
Quantum Information Processing (2018) 17:339
https://doi.org/10.1007/s11128-018-2107-3

Time–space complexity of quantum search algorithms in
symmetric cryptanalysis: applying to AES and SHA-2

Panjin Kim1 · Daewan Han1 · Kyung Chul Jeong1

Received: 30 July 2018 / Accepted: 22 October 2018 / Published online: 31 October 2018
© The Author(s) 2018

Abstract
Performance of cryptanalytic quantum search algorithms ismainly inferred from query
complexity which hides overhead induced by an implementation. To shed light on
quantitative complexity analysis removing hidden factors, we provide a framework
for estimating time–space complexity, with carefully accounting for characteristics of
target cryptographic functions. Processor and circuit parallelization methods are taken
into account, resulting in the time–space trade-off curves in terms of depth and qubit.
Themethod guides how to rank different circuit designs in order of their efficiency. The
framework is applied to representative cryptosystems NIST referred to as a guideline
for security parameters, reassessing the security strengths of AES and SHA-2.

Keywords Quantum circuit · Grover · Parallelization · Resource estimates · AES ·
SHA-2

Mathematics Subject Classification 94A60 · 68Q12 · 81P68

1 Introduction

Quantum cryptanalysis is an area of study that has long been developed alongside
the field of quantum computing, as many cryptosystems are expected to be directly
affected by quantum algorithms. It is thus natural that cryptographic communities are
putting more and more efforts for preparing post-quantum era as quantum computing
communities aremaking progress. A notable effort beingmade byNational Institute of
Standards and Technology (NIST) primarily concerns new public-key cryptosystems
leveraged by the quantum period-finding algorithm that might make some currently
used public-key schemes obsolete once a practical quantum computer becomes avail-
able [1]. Unlike public-key schemes, however, the significance of quantum search
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algorithms in symmetric cryptosystems is arguable. It had been widely known that
most symmetric cryptosystem’s security levels will be simply reduced by half due to
the asymptotic behavior of the query complexity of Grover’s algorithm under the ora-
cle assumption [2]. Square-root improvement in exhaustive-search ability seems on
the one hand not negligible and may affect the current symmetric cryptosystems like
in key sizes. On the other hand, when the detailed mechanism ‘how quantum objects
or Grover’s speedup work’ comes into account, there exist claims that the threat is not
as harmful as it has been believed to be [1,3].1 The main reason for devaluating the
algorithm in symmetric cryptography stems from its ‘poor parallelizability.’

As the field has matured over decades, not mere asymptotic but more quantitative
approaches to the cryptanalysis are also being considered recently [4–9]. These works
have substantially improved the understanding of quantum attacks by systematically
estimating quantum resources. Nevertheless, it is still noticeable that the existing
works on resource estimates are more intended for suggesting exemplary quantum
circuits (so that one can count the number of required gates and qubits explicitly) than
fine-tuning of actual attack designs. Furthermore, despite that the parallelizability of
quantum search algorithms is the main source of the debate on the quantum threat in
symmetric cryptography, the resource cost of parallel quantum attack has never been
estimated quantitatively. In fact, quantum search algorithms have never been applied
to parallel applications in gate-level details, not just in quantum cryptanalysis but in
the whole field of quantum information. There could be various difficulties hampering
the parallelizing quantum algorithms, just as many classical serial applications cannot
find its parallel counterparts easily.

The importance of estimating costs of quantum search algorithms beyond pioneer-
ing works should be emphasized as it can be utilized to suggest practical security
levels in the post-quantum era. NIST indeed suggested security levels based on the
resistances of advanced encryption standard (AES) and secure hash algorithm (SHA)
to quantum attacks in PQC standardization call for proposals document [10]. In addi-
tion, the difficulty of measuring the complexity of quantum attacks was questioned in
the first NIST PQC standardization workshop.2 The main purpose of this work is to
formulate the time–space complexity of quantum search algorithms in order to provide
reliable quantum security strengths of classical symmetric cryptosystems.

