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Abstract. The finite dihedral group generated by one rotation and one
flip is the simplest case of the non-abelian group. Cayley graphs are dia-
grammatic counterparts of groups. In this paper, much attention is given
to the Cayley graph of the dihedral group. Considering the character-
istics of the elements in the dihedral group, we conduct the model of
discrete-time quantum walk on the Cayley graph of the dihedral group
by special coding mode. This construction makes Fourier transformation
can be used to carry out spectral analysis of the dihedral quantum walk,
i.e. the non-abelian case. Furthermore, the relation between quantum
walk without memory on the Cayley graph of the dihedral group and
quantum walk with memory on a cycle is discussed, so that we can ex-
plore the potential of quantum walks without and with memory. Here,
the numerical simulation is carried out to verify the theoretical analysis
results and other properties of the proposed model are further studied.

1 Introduction

Quantum computer is seen as a new kind of computer, which has outstanding
computing power. It has been proven that Turing un-computability problem,
such as the halting problem, also can not be calculated in quantum computing.
Therefore, quantum computing gets no essential breakthrough from the com-
putability point of view. However, the power of quantum computing is likely
to be stronger than classical Turing machine from the view of computational
complexity. The best evidence is that Shor’s algorithm and Grover’s algorithm
have superior computing power over their corresponding classical algorithms. In
1994, Shor proposed a quantum algorithm for solving integer factoring and dis-
crete logarithm problem. The algorithm provides a striking exponential speedup
over all known classical algorithms [1]. In 1996, Grover proposed the quantum
search algorithm on an unordered database, which provides quadratic speedup
over many classical heuristic search algorithms [2].

There are significant progress in designing novel quantum algorithms in re-
cent years, such as quantum walks [3,4] and quantum machine learning [5,6].
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Quantum walks are the quantum version of classical random walks. Quantum
walks provide a general framework for designing quantum algorithms. Given a
graph structure, quantum walks simulate the behavior of particles on the graph
based on the quantum mechanical properties, which is different from classical
random walks. There are two classes of quantum walks, that is, the discrete-time
and continuous-time quantum walks. We focus on the discrete-time model. The
two models of quantum walks on the line and general graphs have attached much
attention.

Aharonov proposed the concept of discrete quantum walks with quantum
coin tossing in one-dimensional Hilbert space and successfully introduced ran-
dom walks into the field of quantum computing [7]. Nayak and Vishwanath
analyzed in detail the dynamics of the one-dimensional Hadamard walk. They
take the Schödinger approach to determine the asymptotic form of the prob-
ability distribution induced by the line by observing the position of a particle
doing the walk [8]. Ambainis et al. gave two general ideas for analyzing quantum
random walks, i.e. the path integral approach and the Schödinger approach, to
study intensively the Hadamard walk with one and two absorption boundaries
[9]. In contrast with the central limit theorem for classical random walks, Konno
showed a new type of weak limit theorems for the one-dimensional lattice [10,11].
After that, Konno had a deep study on the probability properties, i.e. the local-
ization theorem and the balance of probability distribution of discrete quantum
walks in one dimension [12,13,14,15,16,17,18,19,20].

Tregenna et al. studied discrete quantum walks on regular lattices, in one
and two spatial dimensions. They used the bias in the coin operator, the phases
in the coin operator and the initial state of the coin to control the evolution of
the quantum walk [21]. Brun et al. first analyzed the one-dimensional quantum
walk driven by many coins [22].

Since various quantum algorithms based on quantum walks technology fo-
cused on quantum walks on graphs, a review is essential. Aharonov et al. studied
several properties of quantum walks on undirected graphs. They gave definitions
of mixing time, filling time, dispersion time and set the ground for this the-
ory. Quantum walk on a cycle was taken as an example to use the eigenvalues
and eigenvectors of the unitary operator of the walk to discuss the limiting dis-
tribution and the mixing time of the quantum walk [23]. Henceforth, various
researchers studied the properties of quantum walks on cycles [24,25,26,27].

A cycle with n nodes is 2-regular graph, which can be viewed as the Cay-
ley graph of an Abelian group. Cayley graphs are diagrammatic counterparts of
groups. Cayley graphs are convenient means to study quantum walks exploiting
the group-theoretical machinery. In addition, quantum walk on the hypercube
receives a great deal of attention, which is also quantum walk on the Cayley
graph of the Abelian group. Moore and Russell studied the discrete-time and
continuous-time quantum walks on the hypercube. They also proved the mean
inversion operator, i.e. Grover’s diffusion operator, could enable the walk to
achieve the fastest diffusion speed [28]. Kempe provided the basic framework for
quantum hitting time and gave two alternative definitions. His work laid a foun-
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dation for quantum walks on general graphs. It is also pointed out that quantum
walk on the hypercube has exponential speedup over its classical counterpart in
Ref. [29]. Shenvi et al. proposed a quantum search algorithm based on quantum
walk on the hypercube, i.e. the SKW algorithm. The SKW algorithm provided
a quadratic speedup over its classical algorithm [30].

