Skip to main content
Log in

A highly efficient scheme for joint remote preparation of multi-qubit W state with minimum quantum resource

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We present a highly efficient scheme for perfect joint remote preparation of an arbitrary \( 2^{n} \)-qubit W state with minimum quantum resource. Both the senders Alice and Bob intend to jointly prepare one \( 2^{n} \)-qubit W state for the remote receiver Charlie. In the beginning, they help the remote receiver Charlie to construct one n-qubit intermediate state which is closely related to the target \( 2^{n} \)-qubit W state. Afterward, Charlie introduces auxiliary qubits and applies appropriate operations to obtain the target \( 2^{n} \)-qubit W state. Compared with previous schemes, our scheme requires minimum quantum resource and least amount of classical communication. Moreover, our scheme has a significant potential for being adapted to remote state preparation of other special states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., et al.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    ADS  MathSciNet  MATH  Google Scholar 

  2. Karlsson, A., Bourennane, M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A 58, 4394 (1998)

    ADS  MathSciNet  Google Scholar 

  3. Yang, C.P., Chu, S.I., Han, S.: Efficient many-party controlled teleportation of multi-qubit quantum information via entanglement. Phys. Rev. A 70, 022329 (2004)

    ADS  Google Scholar 

  4. Chen, Y.A., Chen, S., Yuan, Z.S., Zhao, B., Chuu, C.S., Schmiedmayer, J., Pan, J.W.: Memory-built-in quantum teleportation with photonic and atomic qubits. Nat. Phys. 4(2), 103–107 (2008)

    Google Scholar 

  5. Deng, F.G., Li, C.Y., Li, Y.S., Zhou, H.Y., Wang, Y.: Symmetric multi-party controlled teleportation of an arbitrary two-particle entanglement. Phys. Rev. A 72(2), 656–665 (2005)

    Google Scholar 

  6. Long, L.R., Li, H.W., et al.: Multiparty controlled teleportation of an arbitrary GHZ-class state by using a d-dimensional (N + 2)-particle non-maximally entangled state as the quantum channel. Sci. China Phys. Mech. 54(3), 484–490 (2011)

    ADS  MathSciNet  Google Scholar 

  7. Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83(3), 648–651 (1999)

    ADS  Google Scholar 

  8. Lance, A.M., Symul, T., Bowen, W.P., et al.: Tripartite quantum state sharing. Phys. Rev. Lett. 92(17), 177903 (2004)

    ADS  Google Scholar 

  9. Deng, F.G., Li, X.H., Li, C.Y., et al.: Multiparty quantum state sharing of an arbitrary two-particle state with Einstein–Podolsky–Rosen pairs. Phys. Rev. A 72(4), 440–450 (2005)

    Google Scholar 

  10. Li, X.H., Zhou, P., Li, C.Y., et al.: Efficient symmetric multiparty quantum state sharing of an arbitrary m-qubit state. J. Phys. B At. Mol. Opt. Phys. 39(8), 1975–1983 (2006)

    ADS  Google Scholar 

  11. Bennett, C.H., Hayden, P., Leung, D.W., et al.: Remote preparation of quantum states. IEEE Trans. Inf. Theory 51(1), 56–74 (2003)

    MathSciNet  MATH  Google Scholar 

  12. Schulman, L.S.: Remote two-time boundary conditions and special states in quantum mechanics. Phys. Lett. 2(6), 515–530 (1989)

    Google Scholar 

  13. Luo, M.X., Deng, Y., Chen, X.B., et al.: The faithful remote preparation of general quantum states. Quantum Inf. Process. 12(1), 279–294 (2003)

    ADS  MathSciNet  MATH  Google Scholar 

  14. Yu, C.S., Song, H.S., Wang, Y.H.: Remote preparation of a qudit using maximally entangled states of qubits. Phys. Rev. A 73(2), 457–460 (2006)

    Google Scholar 

  15. Wang, Z.Y., Liu, Y.M., Zuo, X.Q., et al.: Controlled remote state preparation. Commun. Theor. Phys. 52(8), 235–240 (2009)

