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Abstract

Performance of cryptanalytic quantum search algorithms is mainly inferred from query
complexity which hides overhead induced by an implementation. To shed light on
quantitative complexity analysis removing hidden factors, we provide a framework
for estimating time—space complexity, with carefully accounting for characteristics of
target cryptographic functions. Processor and circuit parallelization methods are taken
into account, resulting in the time—space trade-off curves in terms of depth and qubit.
The method guides how to rank different circuit designs in order of their efficiency. The
framework is applied to representative cryptosystems NIST referred to as a guideline
for security parameters, reassessing the security strengths of AES and SHA-2.

Keywords Quantum circuit - Grover - Parallelization - Resource estimates - AES -
SHA-2

Mathematics Subject Classification 94A60 - 68Q12 - 81P68

1 Introduction

Quantum cryptanalysis is an area of study that has long been developed alongside
the field of quantum computing, as many cryptosystems are expected to be directly
affected by quantum algorithms. It is thus natural that cryptographic communities are
putting more and more efforts for preparing post-quantum era as quantum computing
communities are making progress. A notable effort being made by National Institute of
Standards and Technology (NIST) primarily concerns new public-key cryptosystems
leveraged by the quantum period-finding algorithm that might make some currently
used public-key schemes obsolete once a practical quantum computer becomes avail-
able [1]. Unlike public-key schemes, however, the significance of quantum search
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algorithms in symmetric cryptosystems is arguable. It had been widely known that
most symmetric cryptosystem’s security levels will be simply reduced by half due to
the asymptotic behavior of the query complexity of Grover’s algorithm under the ora-
cle assumption [2]. Square-root improvement in exhaustive-search ability seems on
the one hand not negligible and may affect the current symmetric cryptosystems like
in key sizes. On the other hand, when the detailed mechanism ‘how quantum objects
or Grover’s speedup work’ comes into account, there exist claims that the threat is not
as harmful as it has been believed to be [1,3].! The main reason for devaluating the
algorithm in symmetric cryptography stems from its ‘poor parallelizability.’

As the field has matured over decades, not mere asymptotic but more quantitative
approaches to the cryptanalysis are also being considered recently [4-9]. These works
have substantially improved the understanding of quantum attacks by systematically
estimating quantum resources. Nevertheless, it is still noticeable that the existing
works on resource estimates are more intended for suggesting exemplary quantum
circuits (so that one can count the number of required gates and qubits explicitly) than
fine-tuning of actual attack designs. Furthermore, despite that the parallelizability of
quantum search algorithms is the main source of the debate on the quantum threat in
symmetric cryptography, the resource cost of parallel quantum attack has never been
estimated quantitatively. In fact, quantum search algorithms have never been applied
to parallel applications in gate-level details, not just in quantum cryptanalysis but in
the whole field of quantum information. There could be various difficulties hampering
the parallelizing quantum algorithms, just as many classical serial applications cannot
find its parallel counterparts easily.

The importance of estimating costs of quantum search algorithms beyond pioneer-
ing works should be emphasized as it can be utilized to suggest practical security
levels in the post-quantum era. NIST indeed suggested security levels based on the
resistances of advanced encryption standard (AES) and secure hash algorithm (SHA)
to quantum attacks in PQC standardization call for proposals document [10]. In addi-
tion, the difficulty of measuring the complexity of quantum attacks was questioned in
the first NIST PQC standardization workshop.? The main purpose of this work is to
formulate the time—space complexity of quantum search algorithms in order to provide
reliable quantum security strengths of classical symmetric cryptosystems.

1.1 This work

There exist two noteworthy points overlooked in the previous works. First, the target
function to be inverted is generally a pseudo-random function or a cryptographic
hash function. Under the characteristics of such functions, bijective correspondence
between input and output is not guaranteed. This makes Grover’s algorithm seemingly
inapplicable due to the unpredictability of the number of targets. The second point is
a time—space trade-off of quantum resources. Earlier works on quantitative resource

I See also °S. Fluhrer, Reassessing Grover’s algorithm, http://eprint.iacr.org/2017/811, which analyzed
parallelizability of Grover’s algorithm in conjunction with cryptosystems.

2 Interested readers are suggested to look into ‘Moody, D.: Let’s get ready to rumble—the NIST PQC
“competition.” PQCrypto 2018 invited presentation (2018).”
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estimates have implicitly or explicitly assumed a single quantum processor. Presuming
that the resource in classical estimates includes the number of processors the adversary
is equipped with, the single processor assumption is something that should be revised.

Being aware of the issues, we come up with a framework for analyzing the time—
space complexity of cryptanalytic quantum search algorithms. The main consequences
we present in this paper are threefolded:

1.1.1 Precise query complexity involving parallelization

The number of oracle queries, or equivalently Grover iterations, is first estimated as
exactly as possible, reasonably accounting for previously overlooked points. Random
statistics of the target function are carefully handled which lead to increase in iteration
number compared with the case of a unique target. Surprisingly, however, the cost
of dealing with random statistics in this paper is not expensive compared with the
previous work [6] under the single processor assumption. Furthermore, when processor
parallelization is considered, we observed that this extra cost gets even more negligible.
Itis also interesting to recognize that the parallelization methods could vary depending
on the search problems. After taking the asymptotical big O notation off, the relation
between time and space in terms of Grover iterations and number of processors, called
trade-off curve, is obtained. Apart from resource estimates, investigating the trade-off
curve of state-of-the-art collision finding algorithm in [11] with optimized parameters
is one of our major concerns.