These research findings can be viewed as quantum walks on infinite or fi-
nite Abelian groups. However, quantum walks on non-abelian groups are more
suitable for modeling complicated situations than quantum walks on Abelian
groups. The dihedral group is one of the simplest non-abelian groups. This pa-
per focuses on discrete quantum walks on dihedral groups. For simplicity, we
pay much attention to discrete-time quantum walk on the Cayley graph of the
dihedral group.

The rest of the paper is organized as follows. Necessary preliminaries are
listed in Section 2. The model of discrete-time quantum walk on the Cayley
graph of the dihedral group is introduced in Section 3. The spectral analysis of
its evolution operator using Fourier transformation is given in Section 4. The
relation between quantum walk without memory on the Cayley graph of the
dihedral group DN and quantum walk with memory on an N -cycle is discussed
in Section 5. The numerical simulation of the introduced model is provided in
Section 6. Finally, a short summary of the obtained results is given in Section 7.

2 Preliminaries

Several fundamental definitions and notions are introduced in this part [31,32,33,34,35].

Definition 1. (Dihedral group) The dihedral group DN is a symmetric group
of N -gons (N ≥ 3). Let σ denote the rotation of the regular N -polygon by an
angle of 2π/N degrees. Let τ denote the flip of the regular N -polygon around an
axis of symmetry. Then DN =< σ, τ |σN = τ2 = 1DN , τστ = σ−1 >, where σ
and τ are two generators, and 1DN is the identity element of DN .

Remark The dihedral group is denoted by DN or D2N in different documents.
Traditionally, geometers like to use DN to emphasize the number of sides of a
regular polygon, while algebraists like to use D2N to emphasize the order of the
symmetric group of regular polygons.

Definition 2. (Semi-direct product) Let G be a group and N / G (normal
subgroup), H < G (proper subgroup). If G = NH and N ∩H = {e}, where e is
the identity of G, then G is called a semi-direct product of N and H, denoted by
G ∼= N oH.

The dihedral group DN is isomorphic to the semi-direct product of ZN and
Z2, denoted by DN

∼= ZN o Z2. Each element of the dihedral group can be
expressed as τsσt, written as a pair (s, t), where s ∈ Z2, t ∈ ZN and ZN =
{0, 1, · · · , N − 1}. If s = 0, (s, t) is called a rotation of the dihedral group. If
s = 1, (s, t) is called a flip of the dihedral group.



4 Wenjing Dai, Jiabin Yuan and Dan Li

Definition 3. (Cayley graph) Let G be a finite group, and let H = {h1, · · · , hk}
be a generating set for G. The Cayley graph of G with respect to H has a vertex
for every element of G, with an oriented edge from g to gh, where ∀g ∈ G and
∀h ∈ H.

Several examples of the Cayley graph of the dihedral group are given in Fig.1.

(a) (b) (c)

Fig. 1. Subgraph (a), (b) and (c) show the Cayley graph of the dihedral group
D4 = {e, σ, σ2, σ3, τ, τσ, τσ2, τσ3}, D5 and D8, respectively.

Recall that a walker doing a random walk on the dihedral group chooses, at
every time step, a random direction to move in, and moves to the site adjacent to
it in that direction by assigning probability 1/d to all edges leaving each vertex
v of degree d.

Definition 4. (Classical random walks on dihedral groups) Let G = DN

for an integer N ≥ 3. Define a rotation R = σt with 0 < t < N and a flip
F = τσs with 0 ≤ s < N . Define

P (g) =

 1/2, if g = σt

1/2, if g = τσs

0, otherwise
, (1)

where g ∈ G and |t− s| (modN) = 1.

Definition 5. (Coined quantum walks) Let G(V,E) be a graph. Let HV be
the Hilbert space spanned by the vertex states |v〉, where v ∈ V . The number of
vertices in G(V,E) is denoted by |V |. Assume that G(V,E) is d-regular. Let HC

be an auxiliary Hilbert space of dimension d spanned by the states |1〉 through
|d〉. Let Ĉ be the coin-tossing operator on HC . Label each directed edge with a
number between 1 and d, such that for each a, the directed edges labeled a form
a permutation. For Cayley graphs, the labeling of a directed edge is simply the
generator associated with the edge. Define a shift operator Ŝ on HC ⊗HV such
that Ŝ |c, v〉 = |c, u〉, where u is the cth neighbor of v. Note that since the edge
labeling is a permutation, S is unitary. One step of the quantum walk is given

by Û = Ŝ ·
(
Ĉ ⊗ ÎV

)
.
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The main components of a coined quantum walk are a walker, a coin, evolu-
tion operators for both walker and coin, and a set of observables [34]. Random-
ness is introduced by measuring quantum systems.