    ADS  MATH  Google Scholar 

  16. Wang, J., Yuan, S.H., et al.: Multiparty controlled remote preparation of two particle state. Commun. Theor. Phys. 52(11), 848–852 (2009)

    ADS  MATH  Google Scholar 

  17. Li, H.W., Long, L.R., et al.: Probabilistic multiparty joint remote preparation of an arbitrary m-qubit state with a pure entangled channel against collective noise. Int. J. Theor. Phys. 52(3), 849–861 (2013)

    MATH  Google Scholar 

  18. Liao, Y.M., Zhou, P., Qin, X.C., He, Y.H., Qin, J.S.: Controlled remote preparing of an Arbitrary 2-qudit state with two-particle entanglements and positive operator-valued measure. Commun. Theor. Phys. 61(3), 315–321 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  19. Wang, C., Zeng, Z., Li, X.H.: Controlled remote state preparation via partially entangled quantum channel. Quantum Inf. Process. 14(3), 1077–1089 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  20. Liu, X.S., Long, G.L., Tong, D.M., et al.: General scheme for super dense coding between multi-parties. Phys. Rev. A 65(2), 130–132 (2012)

    Google Scholar 

  21. Grudka, A., Wójcik, A.: Projective measurement of the two-photon polarization state: linear optics approach. Phys. Rev. A 66(6), 064303 (2002)

    ADS  Google Scholar 

  22. Huelga, S.F., Plenio, M.B., Vaccaro, J.A.: Remote control of restricted sets of operations: teleportation of angles. Phys. Rev. A 65(4), 579 (2002)

    Google Scholar 

  23. Lv, S.X., Zhao, Z.W., Zhou, P.: Joint remote control of an arbitrary single-qubit state by using a multiparticle entangled state as the quantum channel. Quantum Inf. Process. 17(1), 8 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  24. Deng, F.G., Gui, L.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68(4), 113–114 (2003)

    Google Scholar 

  25. Wang, C., Deng, F.G., Li, Y.S., et al.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71(4), 44305 (2005)

    ADS  Google Scholar 

  26. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum key distribution scheme. Phys. Rev. A 65(3), 032302 (2002)

    ADS  Google Scholar 

  27. Dür, W., Briegel, H.J., Cirac, J.I., et al.: Quantum repeaters based on entanglement purification. Phys. Rev. A. 59(1), 169–181 (1998)

    ADS  Google Scholar 

  28. Zhao, Z., Yang, T., Chen, Y.A., et al.: Experimental realization of entanglement concentration and a quantum repeater. Phys. Rev. Lett. 90(20), 207901 (2003)

    ADS  Google Scholar 

  29. Simon, C., De, R.H., Afzelius, M., et al.: Quantum repeaters with photon pair sources and multimode memories. Phys. Rev. Lett. 98(19), 190503 (2007)

    ADS  Google Scholar 

  30. Deng, F.G.: One-step error correction for multipartite polarization entanglement. Phys. Rev. A 83(6), 1455–1463 (2011)

    Google Scholar 

  31. Wang, T.J., Song, S.Y., Long, G.L.: Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities. Phys. Rev. A 85(85), 1915–1923 (2012)

    Google Scholar 

  32. Lo, H.K.: Classical communication cost in distributed quantum information processing—a generalization of quantum communication complexity. Phys. Rev. A 62(1), 12313 (1999)

    Google Scholar 

  33. Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63(63), 94–98 (2000)

    Google Scholar 

  34. Wang, Z.Y.: Highly efficient remote preparation of an arbitrary three-qubit state via a four-qubit cluster state and an EPR state. Quantum Inf. Process. 12(2), 1321–1334 (2013)

    ADS  MATH  Google Scholar 

  35. Zhou, N.R., Cheng, H.L., Tao, X.Y., et al.: Three-party remote state preparation schemes based on entanglement. Quantum Inf. Process. 13(2), 513–526 (2014)