1.1.2 Depth-qubit trade-off and circuit design tuning

In the next stage, time and space resources are defined in a way that they can be inter-
preted as physical quantities. Cost of quantum circuits for cryptanalytic algorithms
can be estimated in units of Toffoli-depths and logical qubits. Taking the total num-
ber of gates as time complexity disturbs accurate estimates for the speed of quantum
algorithms due to far different overheads introduced by various gates in real opera-
tion. With the definitions of quantum resources, the trade-off curve now describes the
relation between circuit depths and number of qubits. Since we are given a ‘relation’
between time and space, it is then possible to grade the various quantum circuits in
order of efficiency. In other words, the method described so far enables one to tell
which attack design is more cost-effective.

By applying generic methodology newly introduced, time—space complexities of
AES and SHA-2 against quantum attacks are measured in the following way.? Various
designs are constructed by assembling different circuit components with options such
as reduced depth at the cost of the increase in qubits (or vice versa). Design candidates
are then subjected to the trade-off relation for comparison. The trade-off coefficient of
the most efficient design represents the hardness of quantum cryptanalysis. Compared
with pre-existing circuit designs, we have improved the circuits by reducing required

3 We concluded that quantum cost of attacking SHA-3 is more expansive than that of SHA-2, based on [5]
and further improvement we have made in SHA-2 circuit in Sect. 6. Security strength of hash functions is
therefore measured only for SHA-2 in this work.
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Fig. 1 Time-space cost, which has conditional ordering, of the quantum attacks on five security strength
category representatives of NIST PQC standardization

qubits and/or depths in various ways. However, we do not claim that we have found
the optimal attacks for AES and SHA-2. The method enables us to select the best one
out of candidates at hand.

1.1.3 Revisiting the security levels of NIST PQC standardization

The procedure is applied to each primitive of security strength categories NIST spec-
ified in [10]. A new threshold that is required for the category classification, based on
the cost metric proposed in this work, is provided in Fig. 1. It includes a wide range
of parameters and the quantum collision finding algorithms which do not outperform
classical counterparts to explicitly recognize the quantum-side complexities of all the
categories.

We end this subsection with two important caveats. One is that a use of classical
resources appears in this paper, but we do not handle the complexity induced by it
because of unclear comparison criteria for quantum and classical resources. The other
is that our focus is put on specific algorithms implemented in the level of elementary
gates. Readers are however encouraged not to rule out other algorithms that quantum
computing communities also pursuit, for example, ones using quantum memory.

1.2 Organization

Next section covers the backgrounds including Grover’s algorithm, its parallelization,
other variants, and a short introduction to AES and SHA-2. In Sect. 3, the time—space
complexity of relevant algorithms in a unit of Grover iteration is investigated. A basic
unit of quantum computation is proposed in Sect. 4 as well as introducing a concept of
trade-off in quantum resources. Sections 5, 6, and 7 show the results of applying the

@ Springer



Time-space complexity of quantum search algorithms. .. Page50f39 339

time—space analysis to AES and SHA-2. In Sect. 8, based on the observations made
in the previous sections, a comprehensive figure summarizing the quantum security
strengths of AES and SHA-2 is drawn. Section 9 summarizes the paper.

2 Backgrounds

Grover’s algorithm, the success probability, parallelization methods, and some gener-
alizations or variants are explained briefly. A brief review of AES and SHA-2, and an
introduction to related works on resource estimates are followed. We do not cover the
basics of quantum computing, but leave the references [12,13] for interested readers.
Throughout the paper, the target function is denoted by f, N = 2" for some n € N
and every bra or ket state is normalized.

2.1 Grover’s algorithm

Consider a set X of size N and a function f: X — {0, 1},

1, ifxeT,
fx) = {0, otherwise,

where T of size ¢ is a set of targets to be found.
Grover’s algorithm [2] is an algorithm that repeatedly applies an operator

0 =—ASHA”'Sy,
called Grover iteration, to the initial state |\V) = A|0), where
A=H®" So=1-2{0)(0]. Sy =1 —27)(zl. (1)

where H®" is a set of Hadamard operators and |t) is a target state which is an equal-
phase and equal-weight superposition of |x) for all x € T. The roles of Sp and S are
to swap the sign of zero and |t) states, respectively.

The operators Sy and — ASyA~! are known as oracle and diffusion operators,
respectively. By acting the oracle operator on a state, only the target state is marked
through the sign change. The diffusion operator flips amplitudes around the average.

Success probability of measurement as a function of the number of iterations has
been studied in [14], observing the optimal number of iterations that minimizes the
ratio of the iterations to success rate. We introduce the results below with notation that
is used throughout the paper.