3 Model

In this part, we consider the Cayley graph of the finite dihedral group DN which
is a 2-regular graph. The Hilbert space of the walk is H2

C ⊗H2N
V .

3.1 Feasibility Analysis: Reversibility

Aharonov et al. defined a coined quantum walk on a d-regular undirected graph
[23]. Montanaro studied quantum walks on directed graphs and showed that
reversibility is a necessary and sufficient condition for a directed graph [36],
using a similar definition to Ref. [23]. Because the Cayley graph of the dihedral
group is a directed graph, as a first step, feasibility analysis is essential.

Theorem 1. A discrete-time quantum walk can be defined on a finite graph
G(V,E) if and only if G(V,E) is reversible.

According to Ref. [36], all Cayley graphs are regular, and hence are reversible.
Because the Cayley graph of the dihedral group is 2-regular and reversible,
discrete-time quantum walk on the Cayley graph of the dihedral group can be
defined.

3.2 Extended Coined Model and Evolution

In this part, the model of discrete-time quantum walk on the Cayley graph of
the dihedral group is defined. Each element of the dihedral group is denoted
by a pair (s, t). Thus vertices of the Cayley graph of the dihedral group can be
encoded as a pair (s, t) and the pair (s, t) corresponds to two registers |s〉 |t〉.
The vertex set is denoted by

V =


rotation︷ ︸︸ ︷

|0〉 |0〉 , |0〉 |1〉 , · · · , |0〉 |N − 1〉, |1〉 |0〉 , |1〉 |1〉 , · · · , |1〉 |N − 1〉︸ ︷︷ ︸
flip

 . (2)

The example D4 is shown in Fig.2.
Considering the dihedral group generated by one rotation and one flip, each

vertex has two directions, i.e. C ∈ SU (2), where SU (2) is the group of 2 × 2
unitary matrices of determinant 1. Among coin operators, the Hadamard oper-
ator is extensively employed. Thus the Hadamard operator is chosen as the coin
tossing operator, which is as follows

Ĥ =
1√
2

(|0〉C〈0|+ |0〉C〈1|+ |1〉C〈0| − |1〉C〈1|) . (3)
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Fig. 2. Good encoding of the Cayley graph of the dihedral group D4.

Edges of the Cayley graph of the dihedral group can be encoded as |direction〉 |vertex〉
by an auxiliary register attached to the registers of the vertex set, i.e.

E =


|R〉︷ ︸︸ ︷

|R〉 |0〉 |0〉 , · · · , |R〉 |1〉 |N − 1〉, |F 〉 |0〉 |0〉 , · · · , |F 〉 |1〉 |N − 1〉︸ ︷︷ ︸
|F 〉

 . (4)

The shift operator is defined by

Ŝ|R〉C |0〉 |j〉 = |R〉C |0〉 |j + 1〉
Ŝ|F 〉C |0〉 |j〉 = |F 〉C |1〉 |j〉
Ŝ|R〉C |1〉 |j〉 = |R〉C |1〉 |j − 1〉
Ŝ|F 〉C |1〉 |j〉 = |F 〉C |0〉 |j〉
j ∈ ZN

. (5)

The shift operator allows the walker to go one step rotation if the accompa-
nying coin state is |R〉C , or one step flip if the accompanying coin state is the
other basis state |F 〉C . A suitable shift operator of discrete-time quantum walk
on the Cayley graph of the dihedral group has the following form

Ŝ = |R〉 〈R| ⊗ |0〉 〈0| ⊗
∑
j

|j + 1 ( mod N)〉 〈j|

+ |R〉 〈R| ⊗ |1〉 〈1| ⊗
∑
j

|j − 1 ( mod N)〉 〈j|

+ |F 〉 〈F | ⊗ |0〉 〈1| ⊗
∑
j

|j ( mod N)〉 〈j|

+ |F 〉 〈F | ⊗ |1〉 〈0| ⊗
∑
j

|j ( mod N)〉 〈j|

. (6)

The shift operator Ŝ controls the walker to perform rotation one unit if the coin
state is in the “R” state or to perform flip one unit if the coin state is in the “F”
state. If the walker is in some superposition of “R” and “F”, the terms evolve
accordingly. Ĉ acts on the coin state space and Ŝ acts on both the vertex state
space and coin space together. Consequently, the operator for each step on the
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total Hilbert space is unitary and has the form:

Û = Ŝ ·
(
Ĉ ⊗ ÎV

)
, (7)

where ÎV is the identity operator on the vertex space.