    ADS  MATH  Google Scholar 

  36. Hua, C., Chen, Y.X.: Deterministic remote preparation of an arbitrary qubit state using a partially entangled state and finite classical communication. Quantum Inf. Process. 15(11), 4773–4783 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  37. Wei, J., Shi, L., Ma, L., et al.: Remote preparation of an arbitrary multi-qubit state via two-qubit entangled states. Quantum Inf. Process. 16(10), 260 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  38. Chen, N., Quan, D.X., Yang, H., et al.: Deterministic controlled remote state preparation using partially entangled quantum channel. Quantum Inf. Process. 15(4), 1719–1729 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  39. Wei, J., Shi, L., Zhu, Y., et al.: Deterministic remote preparation of arbitrary multi-qubit equatorial states via two-qubit entangled states. Quantum Inf. Process. 17(3), 70 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  40. Wang, Z.Y.: Classical communication cost and probabilistic remote two-qubit state preparation via POVM and W-type states. Quantum Inf. Process. 11(6), 1585–1602 (2012)

    ADS  MathSciNet  MATH  Google Scholar 

  41. Liu, W.T., Wu, W., et al.: Experimental remote preparation of arbitrary photon polarization states. Phys. Rev. A 76(2), 22308 (2012)

    Google Scholar 

  42. Barreiro, J.T., Wei, T.C., Kwiat, P.G.: Remote preparation of single-photon hybrid entangled and vector-polarization states. Phys. Rev. Lett. 105(3), 030407 (2010)

    ADS  Google Scholar 

  43. Eibl, M., Kiesel, N., et al.: Experimental realization of a three-qubit entangled W state. Phys. Rev. Lett. 92(7), 077901 (2004)

    ADS  Google Scholar 

  44. Zou, X.B., Pahlke, K., Mathis, W.: Generation of an entangled four-photon W state. Phys. Rev. A 66(4), 044302 (2002)

    ADS  Google Scholar 

  45. Guo, G.C., Zhang, Y.S.: Scheme for preparation of the W state via cavity quantum electrodynamics. Phys. Rev. A 65(5), 882–886 (2002)

    Google Scholar 

  46. Luo, M.X., Chen, X.B., Ma, S.M., Niu, X.X., Yang, Y.X.: Joint remote preparation of an arbitrary three-qubit state. Opt. Commun. 283(23), 4796–4801 (2010)

    ADS  Google Scholar 

  47. Chen, Q.Q., Xia, Y., Song, J.: Probabilistic joint remote preparation of a two particle high-dimensional equatorial state. Opt. Commun. 284(20), 5031–5035 (2011)

    ADS  Google Scholar 

  48. Peng, J.Y., Luo, M.X., Mo, Z.W.: Joint remote state preparation of arbitrary two qubit states via GHZ-type states. Quantum Inf. Process. 12(7), 2325–2342 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  49. Zhang, Z.H., Shu, L., Mo, Z.W., et al.: Joint remote state preparation between multi-sender and multi-receiver. Quantum Inf. Process. 13(9), 1979–2005 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  50. Li, X., Ghose, S.: Optimal joint remote state preparation of equatorial states. Quantum Inf. Process. 14(12), 4585–4592 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  51. Yu, R.F., Lin, Y.J., Zhou, P.: Joint remote preparation of arbitrary two-and three photon state with linear-optical elements. Quantum Inf. Process. 15(11), 4785–4803 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  52. Zhan, Y.B., Ma, P.C.: Deterministic joint remote preparation of arbitrary two and three qubit entangled states. Quantum Inf. Process. 12(2), 997–1009 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  53. Chang, L.W., Zheng, S.H., Gu, L.Z., Xiao, D., Yang, Y.X.: Joint remote preparation of an arbitrary five-qubit Brown state via non-maximally entangled channels. Chin. Phys. B 23(9), 91–99 (2014)

    Google Scholar 

  54. Luo, M.X., Chen, X.B., Ma, S.Y., Niu, X.X., Yang, Y.X.: Joint remote preparation of an arbitrary three-qubit state. Opt. Commun. 283(23), 4796 (2010)