By applying Q on the initial state i-times, the success probability of measuring one
of the ¢ solutions, denoted by p; y: Z>o — [0, 1], becomes

pen (@) =sin® [2i + 1) -6 5], )
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where sin (6, ) = +/t/N (= (¥|t)). The number of repetitions of Q maximizing the
probability of measurement, denoted by I:’IE € N, is estimated as*

mp T N

NSV T 3)

~

When the measurement is made after i-repetitions of Q, the expected number of
Grover iterations to find one of the targets can be expressed as a function of i. For ¢
targets in the domain of size N, the function is denoted by /; y: N — R.( which
reads I; x (i) = i/p; n(i). The optimal number of iterations i; y € N that minimizes
I, nisfoundtobei, y = 0.583...-4/N/t, and then the expected number of iterations,
denoted by I; vy € N, reads

) |N
IZ,NZII,N(IZ,N)=0690 T (4)

In some cases, the domain size N is omitted such as p;(i)(= p; n(i)) or I;(= I; n),
for readability.

2.2 Parallelization

Parallelization of Grover’s algorithm using multiple quantum computers has been
investigated in applications to cryptanalysis [1,10,15]. Consideration of parallelization
in a hybrid algorithm can be found in [16]. Asymptotically the execution time is
reduced by a factor of the square root of the number of quantum computers. There are
two straightforward parallelization methods having such property, called inner and
outer parallelization.

Parameters 7, and S, stand for the number of sequential Grover iterations and
the number of quantum computers, respectively. S, stands for the amount of classical
resources, such as the size of storage and/or the number of processors. Definitions of
two parallelization methods can be given as follows.

Definition 1 [Inner Parallelization (IP)] After dividing the entire search space into
S, disjoint sets, each machine searches one of the sets for the target. The number of
iterations can be reduced due to the reduced domain size.

Definition 2 [Outer Parallelization (OP)] Copies of Grover’s algorithm on the entire
search space are run on S, machines. Since it is successful if any of the S, machines
finds the target, the number of iterations can be reduced.

Parallelization is inevitable once the notion of MAXDEPTH is considered [10].
MAXDEPTH is a parameter for a circuit depth that a quantum computer can run
without errors. We do not cover the reasoning behind the notion, but suggest for
interested readers to look into NIST’s PQC call for proposals document and related
comments. Three MAXDEPTH parameters we adopt from [10] are as follows.

4 1In trivial cases, rounding function is not explicitly used in this paper for simplicity.
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— 240: Approximate number of logical gates that presently envisioned quantum com-
puting architectures are expected to serially perform in a year.

— 2% Approximate number of logical gates that current classical computing archi-
tectures can perform serially in a decade.

— 2%: Approximate number of logical gates that atomic scale qubits with speed of

light propagation times could perform in a millennium.

2.3 Generalizations and variants

Fixed-point [17] and quantum amplitude amplification (QAA) [18] algorithms are
generalizations of Grover’s algorithm. A brief review of QAA is given in this subsec-
tion which appears as a component of a collision finding algorithm in later sections.
We skip over the fixed-point algorithm as it has no advantage over Grover’s algorithm
and QAA in this work.>

There exist a number of variants of Grover’s algorithm in application to collision
finding. In [19], Brassard, Hgyer, and Tapp suggested a quantum collision finding
algorithm (BHT) of O(N'/3) query complexity using quantum memory amounting
to O(N'/3) classical data. A multi-collision algorithm using BHT was suggested
in [20]. In this work however, we do not consider BHT as a candidate algorithm for
the following reasons. One is that the algorithm entails a need for quantum memory
where the realization and the usage cost are controversial [21], and the other is that we
are unable to come up with any implementation restricted to use of elementary gates
that do not exceed the total cost of O (N1/2).

Apart from quantum circuits, algorithms primarily designed for other type of mod-
els such as measurement-based quantum computation also exist, for example quantum
walk search [22,23] or element distinctness [24], but we do not cover them as state-
of-the-art quantum architecture is targeting for circuit computation. Interested readers
may further refer to [20] and related references therein for more information on quan-
tum collision finding.

Bernstein analyzed quantum and classical collision finding algorithms in [3]. Quot-
ing the work, no quantum algorithm with better time—space product complexity than
O (N''/?) which is achieved by the state-of-the-art classical algorithm [25] had not been
reported. If Grover’s algorithm is parallelized with the distinguished point method,
complexity of O(N'/?) can be achieved. This is one of the examples of immediate
ways to combine quantum search with the rho method as mentioned in [3]. We denote
it as Grover with distinguished point (GwDP) algorithm in this paper.

In ASTACRYPT 2017, Chailloux, Naya-Plasencia, and Schrottenloher suggested a
new quantum collision finding algorithm, called CNS algorithm, of O (N?/3) query
complexity using O (N'/3) classical memory [11].

5 There are two reasons. One is that fixed-point search requires two oracle queries per iteration, and the
other is log(2/8) factor in Eq. 3 in [17] which also increases the required number of iterations depending on
the bounding parameter §. Comparing these factors with the overhead in our method introduced by random
statistics, we concluded that the fixed-point algorithm is not favored.
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2.3.1 QAA algorithm

Basic structure of QAA is the same as Grover’s original algorithm. Initial state | W) =
A|0) is prepared, and then Grover iteration Q is repeatedly applied i times to get
success probability Eq. 2. The only difference is that in QAA, the preparation operator
Aisnotrestricted to H®" where N = 2", and so thus the search space can be arbitrarily
defined. Detailed derivation is not covered here, but instead we describe the key feature
in an example.

