Skip to main content
Log in

Generation and swapping of multi-qubit entangled state in a coupled superconducting resonator array

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

An efficient method is proposed for the generation and swapping of multi-qubit entangled state in an array of linearly coupled superconducting resonators, each of which is coupled to N superconducting qubits. With the external driving fields to adjust the desired qubit–resonator interaction, we firstly show that the multipartite entangled state of superconducting qubits hosted in two nearest-neighbor interacting resonators can be deterministically realized. Furthermore, by utilizing the produced entangled state, we put forward a protocol for the swapping of quantum entangled state in the coupled resonator array based on measurement, i.e., the multi-particle entangled state can be achieved for the qubits in long-distance separated resonators. The numerical simulation suggests that our scheme is feasible with current circuit QED technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. You, J.Q., Nori, F.: Atomic physics and quantum optics using superconducting circuits. Nature (London) 474, 589 (2011)

    Article  ADS  Google Scholar 

  2. Yang, C.P., Chu, S.I., Han, S.: Possible realization of entanglement, logical gates, and quantum-information transfer with superconducting-quantum-interference-device qubits in cavity qed. Phys. Rev. A 67, 042311 (2003)

    Article  ADS  Google Scholar 

  3. You, J.Q., Nori, F.: Quantum information processing with superconducting qubits in a microwave field. Phys. Rev. B 68, 064509 (2003)

    Article  ADS  Google Scholar 

  4. Sillanpää, M.A., Park, J.I., Simmonds, R.W.: Coherent quantum state storage and transfer between two phase qubits via a resonant cavity. Nature (London) 449, 438 (2007)

    Article  ADS  Google Scholar 

  5. Majer, J., Chow, J.M., Gambetta, J.M., Koch, J., Johnson, B.R., Schreier, J.A., Frunzio, L., Schuster, D.I., Houck, A.A., Wallraff, A., Blais, A., Devoret, M.H., Girvin, S.M., Schoelkopf, R.J.: Coupling superconducting qubits via a cavity bus. Nature (London) 449, 443 (2007)

    Article  ADS  Google Scholar 

  6. Blais, A., Huang, R.S., Wallraff, A., Girvin, S.M., Schoelkopf, R.J.: Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation. Phys. Rev. A 69, 062320 (2004)

    Article  ADS  Google Scholar 

  7. Yang, C.P., Chu, S.I., Han, S.: Quantum information transfer and entanglement with squid qubits in cavity qed: a dark-state scheme with tolerance for nonuniform device parameter. Phys. Rev. Lett. 92, 117902 (2004)

    Article  ADS  Google Scholar 

  8. Wallraff, A., Schuster, D.I., Blais, A., Frunzio, L., Huang, R.S., Majer, J., Kumar, S., Girvin, S.M., Schoelkopf, R.J.: Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature (London) 431, 162 (2004)

    Article  ADS  Google Scholar 

  9. Chiorescu, I., Bertet, P., Semba, K., Nakamura, Y., Harmans, C.J.P.M., Mooij, J.E.: Coherent dynamics of a flux qubit coupled to a harmonic oscillator. Nature (London) 431, 159 (2004)

    Article  ADS  Google Scholar 

  10. Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188 (2001)

    Article  ADS  Google Scholar 

  11. Calderbank, A.R., Shor, P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 54, 1098 (1996)

    Article  ADS  Google Scholar 

  12. Knill, E.: Quantum computing with realistically noisy devices. Nature (London) 434, 39 (2005)

    Article  ADS  Google Scholar 

  13. Lloyd, S.: Universal quantum simulators. Science 273, 1073 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  14. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  15. Vaidman, L.: Teleportation of quantum states. Phys. Rev. A 49, 1473 (1994)

    Article  ADS  Google Scholar 

  16. Greenberger, D.M., Horne, M.A., Shimony, A., Zeilinger, A.: Bell theorem without inequalities. Am. J. Phys. 58, 1131 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  17. Ansmann, M., Wang, H., Bialczak, R.C., Hofheinz, M., Lucero, E., Neeley, M., O’Connell, A.D., Sank, D., Weides, M., Wenner, J., Cleland, A.N., Martinis, J.M.: Violation of bell’s inequality in Josephson phase qubits. Nature (London) 461, 504 (2009)

