain two 128× 128 angle matrices
Λg and Λc by using the method in Section 3, that is,

Λg =
πCg

2× 28 − 2
Ag (68)

and
Λc =

πCc

2× 224 − 2
At, (69)

where Cg and Cc are two constants corresponding to the two
images, and an element of 128× 128 matrix At(x, y) can be
computed by

At(x, y) = 256× 256×Ac(x, y, 1)
+256×Ac(x, y, 2) +Ac(x, y, 3).

(70)

Let Λ = Λg or Λ = Λc, and the NASS state

|ψ2⟩ = f(Λ) (71)

can be regarded as a column vector where the function f(·)
is defined in equation (50). Therefore, we have the following
equations from (55)

ft2(Ag) =
2× 28 − 2

πCg
f−1 ((F27 ⊗ F27) |ψ2⟩) (72)

and

ft2(At) =
2× 224 − 2

πCc
f−1 ((F27 ⊗ F27) |ψ2⟩) , (73)

where f−1(·) is the inverse function of f(·), which converts
a column vector into a 2-dimension matrix.

The right parts of equations (72) and (73) are written as the
symbols QFT2(Ag) and QFT2(At), respectively. In order
to compare our proposed 2D QFT with the 2D inverse DFT
(IDFT) fft2(·) in Matlab, we introduce the corresponding
IDFT

x[k] → 1

2n

2n−1∑
j=0

e2πijk/2
n

x[j], (74)

(a)

(b)

Fig. 18. The 2D QFT on two 128 × 128 images. (a) Original images; (b)
Amplitude spectrums.

where x[j] is a column vector. Thus, we have

QFT2(Ag) = 27 × ifft2(Ag) (75)

and
QFT2(At) = 27 × ifft2(At). (76)

Applying the 2D QDF on two images in Fig.18 (a), ex-
perimental results are shown in Fig.18 (b) and Table 1. The
amplitude spectrums of matrices QFT2(Ag) and QFT2(At)
in Fig.18 (b) show that the 2D QDF is useful for quantum
images. By analyzing Table I, we conclude that the results
are same among ft2, QFT2 and iff2 without consideration of
truncation error on machine computing and verify that our
proposed 2D QFT holds.

Let Vg and Vt be the 64×64×4 matrices of the gray-scale
and color videos shown in Fig.19 (a) and Fig.20 (a). Similarly,
we obtain the following equations by using equation (67)

ft3(Vg) =
2× 28 − 2

πCg
f−1 ((F26 ⊗ F26 ⊗ F22) |ψ3⟩) (77)

and

ft3(Vt) =
2× 224 − 2

πCc
f−1 ((F26 ⊗ F26 ⊗ F22) |ψ3⟩) , (78)

where Cg , Cc are two constants corresponding to the two
videos and the right parts of equations (77) and (78) written
as QFT3(Vg) and QFT3(Vt).

Comparing (15) with (74), we have

QFT3(Vg) = 27 × ifftn(Vg) (79)

and
QFT3(Vt) = 27 × ifftn(Vt), (80)

where fftn(·) is the multidimensional IDFT in Matlab.
Applying the 3D QDF on two videos in Fig.19 (a) and

Fig.20 (a), experimental results are shown in Fig.19 (b),
Fig.20 (b) and Table 2. The amplitude spectrums of matrices
QFT3(Vg) and QFT3(Vt) in Fig.19 (b) and Fig.20 (b) show
that the 3D QDF is useful for quantum videos. By analyzing
Table II, we conclude that the results are the same among
ft3, QFT3 and iffn without consideration of truncation error
on machine computing and verify that our proposed 3D QFT
holds.
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TABLE I
COMPARISONS AMONG FT2, QFT2 AND IFF2, WHERE MAVR AND MAVI ARE THE ABBREVIATIONS OF MAX ABSOLUTE VALUE OF THE REAL PART AND

THE IMAGINE PART, RESPECTIVELY

MAVR of ft2-QFT2 MAVI of ft2-QFT2 MAVR of 27×ifft2-QFT2 MAVI of 27×ifft2-QFT2

Ag 2.7285× 10−11 4.7976× 10−11 2.7285× 10−11 4.9113× 10−11

At 1.4305× 10−6 2.3842× 10−6 1.6689× 10−6 2.2724× 10−6

(a)

(b)

Fig. 19. The 3D QFT on a gray-scale video. (a) The four 64× 64 frames extracted in the video; (b) Amplitude spectrums of the four frames.

(a)

(b)

Fig. 20. The 3D QFT on a color video. (a) The four 64× 64 frames; (b) Amplitude spectrums of the four frames.

TABLE II
COMPARISONS AMONG FT3, QFT3 AND IFFN, WHERE MAVR AND MAVI ARE THE SAME BETWEEN TABLE I AND TABLE II

MAVR of ft3-QFT3 MAVI of ft3-QFT3 MAVR of 27×ifftn-QFT3 MAVI of 27×ifftn-QFT3

Vg 7.8217× 10−11 3.3197× 10−11 7.5488× 10−11 3.5016× 10−11

Vt 8.9407× 10−7 8.0466× 10−7 7.7486× 10−7 9.5367× 10−7

VII. CONCLUSION

In this article, we has described MQVR by extending
quantum image representation NASS into QVR, which is the
foundation of QVIP. We have also designed four complete
circuits of QFT and IQFT on 2n elements with complexity
O(n2), and showed the functions of various components of
these circuits. Compared with the existing circuits of QFT, our
proposed circuits are exactly complete and their correctness
have been proved by their formula derivation and simulation
experiments. Therefore, our proposed QFTs are the beneficial

complement and enhancement of the current circuits. For the
first time, we have implemented the 2D and 3D QFTs based
on QVR with complexities Θ(n2+m2) and Θ(n2+m2+p2)
for 2n×2m images and 2n×2m×2p videos, respectively. Fur-
thermore, our proposed 2D and 3D QFTs can be implemented
by parallel running multiple one-dimension QFTs while the
classical 2D and 3D DFTs execute multiple one-dimension
DFTs in sequence. These have proved that our proposed QFTs
are efficient. The results of simulation experiments show that
our proposed QFTs are valid and useful for QVIP. In summary,



JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 11

we have provided a complete framework of QFT and a feasible
scheme for QFT to be applied in QVIP.
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