As atrivial example, let us assume we are given a quantum computer and try to find
a target bit-string 110011 in a set N = {x | x € {0, 1}° and two middle bits are 0}.
Domain size is not equal to 2°, and the initial state can be prepared by A = Hy H, Hs Hg
where H, is Hadamard gate acting on r-th qubit. Remaining processes are to apply
Grover iterations Q = —ASypA™!'S  with A given by the state preparation operator
just mentioned. The search space examined is rather trivial, but QAA also works on
arbitrary domain. Nontrivial domain can be given as something like N = {x | x €
{0, 1}°, f(x) # 0} for some given function f. It is a matter of preparing a state
encoding appropriate search space, or in other words, that is to find an operator A.
Once A is constructed, QAA works in the same way as in Grover’s algorithm.

2.3.2 GwDP algorithm

GwDP algorithm is a parallelization of Grover’s algorithm. Distinguished points (DP)
can be defined by function outputs whose d most significant bits are zeros, denoted
by d-bit DP. We allow the notation DP to indicate inputs to produce DP or pairs of DP
and corresponding input.

For S; = S. = 2°, we use (n — 2s)-bit DP. By running 7, = O (2"/>7*) times
of Grover iterations, DP is expected to be found on each machine. Storing O(2%)
DPs sorted according to the output, a collision is found with high probability. The
time-space product is always 7, S, = O (N 1/ 2).

2.3.3 CNS algorithm

Instead of the details of CNS algorithm [11], we briefly mention the high-level descrip-
tion and the corresponding complexities.

CNS algorithm consists of two phases, the list preparation and the collision finding.
In the list preparation phase, a list of size 2/ of d-bit DPs is drawn up with the time com-
plexity of O(2/+9/2) and the classical storage of size O(2). In the collision finding
phase QAA algorithm is used. Each iteration of QAA algorithm consists of 0(24/2%)
Grover iterations and O (2!) operations for the list comparison. After O (2(”"1’1)/ 2)
QAA iterations, a collision is expected to be found. In total, CNS algorithm has
O (2/*4/2 4 2(n=d=D/2(24/2 4 1)) time complexity and uses O (2) classical mem-
ory. With the optimal parameters [ = d/2 and d = 2n/5, a collision is found in
T, = O(N?/%) with S. = O(N'/%).

If S, = 2°, time complexity becomes 0 n—d=1=5)/2(2d/2 4 ply 4 pl+d/2=s) for
s <min(/,n —d —1). Whenl = d/2 and d = 2/5{n + s}, the complexities satisfy
(T;)°(S4)* = O(N?) and T, (S.)* = O(N).
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2.4 AES and SHA-2 algorithms

A brief review of AES and SHA-2 is given in this subsection. Specifically, AES-128
and SHA-256 algorithms are described which will form the main body of later sections.

2.4.1 AES-128

Only the encryption procedure of AES-128 which is relevant to this work will be
shortly reviewed. See [26] for details.

Round AES round consists of four elementary operations: SubBytes, ShiftRows,
MixColumns, and AddRoundKey.® Each operation applies to internal state, which
is represented by 4 x 4 array of bytes §; ;, as shown in Fig. 2a.

— ShiftRows does cyclic shifts of the last three rows of the internal state by different
offsets.

— MixColumns does a linear transformation on each column of the internal state that
mixes the data.

— AddRoundKey does an addition of the internal state and the round key by an XOR
operation.

— SubBytes does a nonlinear transformation on each byte. SubBytes works as
substitution-boxes (S-box) generated by computing a multiplicative inverse, fol-
lowed by a linear transformation and an addition of S-box constant.

Key Schedule AES key schedule consists of four operations: RotWord, SubWord, Rcon,
and addition by XOR operation. The sequence of key scheduling is described in Fig. 2b.
Each operation applies to 32-bit word w;, which is represented by 4 x 1 array of bytes
kd First four words are given by original key which become the zeroth round key.
More words—40 in AES-128—are then generated by recursively processing previous
words. Every sixteen-byte k‘l i constitutes d-th round key. RotWord, SubWord, and
Rcon only apply to every fourth word w;, i € {3,7, 11, ...39}.

— RotWord does a cyclic shift on four bytes.
— Rcon does an addition of the constant and the word by XOR operation.
— SubWord does an S-box operation on each byte in word.

2.4.2 SHA-256

For brevity, only SHA-256 hashing algorithm for one message block which is rele-
vant to this work will be reviewed. Description of preprocessing including message
padding, parsing, and setting initial hash value is also omitted here. See [27] for details.

Round SHA-2 round consists of five operations: Ch, Maj, X9, X1, and addition modulo
232 Round operations apply on eight 32-bit working variables denoted by a, b, ¢, d,
e, f, g, h. See Fig. 3a for procedures.

6 The first and the last rounds are different, but will not be covered in detail here.
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Fig.2 a Round operations and b key schedule of AES-128 algorithm. Each square box accommodates one
byte. In key schedule, 128-bit key is divided into four 32-bit words
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- Ch(x,y,2) = (xAY) ®(—x Az),

Maj(x,y,2) =(xAy) & (x A2) D (yA2),

¥o(x) = ROTR?*(x) ® ROTR"(x) ® ROTR*(x),

— %1(x) = ROTR%(x) ® ROTR" (x) ® ROTR> (x),
where ROTR" (x) is circular right shift of x by n positions.

Message Schedule SHA-2 message schedule consists of three operations: og, o1, and
addition modulo 232. The sequence of message scheduling is described in Fig. 3b.
Each operation applies to 32-bit word W;. First 16 words are given by original message
block which become the first 16 words fed to SHA-256 rounds. More words—48 in
SHA-256—are then generated by recursively processing previous words.