1.1 This work

There exist two noteworthy points overlooked in the previous works. First, the target
function to be inverted is generally a pseudo-random function or a cryptographic
hash function. Under the characteristics of such functions, bijective correspondence
between input and output is not guaranteed. This makes Grover’s algorithm seemingly
inapplicable due to the unpredictability of the number of targets. The second point is
a time–space trade-off of quantum resources. Earlier works on quantitative resource

1 See also ‘S. Fluhrer, Reassessing Grover’s algorithm, http://eprint.iacr.org/2017/811,’ which analyzed
parallelizability of Grover’s algorithm in conjunction with cryptosystems.
2 Interested readers are suggested to look into ‘Moody, D.: Let’s get ready to rumble—the NIST PQC
“competition.” PQCrypto 2018 invited presentation (2018).’
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estimates have implicitly or explicitly assumed a single quantum processor. Presuming
that the resource in classical estimates includes the number of processors the adversary
is equipped with, the single processor assumption is something that should be revised.

Being aware of the issues, we come up with a framework for analyzing the time–
space complexity of cryptanalytic quantum search algorithms. Themain consequences
we present in this paper are threefolded:

1.1.1 Precise query complexity involving parallelization

The number of oracle queries, or equivalently Grover iterations, is first estimated as
exactly as possible, reasonably accounting for previously overlooked points. Random
statistics of the target function are carefully handled which lead to increase in iteration
number compared with the case of a unique target. Surprisingly, however, the cost
of dealing with random statistics in this paper is not expensive compared with the
previouswork [6] under the single processor assumption. Furthermore,whenprocessor
parallelization is considered,we observed that this extra cost gets evenmore negligible.
It is also interesting to recognize that the parallelizationmethods could vary depending
on the search problems. After taking the asymptotical big O notation off, the relation
between time and space in terms of Grover iterations and number of processors, called
trade-off curve, is obtained. Apart from resource estimates, investigating the trade-off
curve of state-of-the-art collision finding algorithm in [11] with optimized parameters
is one of our major concerns.

1.1.2 Depth-qubit trade-off and circuit design tuning

In the next stage, time and space resources are defined in a way that they can be inter-
preted as physical quantities. Cost of quantum circuits for cryptanalytic algorithms
can be estimated in units of Toffoli-depths and logical qubits. Taking the total num-
ber of gates as time complexity disturbs accurate estimates for the speed of quantum
algorithms due to far different overheads introduced by various gates in real opera-
tion. With the definitions of quantum resources, the trade-off curve now describes the
relation between circuit depths and number of qubits. Since we are given a ‘relation’
between time and space, it is then possible to grade the various quantum circuits in
order of efficiency. In other words, the method described so far enables one to tell
which attack design is more cost-effective.

By applying generic methodology newly introduced, time–space complexities of
AES and SHA-2 against quantum attacks are measured in the following way.3 Various
designs are constructed by assembling different circuit components with options such
as reduced depth at the cost of the increase in qubits (or vice versa). Design candidates
are then subjected to the trade-off relation for comparison. The trade-off coefficient of
the most efficient design represents the hardness of quantum cryptanalysis. Compared
with pre-existing circuit designs, we have improved the circuits by reducing required

3 We concluded that quantum cost of attacking SHA-3 is more expansive than that of SHA-2, based on [5]
and further improvement we have made in SHA-2 circuit in Sect. 6. Security strength of hash functions is
therefore measured only for SHA-2 in this work.
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Fig. 1 Time–space cost, which has conditional ordering, of the quantum attacks on five security strength
category representatives of NIST PQC standardization

qubits and/or depths in various ways. However, we do not claim that we have found
the optimal attacks for AES and SHA-2. The method enables us to select the best one
out of candidates at hand.

1.1.3 Revisiting the security levels of NIST PQC standardization

The procedure is applied to each primitive of security strength categories NIST spec-
ified in [10]. A new threshold that is required for the category classification, based on
the cost metric proposed in this work, is provided in Fig. 1. It includes a wide range
of parameters and the quantum collision finding algorithms which do not outperform
classical counterparts to explicitly recognize the quantum-side complexities of all the
categories.

We end this subsection with two important caveats. One is that a use of classical
resources appears in this paper, but we do not handle the complexity induced by it
because of unclear comparison criteria for quantum and classical resources. The other
is that our focus is put on specific algorithms implemented in the level of elementary
gates. Readers are however encouraged not to rule out other algorithms that quantum
computing communities also pursuit, for example, ones using quantum memory.