4 Spectral Analysis

The vertex state space on which the walker moves is the vertex set of the Cay-
ley graph of the dihedral group DN . The spatial part has associated a 2N -
dimensional Hilbert space H2N

V with computational basis {|j〉 , 0 ≤ j ≤ N − 1},
where the values of j correspond to the labels t of the vertices denoted by a pair
(s, t). The coin state space is two-dimensional, because the walker can move rota-
tion or flip. Thus, the Hilbert space associated with the quantum walk is H2

C ⊗
H2N

V , with computational basis {|c, s, j〉 , 0 ≤ c ≤ 1, 0 ≤ s ≤ 1, 0 ≤ j ≤ N − 1}.
c = 0 represents rotation transformation and c = 1 represents flip transforma-
tion. s = 0 represents the rotation elements of the dihedral group and s = 1
represents the flip elements of the dihedral group.

The shift operator constructed by Eq. (6) is simplified as

Ŝ |0, s, j〉 = |0, s, j + (−1)
s〉

Ŝ |1, s, j〉 = |1, s̄, j〉
, (8)

where s̄ = 1−s. Arithmetic operations with variable j are performed modulo N .
According to the coding scheme above, the walk operator is defined as follows

U = S (C ⊗ I2N ) = S (C ⊗ I2 ⊗ IN ) , (9)

where C is a coin matrix.
Nayak and Vishwanath [8], followed by Ambainis et al. [9], used the dis-

crete time Fourier transform and methods of complex analysis to analyze the
properties of discrete quantum walk on the line. The walk starts in some initial
state |ψ0〉. Following Refs. [8,9], the quantum state is changed according to the
formula

|ψn〉 = Un |ψ0〉 (10)

or as a recursive relation
|ψn+1〉 = U |ψn〉 . (11)

For the Hadamard walk, the evolution is given as follows

U = S (H ⊗ I2N ) = S (H ⊗ I2 ⊗ IN ) , (12)

where H is Hadamard matrix

H =
1√
2

(
1 1
1 −1

)
. (13)
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The coin part in Eq. (12) can be written in the matrix notation as follows

H ⊗ I2N =
1√
2

(
I2N I2N
I2N −I2N

)
. (14)

Here we calculate amplitudes for a quantum walk on the Cayley graph of the
dihedral group. In this case, the vectors of amplitudes are as follows

Φ (n, t) =


〈0, 0, n | ψt〉
〈0, 1, n | ψt〉
〈1, 0, n | ψt〉
〈1, 1, n | ψt〉

 . (15)

The shift operator is defined as in Eq. (6). After one step of time evolution,

Φ (n, t+ 1) =


〈0, 0, n+ 1 | (H ⊗ I2 ⊗ IN )ψt〉
〈0, 1, n− 1 | (H ⊗ I2 ⊗ IN )ψt〉
〈1, 1, n | (H ⊗ I2 ⊗ IN )ψt〉
〈1, 0, n | (H ⊗ I2 ⊗ IN )ψt〉

 . (16)

Evaluating the action of the Hadamard matrix on the coin register, we can obtain

Φ (n, t+ 1) = 1√
2


〈0, 0, n+ 1 | ψt〉+ 〈1, 0, n+ 1 | ψt〉

0
0
0


+ 1√

2


0

〈0, 1, n− 1 | ψt〉+ 〈1, 1, n− 1 | ψt〉
0
0

+ 1√
2


0
0

〈0, 1, n | ψt〉 − 〈1, 1, n | ψt〉
〈0, 0, n | ψt〉 − 〈1, 0, n | ψt〉

 .

Rewriting the above expression using Φ (n+ 1, t), Φ (n− 1, t) and Φ (n, t), we
can obtain

Φ (n, t+ 1) = M1Φ (n+ 1, t) +M2Φ (n− 1, t) +M3Φ (n, t) , (17)

where M1, M2 and M3 matrices are

M1 =
1√
2


1 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,M2 =
1√
2


0 0 0 0
0 1 0 1
0 0 0 0
0 0 0 0

 ,M3 =
1√
2


0 0 0 0
0 0 0 0
0 1 0 −1
1 0 −1 0

 . (18)

In order to obtain the expression for the amplitudes of the quantum walk on
the Cayley graph of the dihedral group, we use the method introduced in Ref.
[8] and the analysis scheme given in Ref. [37]. The time evolution of the walk
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using the Fourier transform is represented as follows

Φ̃ (k, t+ 1) =
N−1∑
n=0

e
2πikn
N Φ (n, t+ 1)

=
N−1∑
n=0

e
2πikn
N (M1Φ (n+ 1, t) +M2Φ (n− 1, t) +M3Φ (n, t))

= M1

∑
n
e

2πikn
N Φ (n+ 1, t) +M2

∑
n
e

2πikn
N Φ (n− 1, t) +M3

∑
n
e

2πikn
N Φ (n, t)

=
(
e−

2πik
N M1 + e

2πik
N M2 +M3

)
Φ̃ (k, t)

.