— 0o(x) = ROTR" (x) ® ROTR'3(x) ® SHR?(x),
— 01(x) = ROTR" (x) ® ROTR" (x) ® SHR'"(x),
where SHR" (x) is right shift of x by n positions.

2.5 Quantum resource estimates

Quantum resource estimates of Shor’s period-finding algorithm have long been studied
in the various literature. See for example [8,28] and referenced materials therein. On
the other hand, quantitative quantum analysis on cryptographic schemes other than
period finding is still in its early stage. Partial list may include attacks on multivariate-
quadratic problems [9], hash functions [5,7], and AES [4,6]. We introduce two of them
which are the most relevant to our work.

2.5.1 AES key search

Grassl et al. reported the quantum costs of AES-k key search for k € {128, 192, 256}
in the units of logical qubit and gate [6]. In estimating the time cost, the author’s focus
was put on a specific gate called ‘T gate and its depth, although the overall gate count
was also provided. Space cost was simply estimated as the total number of qubits
required to run Grover’s algorithm.

There are two points we pay attention on. First is that the authors ensured a single
target key. Since AES algorithm works like a random function, there is nonnegligi-
ble probability that a plaintext ends up with the same ciphertext when encrypted by
two different keys. To avoid the cases, the authors encrypt r (€ {3, 4, 5}) plaintext
blocks simultaneously to obtain r ciphertexts so that only the true key results in given
ciphertexts. The procedure removes the ambiguity in the number of iterations. Note,
however, that the removal of the ambiguity comes in exchange of at least tripling
the space cost. The other point is that reversible circuit implementation of internal
functions of AES was always aimed at reducing the number of qubits. One may see
proposed circuit design as space-optimized.
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2.5.2 SHA-2 and SHA-3 pre-image search

Amy et al. reported the quantum costs of SHA-2 and SHA-3 pre-image search in
the units of logical and physical qubit and gate [S]. The method considers an error-
correction scheme called surface code. Time cost was set considering the scheme.
Estimating the costs of T gates in terms of physical resources was one of the main
results. One point we would like to address in the work is that random-like behavior of
SHA function was not considered. It is assumed in the paper that the unique pre-image
of a given hash exists.

3 Trade-off in query complexity

In this section, the definitions of cryptographic search problems and the query-based
time cost of the corresponding quantum search algorithms are discussed. The trade-off
equations between the number of queries and the number of machines are given as a
result.

3.1 Types of search problems

We assume that f: X — Y is a random function which means f is selected from
the set of all functions from X to Y uniformly at random. Useful statistics of random
functions can be found in [29]. The probabilities related to the number of pre-images
are quoted below. When an element x is selected from a set X uniformly at random,

it is denoted by x<$—X .
When |Y| = Nand |X| =aN € Nforsomea € Q,anelementy € Yiscalleda j-

node if it has j pre-images, i.e., |[{x € X : f(x) = y}| = j. Fory<$—Y, the probability
of y to be a j-node, denoted by gun): Z=0 — [0, 1], is

1 a’
qany(J) = (5)

et I
For x <$—X , the probability of f(x) to be a j-node, denoted by rn): N — [0, 1], is

ran)(J) = J - qany(J)- (6)

These approximations can hold when aN is larger than j. However, since the values
are very small at large j, we may assume that Eqgs. 5 and 6 are valid in the entire
domain.

The target function in cryptanalytic search problems is usually modeled as a
pseudo-random function (PRF) or a cryptographic hash function (CHF). The pre-
cise interpretation of this notions can be found in Sects. 3.5 and 5.5 of [30]. It can be
assumed that PRF and CHF have similar statistic behaviors to a random function.
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The formal definitions of search problems relevant to symmetric cryptanalysis can
be described with random functions. The way of generating the given information in
each problem is carefully distinguished. The first is Key Search generalized from the
secret key search problem using a pair of plaintext and ciphertext of an encryption
algorithm.

Definition 3 [Key Search (KS)] For a random function f: X — Y,y = f(xo) is
generated from an xg € X. Key Search is to find the target xq for given f and y.

The existence of the target xo in X is always ensured. However, pre-images of y
other than x( can be found, which is called a false alarm. The false alarms have to
be resolved by additional information since no clue (that helps to recognize the real
target) is given within the problem.

Definitions generalized from the pre-image and the collision problems of CHF are
given as follows.

Definition 4 [Pre-image Search (PS)] For a random function f: {0, 1}* — Y, y is

chosen at random, y<$—Y , or equivalently, y = f(xo) for an xo € {0, 1}*. Pre-image
Search is to find any x € {0, 1}* satisfying f(x) = y for given f and y.

There is no false alarm in Pre-image Search. However, the existence of a pre-image
in a fixed subset of {0, 1}* cannot be ensured.

Definition 5 [Collision Finding (CF)] For a given random function f: {0, 1}* — Y,
Collision Finding is to find any inputs x1, xp € {0, 1}* satisfying f(x1) = f(x2).

3.2 Trade-off in Grover’s algorithm for Key Search

In this subsection, the expected iteration number and the parallelization trade-off of
Grover’s algorithm are given. We assume that f: X — Y and |X| = |Y| = N.