1.2 Organization

Next section covers the backgrounds including Grover’s algorithm, its parallelization,
other variants, and a short introduction to AES and SHA-2. In Sect. 3, the time–space
complexity of relevant algorithms in a unit of Grover iteration is investigated. A basic
unit of quantum computation is proposed in Sect. 4 as well as introducing a concept of
trade-off in quantum resources. Sections 5, 6, and 7 show the results of applying the
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time–space analysis to AES and SHA-2. In Sect. 8, based on the observations made
in the previous sections, a comprehensive figure summarizing the quantum security
strengths of AES and SHA-2 is drawn. Section 9 summarizes the paper.

2 Backgrounds

Grover’s algorithm, the success probability, parallelization methods, and some gener-
alizations or variants are explained briefly. A brief review of AES and SHA-2, and an
introduction to related works on resource estimates are followed. We do not cover the
basics of quantum computing, but leave the references [12,13] for interested readers.
Throughout the paper, the target function is denoted by f , N = 2n for some n ∈ N

and every bra or ket state is normalized.

2.1 Grover’s algorithm

Consider a set X of size N and a function f : X → {0, 1},

f (x) =
{
1, if x ∈ T ,

0, otherwise,

where T of size t is a set of targets to be found.
Grover’s algorithm [2] is an algorithm that repeatedly applies an operator

Q = −AS0A
−1S f ,

called Grover iteration, to the initial state |�〉 = A|0〉, where

A = H⊗n, S0 = I − 2|0〉〈0|, S f = I − 2|τ 〉〈τ |, (1)

where H⊗n is a set of Hadamard operators and |τ 〉 is a target state which is an equal-
phase and equal-weight superposition of |x〉 for all x ∈ T . The roles of S0 and S f are
to swap the sign of zero and |τ 〉 states, respectively.

The operators S f and − AS0A−1 are known as oracle and diffusion operators,
respectively. By acting the oracle operator on a state, only the target state is marked
through the sign change. The diffusion operator flips amplitudes around the average.

Success probability of measurement as a function of the number of iterations has
been studied in [14], observing the optimal number of iterations that minimizes the
ratio of the iterations to success rate. We introduce the results below with notation that
is used throughout the paper.

By applying Q on the initial state i-times, the success probability of measuring one
of the t solutions, denoted by pt,N : Z≥0 → [0, 1], becomes

pt,N (i) = sin2
[
(2i + 1) · θt,N

]
, (2)
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where sin
(
θt,N

) = √
t/N (= 〈�|τ 〉). The number of repetitions of Q maximizing the

probability of measurement, denoted by Imp
t,N ∈ N, is estimated as4

Imp
t,N = π

4
·
√

N

t
. (3)

When the measurement is made after i-repetitions of Q, the expected number of
Grover iterations to find one of the targets can be expressed as a function of i . For t
targets in the domain of size N , the function is denoted by It,N : N → R>0 which
reads It,N (i) = i/pt,N (i). The optimal number of iterations it,N ∈ N that minimizes
It,N is found to be it,N = 0.583 . . .·√N/t , and then the expected number of iterations,
denoted by It,N ∈ N, reads

It,N = It,N (it,N ) = 0.690 . . . ·
√

N

t
. (4)

In some cases, the domain size N is omitted such as pt (i)(= pt,N (i)) or It (= It,N ),
for readability.

2.2 Parallelization

Parallelization of Grover’s algorithm using multiple quantum computers has been
investigated in applications to cryptanalysis [1,10,15]. Consideration of parallelization
in a hybrid algorithm can be found in [16]. Asymptotically the execution time is
reduced by a factor of the square root of the number of quantum computers. There are
two straightforward parallelization methods having such property, called inner and
outer parallelization.

Parameters Tq and Sq stand for the number of sequential Grover iterations and
the number of quantum computers, respectively. Sc stands for the amount of classical
resources, such as the size of storage and/or the number of processors. Definitions of
two parallelization methods can be given as follows.

Definition 1 [Inner Parallelization (IP)] After dividing the entire search space into
Sq disjoint sets, each machine searches one of the sets for the target. The number of
iterations can be reduced due to the reduced domain size.

Definition 2 [Outer Parallelization (OP)] Copies of Grover’s algorithm on the entire
search space are run on Sq machines. Since it is successful if any of the Sq machines
finds the target, the number of iterations can be reduced.

Parallelization is inevitable once the notion of MAXDEPTH is considered [10].
MAXDEPTH is a parameter for a circuit depth that a quantum computer can run
without errors. We do not cover the reasoning behind the notion, but suggest for
interested readers to look into NIST’s PQC call for proposals document and related
comments. Three MAXDEPTH parameters we adopt from [10] are as follows.