    ADS  Google Scholar 

  55. Bennett, C.H., Brassard, G., Popescu, S., et al.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76(5), 722–725 (1996)

    ADS  Google Scholar 

  56. Deutsch, D., Ekert, A., Jozsa, R., et al.: Quantum privacy amplification and the security of quantum cryptography over noisy channels. Phys. Rev. Lett. 77(13), 2818–2821 (1996)

    ADS  Google Scholar 

  57. Feng, X.L., Kwek, L.C., Oh, C.H.: Electronic entanglement purification scheme enhanced by charge detections. Phys. Rev. A 71(6), 362–368 (2005)

    Google Scholar 

  58. Sheng, Y.B., Deng, F.G.: Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement. Phys. Rev. A 81(3), 537–542 (2010)

    Google Scholar 

  59. Sheng, Y.B., Deng, F.G.: One-step deterministic polarization entanglement purification using spatial entanglement. Phys. Rev. A 82(4), 23504–23516 (2010)

    Google Scholar 

  60. Li, X.H.: Deterministic polarization-entanglement purification using spatial entanglement. Phys. Rev. A 82(4), 3355–3362 (2010)

    Google Scholar 

  61. Jafarpour, M., Ashrafpouri, F.: Improved entanglement–purification protocol using three Werner states and LOCC. Quantum Inf. Process. 14(2), 607–621 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  62. Wang, G.Y., Liu, Q., Deng, F.G.: Efficient hyperentanglement purification for two-photon six-qubit quantum systems. Phys. Rev. A 94(3), 032319 (2016)

    ADS  Google Scholar 

  63. Zhang, H., Liu, Q., Xu, X.S., et al.: Polarization entanglement purification of nonlocal microwave photons based on the cross-Kerr effect in circuit QED. Phys. Rev. A 96(5), 052330 (2017)

    ADS  Google Scholar 

  64. Bennett, C.H., Bernstein, H.J., Popescu, S., et al.: Concentrating partial entanglement by local operations. Phys. Rev. A 53(4), 2046–2052 (1996)

    ADS  Google Scholar 

  65. Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics. Phys. Rev. A 77(6), 140 (2009)

    Google Scholar 

  66. Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Efficient polarization entanglement concentration for electrons with charge detection. Phys. Lett. A 373(21), 1823–1825 (2009)

    ADS  MATH  Google Scholar 

  67. Wang, C.: Efficient entanglement concentration for partially entangled electrons using a quantum-dot and microcavity coupled system. Phys. Rev. A 86(1), 164 (2012)

    Google Scholar 

  68. Sheng, Y.B., Zhou, L., Zhao, S.M., et al.: Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs. Phys. Rev. A 85(1), 145–149 (2012)

    Google Scholar 

  69. Ren, B.C., Long, G.L.: General hyperentanglement concentration for photon systems assisted by quantum-dot spins inside optical microcavities. Opt. Express 22(6), 6547–6561 (2014)

    ADS  Google Scholar 

  70. Gao, W.C., Cao, C., Wang, T.J., et al.: Efficient purification and concentration for three-level entangled quantum dots using non-reciprocal microresonators. Quantum Inf. Process. 16(8), 182 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  71. Ding, S.P., Zhou, L., Gu, S.P., et al.: Electronic entanglement concentration for the concatenated Greenberger–Horne–Zeilinger state. Int. J. Theor. Phys. 56(6), 1–17 (2017)

    MathSciNet  MATH  Google Scholar 

  72. Zhang, H., Alsaedi, A., Hayat, T., et al.: Entanglement concentration and purification of two-mode squeezed microwave photons in circuit QED. Ann. Phys. 391(1), 112–119 (2018)