In Key Search, the given y € Y becomes ¢-node with probability r(¢) of Eq. 6. The
probability that one of the pre-images of y is found by the measurement after i-times
Grover iterations becomes p; (i) of Eq. 2. Since only one target among ¢ pre-images
is the true key, the probability that the answer is correct is 1/¢. For Prlgfrf’d : N — [0, 1],
Prljfd (i) denotes the success probability after i-times Grover iterations of the Key

Search. To emphasize that f is assumed to be a random function, the subscript ‘rand’

is specified. Prl,jfd(i ) is the summation over possible #’s,
1
KS (; .
Pina(i) = ;rm i) (7)

Proposition about the optimal expected iterations follows.

IKS

cand» Of Grover iterations for Key Search

Proposition 1 The optimal expected number,
becomes

1% —=0.951....+/N.

rand
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Proof This proof is similar to the one in Sect. 4 of [14].
If the measurement is taken after i-times Grover iterations, the expected number of

iterations can be expressed as a function of i, denoted by IX3,: N — R_ ¢, whichreads
i
L) = —g5—
rand KS /~°
P rand (@)

The optimal value, ]rESd € N, is approximated as the first positive local minimum
value of Irlglf’ (7). The integer closest to the first positive root of derivative of Irlég’g (i),
denoted by irar?d € N, can be calculated by a numerical method. The resultis i ;> =

0.434...-+/N and IKXS = [KS (;KS ) o

rand — “rand
Comparing Irlgfd with I7 of Eq. 4, the expected iteration increases by 37.8...%.
The parallel trade-off curve of Key Search is calculated in the rest of this subsection.
If inner parallelization method is taken for S; >> 1, the number of pre-images of y in
each divided space becomes only O or 1 for overwhelming probability, even though
f is a random function. Therefore, the success probability after i-times iterations,
denoted by PXS:IP: N — [0, 1], reads

PEP @) (= PSR D) = provss) @), ®)

from Eq. 2. The optimal expected iteration number is similar to Eq. 4 as

ISP =1 vys,) = 0.690. .. -/ (N/S,). 9

In outer parallelization method, the success probability after i-times iterations
becomes

PKSOP(jy | _ (1 _ pks (i))Sq ,

rand rand

and then the optimal expected iteration number for S, > 1 is given by

IXSOP — 0784 ...\ /(N/S,). (10

As a result, inner parallelization is 11.9...% more efficient than outer method in
Key Search. We denote the number of machines used in Key Search S}fs. The optimal

expected number of iterations in Key Search, denoted by TqKS, can be considered as

KS:1P
Irand .

Proposition 2 (KS trade-off curve) For S(Ifs > 1, the parallelization trade-off of
Grover’s algorithm for Key Search is given by

2
(TqKS) SKS = 0.476... - N.

In the followings, the optimal expected number of iterations and trade-off curves
are defined and analyzed in the same way as in this subsection, but briefly.
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3.3 Trade-off in Grover’s algorithm for Pre-image Search

Let X be the restricted domain of the function f: {0, 1}* — Y, and assume |X| =
|Y| = N. We may assume that the restriction of f on X, denoted by f|x, is also a
random function. In Pre-image Search, there exist ¢ pre-images of the given y with
probability g (¢) in Eq. 5. The success probability of measuring one of the targets after
i-times iterations is a summation of ¢ (¢) - p;(i) over possible ’s as

PES) =Y q() - pi(i).

>0

Since po(i) = 0 and g(¢) = r(¢)/t for t > 1, it can be written as Prgﬁd(i) = rand(z)
The important difference between Key Search and Pre-image Search is the existence
of failure probability. If the domain of size N is used, the probability there is no
pre-image of y in X is ¢(0) = 1/e =~ 0.368. . ..

Two resolutions can be sought. The firstis to change the domain X in every execution
of Grover’s algorithm. In this case, the result on the optimal iteration number of Pre-
image Search becomes the same as Proposition 1. The second is to expand the domain,
|X| = aN e N for some a > 1. The success probability then reads PFS rand. (aN) @) =

2 i=19a@N) @) - pr.an) (D).

Proposition 3 If |X| > N, the optimal expected number of iterations, denoted by

II‘I:lISld,(>>N)’ for Pre-image Search is written as

IR sy = 0.690...-V/N.
When N = 2%, the proposition can be assumed to hold fora > 2'°. Subscript > 1’
specifies the assumption. The fact that I rand, (>N) ~ I n, i.e., better performance up
to some converged value for larger domain size, is remarked. If a grows to 8, the
failure probability decreases below 0.0004 . .. ~ 1/¢8.

In the case of inner parallelization for | X| = |Y|, the pre-images of y are distributed
to different divided spaces with overwhelming probability when S, >> 1. The success
probability reads

PRS0 = "q@)- {1 — (1= pr.avsy @) }

t>1

and the optimal expected iteration number is written as

IPE, = 0.981...- /(N/S,). (11)

Since Prggd(l) Prljr?d(l), the behavior of outer parallelization of Pre-image Search

is the same as in Key Search. The optimal expected iteration number is

IPSOP — 0784 . [(N/S,) (_ r‘j,fd""). (12)
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When |X| = aN € N for some a > 1,if §; > a2, it can be assumed that all
pre-images of y are separately distributed to the divided space in inner parallelization.
For both of inner and outer parallelization, the optimal expected iteration converges
to the value of Eq. 12 whena > 1 and §; > a’.