4 In trivial cases, rounding function is not explicitly used in this paper for simplicity.
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– 240: Approximate number of logical gates that presently envisioned quantum com-
puting architectures are expected to serially perform in a year.

– 264: Approximate number of logical gates that current classical computing archi-
tectures can perform serially in a decade.

– 296: Approximate number of logical gates that atomic scale qubits with speed of
light propagation times could perform in a millennium.

2.3 Generalizations and variants

Fixed-point [17] and quantum amplitude amplification (QAA) [18] algorithms are
generalizations of Grover’s algorithm. A brief review of QAA is given in this subsec-
tion which appears as a component of a collision finding algorithm in later sections.
We skip over the fixed-point algorithm as it has no advantage over Grover’s algorithm
and QAA in this work.5

There exist a number of variants of Grover’s algorithm in application to collision
finding. In [19], Brassard, Høyer, and Tapp suggested a quantum collision finding
algorithm (BHT) of O(N 1/3) query complexity using quantum memory amounting
to O(N 1/3) classical data. A multi-collision algorithm using BHT was suggested
in [20]. In this work however, we do not consider BHT as a candidate algorithm for
the following reasons. One is that the algorithm entails a need for quantum memory
where the realization and the usage cost are controversial [21], and the other is that we
are unable to come up with any implementation restricted to use of elementary gates
that do not exceed the total cost of O(N 1/2).

Apart from quantum circuits, algorithms primarily designed for other type of mod-
els such as measurement-based quantum computation also exist, for example quantum
walk search [22,23] or element distinctness [24], but we do not cover them as state-
of-the-art quantum architecture is targeting for circuit computation. Interested readers
may further refer to [20] and related references therein for more information on quan-
tum collision finding.

Bernstein analyzed quantum and classical collision finding algorithms in [3]. Quot-
ing the work, no quantum algorithm with better time–space product complexity than
O(N 1/2)which is achieved by the state-of-the-art classical algorithm [25] had not been
reported. If Grover’s algorithm is parallelized with the distinguished point method,
complexity of O(N 1/2) can be achieved. This is one of the examples of immediate
ways to combine quantum search with the rho method as mentioned in [3]. We denote
it as Grover with distinguished point (GwDP) algorithm in this paper.

In ASIACRYPT 2017, Chailloux, Naya-Plasencia, and Schrottenloher suggested a
new quantum collision finding algorithm, called CNS algorithm, of O(N 2/5) query
complexity using O(N 1/5) classical memory [11].

5 There are two reasons. One is that fixed-point search requires two oracle queries per iteration, and the
other is log(2/δ) factor in Eq. 3 in [17] which also increases the required number of iterations depending on
the bounding parameter δ. Comparing these factors with the overhead in our method introduced by random
statistics, we concluded that the fixed-point algorithm is not favored.
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2.3.1 QAA algorithm

Basic structure of QAA is the same as Grover’s original algorithm. Initial state |�〉 =
A|0〉 is prepared, and then Grover iteration Q is repeatedly applied i times to get
success probability Eq. 2. The only difference is that in QAA, the preparation operator
A is not restricted to H⊗n where N = 2n , and so thus the search space can be arbitrarily
defined. Detailed derivation is not covered here, but insteadwe describe the key feature
in an example.

As a trivial example, let us assume we are given a quantum computer and try to find
a target bit-string 110011 in a set N = {x | x ∈ {0, 1}6 and two middle bits are 0}.
Domain size is not equal to 26, and the initial state can be prepared by A = H1H2H5H6
where Hr is Hadamard gate acting on r -th qubit. Remaining processes are to apply
Grover iterations Q = −AS0A−1S f with A given by the state preparation operator
just mentioned. The search space examined is rather trivial, but QAA also works on
arbitrary domain. Nontrivial domain can be given as something like N = {x | x ∈
{0, 1}6, f (x) 	= 0} for some given function f . It is a matter of preparing a state
encoding appropriate search space, or in other words, that is to find an operator A.
Once A is constructed, QAA works in the same way as in Grover’s algorithm.

2.3.2 GwDP algorithm

GwDP algorithm is a parallelization of Grover’s algorithm. Distinguished points (DP)
can be defined by function outputs whose d most significant bits are zeros, denoted
by d-bit DP. We allow the notation DP to indicate inputs to produce DP or pairs of DP
and corresponding input.