(19)
From the above, we get a recursive relation for the time evolution in the Fourier
basis

Φ̃ (k, t) = M̃k

t
Φ̃ (k, 0) , (20)

where the unitary matrix is as follows

M̃k = e−
2πik
N M1 + e

2πik
N M2 +M3 =

1√
2


e−

2πik
N 0 e−

2πik
N 0

0 e
2πik
N 0 e

2πik
N

0 1 0 −1
1 0 −1 0

 . (21)

Here the characteristic polynomial of matrix M̃k is the same as the char-
acteristic polynomial of matrix Mk in Ref. [37]. Thus the eigenvalues are the

same. Similarly, let us denote A = w−kN = e−
2πik
N . We can also use symbolic

variables and functions in MATLAB to find the eigenvalues and eigenvectors of
M̃k. Matrix M̃k has the following eigenvalues

λ1 = −1, λ3 = 1+A2+
√
A4−6A2+1

2
√
2A

,

λ2 = 1, λ4 = 1+A2−
√
A4−6A2+1

2
√
2A

,

with corresponding eigenvectors

v1 =


− A√

2A+1

− 1√
2A+1√

2A+2
2A+

√
2

1

 , v3 =


√
A4−6A2+1+A2−1

2A
A2−

√
A4−6A2+1−1
2A2

− 1
A

1

 ,

v2 =


A√

2A−1
1√

2A−1
− A−

√
2√

2A−1
1

 , v4 =


A2−

√
A4−6A2+1−1

2A
A2+

√
A4−6A2+1−1
2A2

− 1
A

1

 .

Thus, the spectral decomposition of U can be given as follows

U =
N−1∑
j=0

(λ1 |v1, κk〉 〈v1, κk|+ λ2 |v2, κk〉 〈v2, κk|

+λ3 |v3, κk〉 〈v3, κk|+ λ4 |v4, κk〉 〈v4, κk|) ,
(22)
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where |κk〉 = 1√
N

N−1∑
j=0

wjk
N |j〉 is the spatial part of the computational basis on

which the Fourier transform acts and wN = e
2πi
N is a primitive N th root of unity.

5 Relation with Quantum Walks with Memory on Cycles

In this part, we give deeper thought to the relation between quantum walk on the
Cayley graph of the dihedral group and quantum walk with memory on a cycle
from different angels. We explore the walk model based on the characteristics
of group members on the one hand, and on the other hand, we briefly discuss
the one-to-one correspondence between quantum walk with memory on the line
digraph of the cycle and quantum walk without memory on the Cayley graph of
the dihedral group.

5.1 From Hilbert Space and Eigenvalues Perspective

In Ref. [37], Mc Gettrick introduced a model of quantum walk with mem-
ory on a cycle and studied its basic properties. We find that the walk oper-
ators of quantum walk without memory on the Cayley graph of the dihedral
group DN and quantum walk with one-step memory on an N -cycle have the
same eigenvalues. The quantum walk with one-step memory on an N -cycle
is defined in Hilbert space H2

C ⊗ H2
M ⊗ HN

V and the quantum walk without
memory on the Cayley graph of the dihedral group is defined in Hilbert space
H2

C ⊗H2N
V = H2

C ⊗H2
V ⊗HN

V . They are equivalent. The eigenvectors which cor-
respond to the same eigenvalues are different and just affect computational basis
state. Furthermore, the basic properties of the two walks associated with eigen-
values and eigenvectors are homologous. The two main properties are probability
distribution and time-averaged limiting probability distribution. Probability dis-
tribution and the time-averaged value of the walk are referred to Ref. [37] and
we make a simple description of them in the Appendix.

We evaluate the probability distribution of finding the particle at each vertex
of the Cayley graph of the dihedral group. The probability distribution of the
walk without memory after the first n steps is given by

psj (n) =
∑
c

|〈c, s, j | ψn〉|2. (23)

In Hilbert space H2
C ⊗H2

V ⊗HN
V , we first consider part of Hilbert space, i.e.

H2
C ⊗H2

V . If the walker starts from the vertex (0, 0) with the coin in the state
|0〉, the initial state is as follows

|ψ0〉 = |0〉C ⊗ |0〉V |0〉V =


1
0
0
0

⊗ |0〉V . (24)
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If the starting vertex is (1, 0), the initial state is

|ψ0〉 = |0〉C ⊗ |1〉V |0〉V =


0
1
0
0

⊗ |0〉V . (25)

For the quantum walk with one-step memory on an N -cycle, the memory register
is in the superposition 1√

2
(|0〉+ |1〉), the coin register is in the state |0〉 and the

starting position is 0, which means that the particle of the quantum walk on
the Cayley graph of the dihedral group is starting from the vertex (0, 0) and the
vertex (1, 0) at the same time, i.e.

|ψ0〉 =


1
1
0
0

⊗ |0〉V . (26)

The formula for probability distribution is given in Ref. [37] and it is introduced
by Eqs. (32-37) in the Appendix.