    Article  ADS  Google Scholar 

  18. Leggett, A.J.: Realism and the physical world. Rep. Prog. Phys. 71, 022001 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  19. Steffen, M., Ansmann, M., Bialczak, R.C., Katz, N., Lucero, E., McDermott, R., Neeley, M., Weig, E.M., Cleland, A.N., Martinis, J.M.: Measurement of the entanglement of two superconducting qubits via state tomography. Science 313, 1423 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  20. DiCarlo, L., Chow, J.M., Gambetta, J.M., Bishop, L.S., Johnson, B.R., Schuster, D.I., Majer, J., Blais, A., Frunzio, L., Girvin, S.M., Schoelkopf, R.J.: Demonstration of two-qubit algorithms with a superconducting quantum processor. Nature (London) 460, 240 (2009)

    Article  ADS  Google Scholar 

  21. Yamamoto, T., Pashkin, Y.A., Astafiev, O., Nakamura, Y., Tsai, J.S.: Demonstration of conditional gate operation using superconducting charge qubits. Nature (London) 425, 941 (2003)

    Article  ADS  Google Scholar 

  22. Hime, T., Reichardt, P.A., Plourde, B.L.T., Robertson, T.L., Wu, C.E., Ustinov, A.V., Clarke, J.: Solid-state qubits with current-controlled coupling. Science 314, 1427 (2006)

    Article  ADS  Google Scholar 

  23. van der Ploeg, S.H.W., Izmalkov, A., van den Brink, A.M., Hübner, U., Grajcar, M., Il’ichev, E., Meyer, H.G., Zagoskin, A.M.: Controllable coupling of superconducting flux qubits. Phys. Rev. Lett. 98, 057004 (2007)

    Article  ADS  Google Scholar 

  24. Ristè, D., Dukalski, M., Watson, C.A., de Lange, G., Tiggelman, M.J., Blanter, Y.M., Lehnert, K.W., Schouten, R.N., DiCarlo, L.: Deterministic entanglement of superconducting qubits by parity measurement and feedback. Nature (London) 502, 350 (2013)

    Article  ADS  Google Scholar 

  25. Barends, R., et al.: Superconducting quantum circuits at the surface code threshold for fault tolerance. Nature (London) 508, 500 (2014)

    Article  ADS  Google Scholar 

  26. DiCarlo, L., Reed, M.D., Sun, L., Johnson, B.R., Chow, J.M., Gambetta, J.M., Frunzio, L., Girvin, S.M., Devoret, M.H., Schoelkopf, R.J.: Preparation and measurement of three-qubit entanglement in a superconducting circuit. Nature (London) 467, 574 (2010)

    Article  ADS  Google Scholar 

  27. Neeley, M., Bialczak, R.C., Lenander, M., Lucero, E., Mariantoni, M., Oonnell, A.D., Sank, D., Wang, H., Weides, M., Wenner, J., Yin, Y., Yamamoto, T., Cleland, A.N., Martinis, J.M.: Generation of three-qubit entangled states using superconducting phase qubits. Nature (London) 467, 570 (2010)

    Article  ADS  Google Scholar 

  28. Zhong, Y.P., Xu, D., Wang, P., Song, C., Guo, Q.J., Liu, W.X., Xu, K., Xia, B.X., Lu, C.Y., Han, S., Pan, J.W., Wang, H.: Emulating anyonic fractional statistical behavior in a superconducting quantum circuit. Phys. Rev. Lett. 117, 110501 (2016)

    Article  ADS  Google Scholar 

  29. Paik, H., Mezzacapo, A., Sandberg, M., McClure, D.T., Abdo, B., Córcoles, A.D., Dial, O., Bogorin, D.F., Plourde, B.L.T., Steffen, M., Cross, A.W., Gambetta, J.M., Chow, J.M.: Experimental demonstration of a resonator-induced phase gate in a multiqubit circuit-qed system. Phys. Rev. Lett. 117, 250502 (2016)

    Article  ADS  Google Scholar 

  30. Deng, Z.J., Gao, K.L., Feng, M.: Generation of \(n\)-qubit \(w\) states with rf squid qubits by adiabatic passage. Phys. Rev. A 74, 064303 (2006)

    Article  ADS  Google Scholar 

  31. Song, K.H., Xiang, S.H., Liu, Q., Lu, D.H.: Quantum computation and \(w\)-state generation using superconducting flux qubits coupled to a cavity without geometric and dynamical manipulation. Phys. Rev. A 75, 032347 (2007)

    Article  ADS  Google Scholar 

  32. Yang, C.P.: Preparation of \(n\)-qubit Greenberger–Horne–Zeilinger entangled states in cavity qed: an approach with tolerance to nonidentical qubit-cavity coupling constants. Phys. Rev. A 83, 062302 (2011)