For Sq = Sc = 2s , we use (n − 2s)-bit DP. By running Tq = O
(
2n/2−s

)
times

of Grover iterations, DP is expected to be found on each machine. Storing O(2s)
DPs sorted according to the output, a collision is found with high probability. The
time–space product is always Tq Sq = O

(
N 1/2

)
.

2.3.3 CNS algorithm

Instead of the details of CNS algorithm [11], we brieflymention the high-level descrip-
tion and the corresponding complexities.

CNS algorithm consists of two phases, the list preparation and the collision finding.
In the list preparation phase, a list of size 2l of d-bit DPs is drawn upwith the time com-
plexity of O(2l+d/2) and the classical storage of size O(2l). In the collision finding
phase QAA algorithm is used. Each iteration of QAA algorithm consists of O(2d/2)

Grover iterations and O(2l) operations for the list comparison. After O
(
2(n−d−l)/2

)
QAA iterations, a collision is expected to be found. In total, CNS algorithm has
O

(
2l+d/2 + 2(n−d−l)/2(2d/2 + 2l)

)
time complexity and uses O(2l) classical mem-

ory. With the optimal parameters l = d/2 and d = 2n/5, a collision is found in
Tq = O(N 2/5) with Sc = O(N 1/5).

If Sq = 2s , time complexity becomes O(2(n−d−l−s)/2(2d/2 + 2l) + 2l+d/2−s) for
s ≤ min(l, n − d − l). When l = d/2 and d = 2/5{n + s}, the complexities satisfy
(Tq)5(Sq)3 = O(N 2) and Tq(Sc)3 = O(N ).
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2.4 AES and SHA-2 algorithms

A brief review of AES and SHA-2 is given in this subsection. Specifically, AES-128
andSHA-256 algorithms are describedwhichwill form themain body of later sections.

2.4.1 AES-128

Only the encryption procedure of AES-128 which is relevant to this work will be
shortly reviewed. See [26] for details.

Round AES round consists of four elementary operations: SubBytes, ShiftRows,
MixColumns, and AddRoundKey.6 Each operation applies to internal state, which
is represented by 4 × 4 array of bytes Si, j , as shown in Fig. 2a.

– ShiftRows does cyclic shifts of the last three rows of the internal state by different
offsets.

– MixColumns does a linear transformation on each column of the internal state that
mixes the data.

– AddRoundKey does an addition of the internal state and the round key by an XOR
operation.

– SubBytes does a nonlinear transformation on each byte. SubBytes works as
substitution-boxes (S-box) generated by computing a multiplicative inverse, fol-
lowed by a linear transformation and an addition of S-box constant.

KeyScheduleAESkey schedule consists of four operations:RotWord, SubWord,Rcon,
and addition byXORoperation. The sequence of key scheduling is described in Fig. 2b.
Each operation applies to 32-bit word wi , which is represented by 4×1 array of bytes
kdi, j . First four words are given by original key which become the zeroth round key.
More words—40 in AES-128—are then generated by recursively processing previous
words. Every sixteen-byte kdi, j constitutes d-th round key. RotWord, SubWord, and
Rcon only apply to every fourth word wi , i ∈ {3, 7, 11, . . . 39}.
– RotWord does a cyclic shift on four bytes.
– Rcon does an addition of the constant and the word by XOR operation.
– SubWord does an S-box operation on each byte in word.

2.4.2 SHA-256

For brevity, only SHA-256 hashing algorithm for one message block which is rele-
vant to this work will be reviewed. Description of preprocessing including message
padding, parsing, and setting initial hash value is also omitted here. See [27] for details.

Round SHA-2 round consists of five operations:Ch,Maj,�0,�1, and additionmodulo
232. Round operations apply on eight 32-bit working variables denoted by a, b, c, d,
e, f, g, h. See Fig. 3a for procedures.

6 The first and the last rounds are different, but will not be covered in detail here.
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– Ch(x, y, z) = (x ∧ y) ⊕ (¬x ∧ z),
– Maj(x, y, z) = (x ∧ y) ⊕ (x ∧ z) ⊕ (y ∧ z),
– �0(x) = ROTR2(x) ⊕ ROTR13(x) ⊕ ROTR22(x),
– �1(x) = ROTR6(x) ⊕ ROTR11(x) ⊕ ROTR25(x),
where ROTRn(x) is circular right shift of x by n positions.