In Ref. [23], it was shown that probability distribution is quasi-periodic for
quantum walks on cycles and it was suggested to consider time-averaged prob-
ability distribution, which converges to the limiting distribution with t → ∞.
Here, we focus on the probability distribution of quantum walk on the Cayley
graph of the dihedral group. For a fixed vertex (s, j), the probability psj (n)
does not converge to a limit. The time-averaged probability p̄sj (n) is considered
instead of psj (n) and the probability distribution of the walk without memory
after the first n steps is given by

p̄sj (n) =
1

n

n∑
i=1

psj (i). (27)

The formula for time-averaged limiting probability distribution is given by Eqs.
(36) and (37). It is worth reminding that there is a prerequisite that the particle
of the quantum walk on the Cayley graph of the dihedral group starts from the
vertex (0, j) and the vertex (1, j) at the same time, where 0 ≤ j ≤ N − 1.

5.2 From Correspondence Perspective

In Ref. [38], Dan Li et al. presented the one-to-one correspondence between
quantum walks with memory(QWM) on a regular graph and quantum walks
without memory(QWoM) on line digraph of the regular graph. And inspired by
Ref. [39], they constructed the model of generic QWoM on line digraph of an
m-regular graph.

Here we introduce two definitions to explain the relationship between the
two walks, i.e. QWM on cycles and QWoM on the Cayley graph of the dihedral
group.
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Definition 6. (Line digraph) Let G(V,E) be a digraph with vertex set V (G)

and edge set E(G). Define
−→
LG be the line digraph of a digraph G(V,E). The ver-

tex set of
−→
LG is E(G); for xa, xb, xc, xd ∈ V (G) , ((xa, xb) , (xc, xd)) ∈ E

(−→
LG

)
if and only if (xa, xb) and (xc, xd) are both in E(G) and xb = xc. The line di-

graph of
−→
LG is denoted by

−→
L 2G. Similarity, there are

−→
L dG with d ∈ N+ and

all of them is called as line digraph of G(V,E).

Definition 7. (Partition) Let G(V,E) an m-regular graph. Define π be a par-

tition of
−→
L dG such that

π :
−→
L dG→ {C1, C2, · · · , Cm} ,

where {Ck|k = 1, · · · ,m} satisfy that V (Ck) = V
(−→
L dG

)
, ∪kE (Ck) = E

(−→
L dG

)
and for every vertex v ∈ V (Ck), the outdegree is 1. Directed cycle factorization is
a kind of partition which satisfies that for every vertex v ∈ V (Ck), the outdegree

and indegree are 1. We denote the set of partitions of
−→
L dG by Π−→

L dG
.

Using the notation in the definition above, the generic QWoM on
−→
L dG means

generic QWM with d-step memory on an m-regular graph G(V,E). In this part,
we focus on QWM with one-step memory on cycles, i.e. m = 2, d = 1. We show
an example of the line digraph in Fig.3. The original graph G(V,E) is a 4-cycle

in Fig.3(a). The line digraph of G(V,E), i.e.
−→
LG, is shown in Fig.3(b). We show

two partitioncolorreds π1 and π2 in Fig.3(c, d), respectively.
From the perspective of graph theory, Fig.3(b) and Fig.1(a) are isomorphic.

Similarly, the line digraph of an N -cycle, denoted by
−→
LG, and the Cayley graph

of dihedral group DN are isomorphic. From this perspective, QWoM on the
Cayley graph of the dihedral group DN and QWM with one-step memory on an
N -cycle are equivalent.

6 Numerical Simulation

In this part, numerical simulation of the quantum walk on the Cayley graph of
the dihedral group is provided with MATLAB code to study the shift matrix
and the walk matrix. The numerical simulation helps us verify the results of
theoretical analysis. We focus on the Hadamard walk on the Cayley graph of
the dihedral group. It is worth mentioning that we change the order of tensor
product operation. Hilbert space of the quantum walk on the Cayley graph of
the dihedral group is H2N

V ⊗H2
C = H2

V ⊗HN
V ⊗H2

C and the shift operator is as
follows

Ŝ |0〉 |j〉 |R〉C = |0〉 |j + 1〉 |R〉C
Ŝ |0〉 |j〉 |F 〉C = |1〉 |j〉 |F 〉C
Ŝ |1〉 |j〉 |R〉C = |1〉 |j − 1〉 |R〉C
Ŝ |1〉 |j〉 |F 〉C = |0〉 |j〉 |F 〉C
j ∈ ZN

.
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(a) (b)

(c) (d)

Fig. 3. The original graph G(V,E) and the line digraph of G(V,E). Subgraph
(c) and (d) show two partitions of the line digraph of G(V,E) by using different
color lines to denote Ck.
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The evolution operator is Û = Ŝ ·
(
ÎV ⊗ Ĉ

)
.