    Article  ADS  Google Scholar 

  33. Yang, Zp, Li, Z., Ma, Sl, Li, Fl: One-step generation of continuous-variable quadripartite cluster states in a circuit qed system. Phys. Rev. A 96, 012327 (2017)

    Article  ADS  Google Scholar 

  34. Song, C., Xu, K., Liu, W., Yang, Cp, Zheng, S.B., Deng, H., Xie, Q., Huang, K., Guo, Q., Zhang, L., Zhang, P., Xu, D., Zheng, D., Zhu, X., Wang, H., Chen, Y.A., Lu, C.Y., Han, S., Pan, J.W.: 10-qubit entanglement and parallel logic operations with a superconducting circuit. Phys. Rev. Lett. 119(2), 180511 (2017)

    Article  ADS  Google Scholar 

  35. Yang, C.P., Su, Q.P., Zheng, S.B., Han, S.: Generating entanglement between microwave photons and qubits in multiple cavities coupled by a superconducting qutrit. Phys. Rev. A 87, 022320 (2013)

    Article  ADS  Google Scholar 

  36. Ma, S.L., Li, Z., Fang, A.P., Li, P.B., Gao, S.Y., Li, F.L.: Controllable generation of two-mode-entangled states in two-resonator circuit qed with a single gap-tunable superconducting qubit. Phys. Rev. A 90, 062342 (2014)

    Article  ADS  Google Scholar 

  37. You, J.Q., Nori, F.: Superconducting circuits and quantum information. Phys. Today 58, 42 (2005)

    Article  Google Scholar 

  38. Sandberg, M., Wilson, C.M., Persson, F., Bauch, T., Johansson, G., Shumeiko, V., Duty, T., Delsing, P.: Tuning the field in a microwave resonator faster than the photon lifetime. Appl. Phys. Lett. 92, 203501 (2008)

    Article  ADS  Google Scholar 

  39. Nation, P.D., Blencowe, M.P., Rimberg, A.J., Buks, E.: Analogue hawking radiation in a dc-squid array transmission line. Phys. Rev. Lett. 103, 087004 (2009)

    Article  ADS  Google Scholar 

  40. Felicetti, S., Sanz, M., Lamata, L., Romero, G., Johansson, G., Delsing, P., Solano, E.: Dynamical Casimir effect entangles artificial atoms. Phys. Rev. Lett. 113, 093602 (2014)

    Article  ADS  Google Scholar 

  41. Paauw, F.G., Fedorov, A., Harmans, C.J.P.M., Mooij, J.E.: Tuning the gap of a superconducting flux qubit. Phys. Rev. Lett. 102, 090501 (2009)

    Article  ADS  Google Scholar 

  42. Mooij, J.E., Orlando, T.P., Levitov, L., Tian, L., van der Wal, C.H., Lloyd, S.: Josephson persistent-current qubit. Science 285, 1036 (1999)

    Article  Google Scholar 

  43. Orlando, T.P., Mooij, J.E., Tian, L., van der Wal, C.H., Levitov, L.S., Lloyd, S., Mazo, J.J.: Superconducting persistent-current qubit. Phys. Rev. B 60, 15398 (1999)

    Article  ADS  Google Scholar 

  44. Strand, J.D., et al.: First-order sideband transitions with flux-driven asymmetric transmon qubits. Phys. Rev. B 87, 220505(R) (2013)

    Article  ADS  Google Scholar 

  45. Wu, Yulin, et.al.: An efficient and compact quantum switch for quantum circuits. arXiv:1605.06747 (2016)

  46. Chen, Zhen, et al.: Single-photon-driven high-order sideband transitions in an ultrastrongly coupled circuit-quantum-electrodynamics system. Phys. Rev. A 96, 012325 (2017)

    Article  ADS  Google Scholar 

  47. Ma, Sl, Li, Pb, Fang, Ap, Gao, Sy, Li, Fl: Dissipation-assisted generation of steady-state single-mode squeezing of collective excitations in a solid-state spin ensemble. Phys. Rev. A 88, 013837 (2013)

    Article  ADS  Google Scholar 

  48. Wallraff, A., et al.: Sideband transitions and two-tone spectroscopy of a superconducting qubit strongly coupled to an on-chip cavity. Phys. Rev. Lett. 99, 050501 (2007)