Message Schedule SHA-2 message schedule consists of three operations: σ0, σ1, and
addition modulo 232. The sequence of message scheduling is described in Fig. 3b.
Each operation applies to 32-bit wordWi . First 16words are given by original message
block which become the first 16 words fed to SHA-256 rounds. More words—48 in
SHA-256—are then generated by recursively processing previous words.

– σ0(x) = ROTR7(x) ⊕ ROTR18(x) ⊕ SHR3(x),
– σ1(x) = ROTR17(x) ⊕ ROTR19(x) ⊕ SHR10(x),
where SHRn(x) is right shift of x by n positions.

2.5 Quantum resource estimates

Quantum resource estimates of Shor’s period-finding algorithmhave long been studied
in the various literature. See for example [8,28] and referenced materials therein. On
the other hand, quantitative quantum analysis on cryptographic schemes other than
period finding is still in its early stage. Partial list may include attacks on multivariate-
quadratic problems [9], hash functions [5,7], and AES [4,6].We introduce two of them
which are the most relevant to our work.

2.5.1 AES key search

Grassl et al. reported the quantum costs of AES-k key search for k ∈ {128, 192, 256}
in the units of logical qubit and gate [6]. In estimating the time cost, the author’s focus
was put on a specific gate called ‘T’ gate and its depth, although the overall gate count
was also provided. Space cost was simply estimated as the total number of qubits
required to run Grover’s algorithm.

There are two points we pay attention on. First is that the authors ensured a single
target key. Since AES algorithm works like a random function, there is nonnegligi-
ble probability that a plaintext ends up with the same ciphertext when encrypted by
two different keys. To avoid the cases, the authors encrypt r (∈ {3, 4, 5}) plaintext
blocks simultaneously to obtain r ciphertexts so that only the true key results in given
ciphertexts. The procedure removes the ambiguity in the number of iterations. Note,
however, that the removal of the ambiguity comes in exchange of at least tripling
the space cost. The other point is that reversible circuit implementation of internal
functions of AES was always aimed at reducing the number of qubits. One may see
proposed circuit design as space-optimized.
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2.5.2 SHA-2 and SHA-3 pre-image search

Amy et al. reported the quantum costs of SHA-2 and SHA-3 pre-image search in
the units of logical and physical qubit and gate [5]. The method considers an error-
correction scheme called surface code. Time cost was set considering the scheme.
Estimating the costs of T gates in terms of physical resources was one of the main
results. One point we would like to address in the work is that random-like behavior of
SHA function was not considered. It is assumed in the paper that the unique pre-image
of a given hash exists.

3 Trade-off in query complexity

In this section, the definitions of cryptographic search problems and the query-based
time cost of the corresponding quantum search algorithms are discussed. The trade-off
equations between the number of queries and the number of machines are given as a
result.

3.1 Types of search problems

We assume that f : X → Y is a random function which means f is selected from
the set of all functions from X to Y uniformly at random. Useful statistics of random
functions can be found in [29]. The probabilities related to the number of pre-images
are quoted below. When an element x is selected from a set X uniformly at random,

it is denoted by x
$←X .

When |Y | = N and |X | = aN ∈ N for some a ∈ Q, an element y ∈ Y is called a j -

node if it has j pre-images, i.e., |{x ∈ X : f (x) = y}| = j . For y
$←Y , the probability

of y to be a j-node, denoted by q(aN ) : Z≥0 → [0, 1], is

q(aN )( j) ≈ 1

ea
· a

j

j ! . (5)

For x
$←X , the probability of f (x) to be a j-node, denoted by r(aN ) : N → [0, 1], is

r(aN )( j) ≈ j · q(aN )( j). (6)

These approximations can hold when aN is larger than j . However, since the values
are very small at large j , we may assume that Eqs. 5 and 6 are valid in the entire
domain.

The target function in cryptanalytic search problems is usually modeled as a
pseudo-random function (PRF) or a cryptographic hash function (CHF). The pre-
cise interpretation of this notions can be found in Sects. 3.5 and 5.5 of [30]. It can be
assumed that PRF and CHF have similar statistic behaviors to a random function.
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The formal definitions of search problems relevant to symmetric cryptanalysis can
be described with random functions. The way of generating the given information in
each problem is carefully distinguished. The first is Key Search generalized from the
secret key search problem using a pair of plaintext and ciphertext of an encryption
algorithm.