Through numerical simulation, we can get the shift matrix S. Define an N -
dimensional vector, basis (N, i), as the ith vector of the standard basis. The shift
matrix S can be represented as

S =

(
A B
B C

)
,

where block matrix A, B and C are all N -dimensional. According to the parity
of the column index, matrix elements are as follows

A(:, i) =

{
basis(N, (i+ 2)modN) if i is odd

0 if i is even
(28)

B(:, i) =

{
0 if i is odd

basis(N, (i+ 2)modN) if i is even
(29)

C(:, i) =

{
basis(N, (i− 2)modN) if i is odd

0 if i is even
(30)

According to Eqs. (12) and (14), we can get the walk matrix U . The size of
both of shift matrix S and the walk matrix U are 4N × 4N . Naturally, we can
verify the theoretical analysis results and begin further research using numerical
simulation.

In order to evaluate the probability distribution, we need to study how the
initial state affects the property of the walk. If the coin operator is the Hadamard
operator, we take four initial states into account, i.e.

|ψ (0)〉 = |0〉C ⊗ |0〉V |0〉V , |ψ (0)〉 = |0〉C ⊗ |1〉V |0〉V ,
|ψ (0)〉 = |1〉C ⊗ |0〉V |0〉V , |ψ (0)〉 = |1〉C ⊗ |1〉V |0〉V ,

where the coin state is |0〉C or |1〉C in Hilbert space H2
C , and the initial vertex

state is |0〉V |0〉V or |1〉V |0〉V in Hilbert space H2N
V = H2

V ⊗ HN
V . The shift

operator allows the walker to go one step rotation if the accompanying coin
state is |0〉C , or one step flip if the accompanying coin state is the other basis
state |1〉C . |0〉V |0〉V and |1〉V |0〉V represent the rotation and the flip element of
the dihedral group, respectively. The numerical simulation results of probability
distribution of the quantum walk on the Cayley graph of the dihedral group DN

with N = 100 after 100 steps are shown in Fig.4.
According to Fig.4(a, c) and Fig.4(b, d), the probability distribution always

fluctuates wildly. We can also study the property of the quantum walk on the
Cayley graph of the dihedral group and compare the properties of the quantum
walk on the Cayley graph of the dihedral group and on the line, or on a cycle.
If the initial coin state is 1√

2
(|0〉C + i|1〉C), we can not obtain a symmetric

probability distribution.
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(a) (b)

(c) (d)

Fig. 4. Probability distribution of the quantum walk on the Cayley graph of
the dihedral group DN with N = 100 after 100 steps using the coin and shift
operators given by Eqs. (3) and (6), respectively. Plot (a) corresponds to a
discrete quantum walk on the Cayley graph of the dihedral group with total
initial state |0〉V |0〉V |0〉C , while plot (b) has total initial state |0〉V |0〉V |1〉C . Plot
(c) corresponds to a discrete quantum walk on the Cayley graph of the dihedral
group with total initial state |1〉V |0〉V |0〉C , while plot (d) has total initial state
|1〉V |0〉V |1〉C .
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We study the probability distribution of the quantum walk on the Cayley
graph of the dihedral group starting from the initial state

|ψ0〉 = |0〉C ⊗ (|0〉V |j〉V + |1〉V |j + d〉V ). (31)

By using numerical simulation method, we can observe the probability of finding
the particle at vertex (s, j) after n steps. We find that the parity of d affects
probability distribution of the quantum walk on the Cayley graph of the di-
hedral group. A specific example is illustrated in Fig.5, where N = 24 and
j is random in ZN . We explain explicitly that if d is even, then the state is∣∣∣ψN

2

〉
=

1∑
c=0

1∑
s=0

N−1∑
j=0

αcsj |c, s, j〉 and amplitudes αcsj are all non-zero. If d is

odd, half of all amplitudes αcsj are 0. It is worth reminding that the bigger n is,
where N = 2n, the lower the probability is. In this case, some amplitudes αcsj

are infinitesimally small-probability.
The numerical simulation graphs of the probability distribution and the time-

averaged probability distribution for a fixed vertex of the Cayley graph of the
dihedral group are shown in Fig.6. It can be seen that probability distribution
of the quantum walk on the Cayley graph of the dihedral group does not con-
verge, while time-averaged probability distribution converges with t→∞ to the
limiting distribution.