    ADS  MathSciNet  Google Scholar 

  73. Li, Y.: Generation of distributed W-states over long distances. Opt. Commun. 396(1), 19–22 (2017)

    ADS  Google Scholar 

  74. Joo, J., Park, Y.J., Oh, S., Kim, J.: Quantum teleportation via a W state. New J. Phys. 5(20), 1765–1768 (2003)

    Google Scholar 

  75. Chen, X.B., Zhang, N., Lin, S., Wena, Q.Y., Zhu, F.C.: Quantum circuits for controlled teleportation of two-particle entanglement via a W state. Opt. Commun. 281(8), 2331–2335 (2008)

    ADS  Google Scholar 

  76. Nguyen, B.A.: Joint remote state preparation via W and W-type states. Opt. Commun. 283(20), 4113–4117 (2010)

    Google Scholar 

  77. Joo, J., et al.: Quantum secure communication via a W state. J. Korean Phy. Soc. 46(4), 763–768 (2005)

    Google Scholar 

  78. Zuo, X.Q., Liu, Y.M., Zhang, W., Zhang, Z.J.: Simpler criterion on W state for perfect quantum state splitting and quantum teleportation. Sci. China 52(12), 1906–1912 (2009)

    Google Scholar 

  79. Wu, H.Z., Yang, Z.B., Zheng, S.B.: Quantum teleportation and superdense coding via W-class states. Commun. Theor. Phys. 49(4), 901–904 (2008)

    ADS  MATH  Google Scholar 

  80. Hou, K., Yu, J.Y., Yan, F.: Deterministic remote preparation of a four-qubit entangled W state. Int. J. Theor. Phys. 54(9), 3092–3102 (2015)

    MATH  Google Scholar 

  81. Wang, D., Hu, Y.D., Wang, Z.Q., Ye, L.: Efficient and faithful remote preparation of arbitrary three- and four-qubit W-class entangled states. Quantum Inf. Process. 14(6), 2135–2151 (2015)

    ADS  MATH  Google Scholar 

  82. Moreno, M.G.M., Cunha, M.M., Parisio, F.: Remote preparation of W states from imperfect bipartite sources. Quantum Inf. Process. 15(9), 1–11 (2016)

    MathSciNet  MATH  Google Scholar 

  83. Fu, H., Ma, P.C., Chen, G.B., Li, X.W., Zhan, Y.B.: Efficient schemes for deterministic joint remote preparation of an arbitrary four-qubit W-type entangled state. Pramana 88(6), 92 (2017)

    ADS  Google Scholar 

  84. Huang, S.: Probability of state preparation using local pure operations. Phys. Lett. A 378(22–23), 1584–1587 (2014)

    MathSciNet  MATH  Google Scholar 

  85. Wang, A.M.: Remote implementations of partially unknown quantum operations of multiqubits. Phys. Lett. A 74(3), 396–401 (2005)

    MathSciNet  Google Scholar 

  86. Kielpinski, D., Monroe, C., Wineland, D.J.: Architecture for a large-scale iontrap quantum computer. Nature 417(6890), 709–711 (2002)

    ADS  Google Scholar 

  87. Du, J.F., Zou, P., Shi, M.J., Leong, C.K.: Observation of geometric phases for mixed states using NMR interferometry. Phys. Rev. Lett. 91(10), 100403 (2003)

    ADS  Google Scholar 

  88. Waseem, M., Irfan, M., Qamar, S.: Realization of quantum gates with multiple control qubits or multiple target qubits in a cavity. Quantum Inf. Process. 14(6), 1869–1887 (2015)

    ADS  MATH  Google Scholar 

  89. Zhao, Z., et al.: Experimental demonstration of a nondestructive controlled-not quantum gate for two independent photon qubits. Phys. Rev. Lett. 94(3), 030501 (2005)

    ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by both the National Natural Science Foundation under Grant Nos. 61473199 and 61104002 and SuZhou prospective applied research project under Grant No. SYG201808 and project supported by Key Laboratory of System Control and Information Processing, Ministry of Education,CHINA (Grant No. Scip201804).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, NN., Jiang, M. A highly efficient scheme for joint remote preparation of multi-qubit W state with minimum quantum resource. Quantum Inf Process 17, 340 (2018). https://doi.org/10.1007/s11128-018-2098-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-2098-0

Keywords

Navigation