There are subtleties in comparing inner and outer parallelization which are inap-
propriate to be pointed out here. We conclude that it is always favored to enlarge
the domain size, and then for large S,, two parallelization methods show asymptot-
ically the same performance. Denoting the optimal time and space complexities for
Pre-image Search by qus and Sgs, the trade-off curve is given as follows.

Proposition 4 (PS trade-off curve) For S};S > 1, the parallelization trade-off of
Grover’s algorithm for Pre-image Search is given by

2
(qus> SPS —0.614... N.

Note that while the inner parallelization is a better option in Key Search, both
parallelization methods have similar behaviors in Pre-image Search.

3.4 Trade-off in quantum collision finding algorithms

A collision could be found by using Grover’s algorithm in the way of second pre-
image search. This has the same result as Sect. 3.3 if the input of the given pair of ‘first
pre-image’ is not included in the domain. Apart from Grover’s algorithm, the optimal
expected iterations and trade-off curves for parallelizations of two collision finding
algorithms, GwDP and CNS, are given in this subsection.

In collision finding algorithms, searching for a pre-image of large set is required.

Let f:{0,1}* — Y and X C {0, 1}* be a set of size N. For f|x and y<$;Y, the
expected number of pre-images of y becomes 1 ~ j=1J -q()). If the size of a set
A C Y is large enough, it can be assumed that the number of pre-images of A = |A|.

3.4.1 GwDP algorithm

Let S, = 2° for some s € N and X C {0, 1}* be a set of size N. In each quantum
machine, a parameter (n — 2s + 2) is used for the number of bits to be fixed in DPs.
The parameter (n — 2s + 2) is chosen as an optimal one only among integers in order
to allow the easier implementation by quantum gates.

After i-times Grover iterations, the success probability of measuring a DP becomes
P2s-2)(i) from Eq. 2. The expected number of DPs found is 2° - p (5252 (i) by mea-
surements after i-times iterations on each machine. As a result of birthday problem
(BP) if there are k samples independently selected out of 22~2 DPs, the probability
of at least one coincidence, denoted by p?zl;_z): N — [0, 1], is approximated

BP —k?
P22y (k) =1 —exp 3 2)
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Details of approximation can be found in Sect. A.4 of [30]. The probability of

finding at least one collision, denoted by PS"PP: N — [0, 1], is then

rg’rmDP(l) - p(22v 2y (2 P2-2) (l))

The optimal expected iteration reads

JOWPP _ 1532, ...

rand

(13)

E

Denoting the optimal time and space complexities by TqGWDP and SL?WDP for Col-
lision Finding by GwDP algorithm, the trade-off curve is given as follows.

Proposition 5 (GwDP trade-off curve) For S¥PP = 25 > 1, the trade-off curve of
GwDP algorithm for Collision Finding is given by

TOVPPSOWDP — 1532 VN,

Note that the algorithm also requires S GwDP — () (29) classical storage.

3.4.2 CNS algorithm

In the list preparation phase, a list L of size 2, a subset of d-bit DPs, is to be made.
Set X; C {0, 1}* of size N = 2" and the function

1, if f(x)isDP,
Jop(x) = {0, otherwise.

Let fpp|x, be the restriction of fpp on X;. The iteration in this phase is defined by

Q1= —A1S0AT" Sfiply,

where the oracle operator S /| X, is a quantum implementation of the function fpp|x,
and A is the usual state preparation operator H®".

Since there are about 2" ¢ (: [X11/ Zd) DPs in X, the expected number of Grover
iterations to find a DP is the same as I»—« = 0.690. .. - 2¢/2 of Eq. 4. The expected
number of Grover iterations to build L is 0.690. .. - 24/2 . 2!, A classical storage of
size 0(2!) is required in addition.

In the collision finding phase, let X» C {0, 1}* be a set of size N such that X; N
X, = @. Let the state |Y) be an equal-phase and equal-weight superposition of states
encoding all the DPs in X;. State preparation operator A, such that |/) = A3|0) is
explicitly

7 5d/2
1 1
Ay = (—A150A1 Spo|x2) A,
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which is Grover iterations similar to Q1 with repetition number I;E’d of Eq. 3. The
function f7: X — {0, 1} is defined as

(1 iff) el
frlx) = {O, otherwise.

To realize the oracle operator S, —a quantum implementation of f;—without a
need for quantum memory, the authors of CNS algorithm have suggested a computa-
tional method taking O (2') elementary operations per quantum f; query.

QAA iteration Q> of the collision finding phase consists of two steps. The first is
acting of the oracle operator Sy, . Let 77 be the ratio of the time cost of Sy, per list
element of L to that of Grover iteration. The second step is acting of the diffusion
operator —A2Sp0A, I

The success probability of QAA algorithm is known to have the same behaviors
of Grover’s algorithm [18]. Since there are about 2"=d DPs encoded in the state with
equal probabilities and about 2! pre-images of L in |y), by applying Q> operator
Loty (n-ay = 0.690.. . - 2(=d=D/2 times on |v), the algorithm is expected to find a
collision. The time cost of the collision finding phase reads

n—d—l

0.690....2"% .(2.%-2

d
2

+IL-21>.