7 Summary

In this paper, we have introduced a model of discrete-time quantum walk on
the Cayley graph of the dihedral group. The model we proposed opens the door
to quantum walks on non-abelian groups. The Abelian group is to cyclic quan-
tum walk, what the dihedral group is to the present “dihedral quantum walk”,
i.e. the non-abelian case. We also study the relation between quantum walk on
the Cayley graph of the dihedral group and quantum walk with memory on a
cycle. This exploration is truly novel. It appears that the additional generator
τ (for generating flips) in the dihedral case corresponds to memory in the cy-
cles. Thus, the physical implication for quantum walks of going from Abelian
group (rotational symmetry of the regular N -gon) to the dihedral group (full
symmetry of the regular N -gon) maybe motivate further research on QWoM
and QWM, thereby giving a nice physical representation to an abstract mathe-
matical concept. Moreover, we provide a numerical simulation of the quantum
walk on the Cayley graph of the dihedral group in MATLAB and the simula-
tion results validate the correctness of the theory and show the validity of the
method.

Our work extends current theoretical researches on quantum walks and offers
a new direction to study QWoM and QWM. In the future, we will consider
quantum walk with memory on the Cayley graph of the dihedral group and
compare the similarities and differences between quantum walks without and
with memory on the Cayley graph of the dihedral group. Furthermore, we will
consider whether the research on quantum walks without and with memory on
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(a)

(b)

(c)

Fig. 5. The probability of finding the particle at vertex (s, j) at the (a) N
2 − 1

th
,

(b) N
2

th
step and (c) N

2 + 1
th

, where N = 24 and j is random in ZN .
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(a) (b)

Fig. 6. Probability distribution and time-averaged probability distribution of
quantum walk without memory on the Cayley graph of the dihedral group DN

with N = 100 after the first 100 steps using the coin and shift operators given
by Eqs. (3) and (6) respectively. Plot (a) corresponds to Eq. (23), while plot (b)
corresponds to Eq. (27), with the initial coin state 1√

2
(|0〉C + i|1〉C).

the Cayley graph of the dihedral group can help get an efficient solution to
Dihedral Hidden Subgroup Problem.
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Appendix: Probability Distribution of Quantum walk with
memory on a cycle

Here, we make a simple description of probability distribution and the time-
averaged value of the walk referred to Ref. [37].

In quantum walk with memory on a cycle, the initial state of the walk is |φ0〉
and the vector of amplitudes is Φ (n, 0). In the Fourier basis, the initial state
is Φ̃ (k, 0), for any k = 0, · · · , d − 1, where d is the number of vertices. And
the form of the amplitudes after t steps can be calculated and the vector of the
amplitudes is

Φ̃ (k, t) = M t
kΦ̃ (k, 0) , (32)

for any k. The initial state of the walk Φ̃ (k, 0) can be written as Φ̃ (k, 0) =
4∑

i=1

αi (k) vi (k) in the {vi}i=1,··· ,4 basis, where αi (k) =
(
vi (k) , Φ̃ (k, 0)

)
are

components of Φ̃ (k, 0) in the {vi}i=1,··· ,4 basis. Thus the evolution in the Fourier
basis can be written as

Φ̃ (k, t) = M t
k

4∑
i=1

αi (k) vi (k) =

4∑
i=1

αi (k)λti (k) vi (k), (33)

where λi and vi are the eigenvalues and eigenvectors, respectively.
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The original components can be expressed by the Fourier-transformed vectors
as

Φ (n, t) =
1

d

d−1∑
k=0

e
2πikn
d Φ̃ (k, t) =

1

d

d−1∑
k=0

4∑
j=1

e
2πikn
d αj (k)λtj (k) vj (k). (34)

Therefore the probability of finding the particle at the nth node after t steps is

p (n, t) = |Φ (n, t)|2

= 1
d2

d−1∑
k,m=0

4∑
j,l=1

e
2πi(m−k)n

d α∗j (k)αl (m) v†j (k) vl (m)
[
λ∗j (k)λl (m)

]t
.

(35)

Time-averaged probability distribution is

p̄ (n) = lim
t→∞

1
t

t−1∑
s=0

p (n, s)

= 1
d2

d−1∑
k,m=0

4∑
j,l=1

e
2πi(m−k)n

d α∗j (k)αl (m) v†j (k) vl (m) lim
t→∞

1
t

t−1∑
s=0

[
λ∗j (k)λl (m)

]s
.

(36)
One can observe that the convergence of p̄ (n) depends only on the behavior of
the term

lim
t→∞

1

t

t−1∑
s=0

[
λ∗j (k)λl (m)

]s
. (37)

If λ∗j (k)λl (m) = 1, lim
t→∞

1
t

t−1∑
s=0

[
λ∗j (k)λl (m)

]s
= 1; otherwise 0. Unfortunately,

any further simplifications of Eq. (35) and (36) were not possible. However, def-

inition of lim
t→∞

1
t

t−1∑
s=0

[
λ∗j (k)λl (m)

]s
can be easily calculated using the standard

computer algebra systems, and thus allows for the evaluation of Eq. (36).
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