    Article  ADS  Google Scholar 

  49. Sørensen, A., Mølmer, K.: Entanglement and quantum computation with ions in thermal motion. Phys. Rev. A 62, 022311 (2000)

    Article  ADS  Google Scholar 

  50. Zheng, S.B.: Quantum-information processing and multiatom-entanglement engineering with a thermal cavity. Phys. Rev. A 66, 060303 (2002)

    Article  ADS  Google Scholar 

  51. Mølmer, K., Sørensen, A.: Multiparticle entanglement of hot trapped ions. Phys. Rev. Lett. 82, 1835 (1999)

    Article  ADS  Google Scholar 

  52. Wang, Y.D., Chesi, S., Loss, D., Bruder, C.: One-step multiqubit Greenberger–Horne–Zeilinger state generation in a circuit qed system. Phys. Rev. B 81, 104524 (2010)

    Article  ADS  Google Scholar 

  53. Żukowski, M., Zeilinger, A., Horne, M.A., Ekert, A.K.: Event-ready-detectors Bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287 (1993)

    Article  ADS  Google Scholar 

  54. Zhang, Z.-J., Man, Z.-X.: Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 72, 022303 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  55. Hime, T., Reichardt, P.A., Plourde, B.L.T., Robertson, T.L., Wu, C.E., Ustinov, A.V., Clarke, J.: Solid-state qubits with current-controlled coupling. Science 314(5804), 1427 (2006)

    Article  ADS  Google Scholar 

  56. Johnson, J.E., Hoskinson, E.M., Macklin, C., Slichter, D.H., Siddiqi, I., Clarke, J.: Dispersive readout of a flux qubit at the single-photon level. Phys. Rev. B 84, 220503 (2011)

    Article  ADS  Google Scholar 

  57. Scully, M.O., Zubairy, M.S.: Quantum Optics. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  58. Yan, F., Gustavsson, S., Kamal, A., Birenbaum, J., Sears, A.P., Hover, D., Gudmundsen, T.J., Rosenberg, D., Samach, G., Weber, S., Yoder, J.L., Orlando, T.P., Clarke, J., Kerman, A.J., Oliver, W.D.: The flux qubit revisited to enhance coherence and reproducibility. Nat. Commun. 7, 12964 (2016)

    Article  ADS  Google Scholar 

  59. Leek, P.J., Baur, M., Fink, J.M., Bianchetti, R., Steffen, L., Filipp, S., Wallraff, A.: Cavity quantum electrodynamics with separate photon storage and qubit readout modes. Phys. Rev. Lett. 104, 100504 (2010)

    Article  ADS  Google Scholar 

  60. Xiang, Z.L., Ashhab, S., You, J.Q., Nori, F.: Hybrid quantum circuits: superconducting circuits interacting with other quantum systems. Rev. Mod. Phys. 85, 623 (2013)

    Article  ADS  Google Scholar 

  61. Megrant, A., et al.: Planar superconducting resonators with internal quality factors above one million. Appl. Phys. Lett. 100, 113510 (2012)

    Article  ADS  Google Scholar 

  62. Hofheinz, M., Wang, H., Ansmann, M., Bialczak, R.C., Lucero, E., Neeley, M., O’Connell, A.D., Sank, D., Wenner, J., Martinis, J.M., Cleland, A.N.: Synthesizing arbitrary quantum states in a superconducting resonator. Nature (London) 459, 546 (2009)

    Article  ADS  Google Scholar 

  63. Houck, Andrew A., Treci, Hakan E., Koch, Jens: On-chip quantum simulation with superconducting circuits. Nat. Phys. 8, 292 (2012)

    Article  Google Scholar 

  64. Wulschner, F., Goetz, J., Koessel, F.R., Hoffmann, E., Baust, A., Eder, P., Fischer, M., Haeberlein, M., Schwarz, M.J., Pernpeintner, M.: Tunable coupling of transmission-line microwave resonators mediated by an rf squid. Epj Quantum Technology 3, 10 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The work was partly supported by the National Nature Science Foundation of China (Grant Nos. 11704306 and 11534008) and the National Key R&D Project (Grant No. 2016YFA0301404), and the China Postdoctoral Science Foundation (Grant No. 2016M602795).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengli Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Ma, S., Zhou, Y. et al. Generation and swapping of multi-qubit entangled state in a coupled superconducting resonator array. Quantum Inf Process 17, 336 (2018). https://doi.org/10.1007/s11128-018-2102-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-2102-8

Keywords

Navigation