Note that the time cost of Sp in collision finding phase and the initial Ay are
negligible. The time cost of CNS algorithm in terms of Grover iterations denoted by
IENS(d, 1) reads

rand

n—d—I
2
and

105 @.n ={06%0....2+%) +o690...2 (g 284y 2] as

ICNS

The optimal value I

is given as follows.

Proposition 6 The optimal expected number of Grover iterations in CNS algorithm
for Collision Finding reads

1
ISNS =3.150.. .- 1F - N5,

rand —
when | = d/2 + log, (1/(211)), and d = 2/5{n + log, ((2t1)%/7)}.

Using S, = 2° quantum machines, natural parallelization of the list prepa-
ration phase is finding 2!=5 elements on each machine. Outer parallelization of
QAA algorithm in the collision finding phase has the same expected iterations as
Eq. 12. The expected number of Grover iterations, denoted by IrCaIIiiS:OP (d, 1), where
s <min(l,n —d — ), is written as

JONSOP () — {0.690. . 2”%“‘} + {0.784. e (g 2% rLz’)} .

rand
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When [ = d/2 + log, (7/(2t1)), and d = 2/5{n + 5 + log, (1.291 ... - (21)%/7)},
the optimal expected number of iterations reads

1

5
15 N
23

i

JENSOP _ 3488 ...

rand

15)

We denote the optimal time and space complexities by TqCN S and SgN S for Collision

Finding by CNS algorithm. TqCNS can be considered as IrgdrliiS:OP. The trade-off curve
of CNS algorithm is then given as follows.

Proposition 7 (CNS trade-off curve) For SgNS > 1, the parallelization trade-off
curve of CNS algorithm for Collision Finding is given by

5 3
(7Y (SSNS) = (3488 ) -1p - N2

The algorithm also requires the classical resource SSNS =0 (N 1/ 5(SqCNS)1/ 5). It

the constant #7 is determined, the time—space complexity of CNS algorithm could be
derived from this trade-off curve.

4 Depth-qubit cost metric

Universal quantum computers are capable of carrying out elementary logic operations
such as Pauli X, Hadamard, CNOT, T. See [13] for details on quantum gates. Imple-
mentation of any cryptographic operation in this paper is restricted such that it can only
be realized by using these gates. One may think of the restriction as a quantum version
of software implementation in classical computing. Quantum security of symmetric
cryptosystems can then be estimated in units of elementary logic gates.

It is generally known that each elementary gate has different physical implementa-
tion time. Considering various aspects of quantum computing, we suggest to simplify
a measure of computation time and to ignore all the other factors or gates that com-
plicates the analysis of quantum algorithms.

Two primary resources in quantum computing, circuit depth and qubit, can be
exchanged to meet a certain attack design criteria. Time—space complexity investigated
in the previous section can be used to give an attribute ‘efficiency’ to each and every
design. To further quantify depth—qubit complexity and to be able to rank the efficiency,
we briefly cover the time—space trade-off of quantum resources in this section.

4.1 Cost measure

Difficulties often arise when it comes to setting quantum complexity measures that
are physically interpretable. There exists a number of factors making it complicate,
for example different architecture each experimental group is pursuing. A qubit or a
certain gate may cost differently in each architecture. It is therefore hardly possible to
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accurately assess operational time of each type of gate in general and to estimate overall
run time. Despite the notable difficulty in quantifying the basic unit cost of quantum
computation, a number of groups have attempted to estimate the algorithm costs in
various applications [5—7]. The cost metric varies depending on author’s viewpoint.
For example, one considering the fault-tolerant computation would estimate the cost
involving specific hardware implementations or error-correction schemes. On the other
hand, one that is not to impose constraints on hardware or error-correction scheme
would estimate the cost in logical qubits and gates. The latter approach is adopted
in this work. Readers should keep in mind that this approach ignores the overheads
introduced by fault tolerance.”

High-level circuit description of Grover iteration involves not only elementary gates
but also larger gates such as C*NOT. It is very unlikely that such gates can be directly
operated in any realistic universal quantum computers. Decomposition of those gates
into smaller ones is thus required in practical estimates.

Determining the unit time cost is a subtle matter. We would like to address that the
simplest, yet justified time cost measure involves Toffoli gate.

Definition 6 A unit of quantum computational time cost is the time required to operate
a nonparallelizable logical Toffoli gate.

In other words, Toffoli-depth will be the time cost of the algorithm. We will look
into its justification in Sect. 4.3.

Space cost is estimated as a total number of logical qubits required to perform the
quantum search algorithm.

Definition 7 Quantum computational space cost is the number of logical qubits
required to run the entire circuit.

Decomposition of a high-level circuit component into smaller ones often entails
a need for additional qubits, which sometimes turn into garbage bits or get cleaned
after certain operations. Overall space cost mainly comes from these qubits. To avoid
confusion caused by terminology, we clarify five kinds of qubits.

1. Data qubits are qubits of which the space is searched by the quantum search
algorithm. For example in AES-128, the size of the key space is 2'?® which requires
128 data qubits.

2. Work qubits are initialized qubits those assist certain operation. Whether it stays
in an initialized value or gets written depends on the operation.

3. Garbage qubits are previously initialized work qubits, which then get written
unwanted information after a certain operation.

4. Output qubits are previously initialized work qubits, which then get written the
output information of a certain operation.

5. Oracle qubit is a single qubit used for phase kick-back (sign change