Definition 3 [Key Search (KS)] For a random function f : X → Y , y = f (x0) is
generated from an x0 ∈ X . Key Search is to find the target x0 for given f and y.

The existence of the target x0 in X is always ensured. However, pre-images of y
other than x0 can be found, which is called a false alarm. The false alarms have to
be resolved by additional information since no clue (that helps to recognize the real
target) is given within the problem.

Definitions generalized from the pre-image and the collision problems of CHF are
given as follows.

Definition 4 [Pre-image Search (PS)] For a random function f : {0, 1}∗ → Y , y is

chosen at random, y
$←Y , or equivalently, y = f (x0) for an x0 ∈ {0, 1}∗. Pre-image

Search is to find any x ∈ {0, 1}∗ satisfying f (x) = y for given f and y.

There is no false alarm in Pre-image Search. However, the existence of a pre-image
in a fixed subset of {0, 1}∗ cannot be ensured.

Definition 5 [Collision Finding (CF)] For a given random function f : {0, 1}∗ → Y ,
Collision Finding is to find any inputs x1, x2 ∈ {0, 1}∗ satisfying f (x1) = f (x2).

3.2 Trade-off in Grover’s algorithm for Key Search

In this subsection, the expected iteration number and the parallelization trade-off of
Grover’s algorithm are given. We assume that f : X → Y and |X | = |Y | = N .

In Key Search, the given y ∈ Y becomes t-node with probability r(t) of Eq. 6. The
probability that one of the pre-images of y is found by the measurement after i-times
Grover iterations becomes pt (i) of Eq. 2. Since only one target among t pre-images
is the true key, the probability that the answer is correct is 1/t . For PKS

rand : N → [0, 1],
PKS
rand(i) denotes the success probability after i-times Grover iterations of the Key

Search. To emphasize that f is assumed to be a random function, the subscript ‘rand’
is specified. PKS

rand(i) is the summation over possible t’s,

PKS
rand(i) =

∑
t≥1

r(t) · pt (i) · 1
t
. (7)

Proposition about the optimal expected iterations follows.

Proposition 1 The optimal expected number, IKSrand, of Grover iterations for Key Search
becomes

IKSrand = 0.951 . . . · √
N .
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Proof This proof is similar to the one in Sect. 4 of [14].
If the measurement is taken after i-times Grover iterations, the expected number of

iterations can be expressed as a function of i , denoted by IKSrand : N → R>0, which reads

IKSrand(i) = i

PKS
rand(i)

.

The optimal value, IKSrand ∈ N, is approximated as the first positive local minimum
value of IKSrand(i). The integer closest to the first positive root of derivative of IKSrand(i),
denoted by iKSrand ∈ N, can be calculated by a numerical method. The result is iKSrand =
0.434 . . . · √N and IKSrand = IKSrand(i

KS
rand). ��

Comparing IKSrand with I1 of Eq. 4, the expected iteration increases by 37.8…%.
The parallel trade-off curve of Key Search is calculated in the rest of this subsection.

If inner parallelization method is taken for Sq � 1, the number of pre-images of y in
each divided space becomes only 0 or 1 for overwhelming probability, even though
f is a random function. Therefore, the success probability after i-times iterations,
denoted by PKS:IP

rand : N → [0, 1], reads

PKS:IP
rand (i)

(
= PKS:IP

rand,N (i)
)

= p1,(N/Sq )(i), (8)

from Eq. 2. The optimal expected iteration number is similar to Eq. 4 as

IKS:IP
rand = I1,(N/Sq ) = 0.690 . . . ·

√(
N/Sq

)
. (9)

In outer parallelization method, the success probability after i-times iterations
becomes

PKS:OP
rand (i) = 1 −

(
1 − PKS

rand(i)
)Sq

,

and then the optimal expected iteration number for Sq � 1 is given by

IKS:OP
rand = 0.784 . . . ·

√
(N/Sq). (10)

As a result, inner parallelization is 11.9 . . .% more efficient than outer method in
Key Search. We denote the number of machines used in Key Search SKSq . The optimal
expected number of iterations in Key Search, denoted by TKS

q , can be considered as

IKS:IP
rand .

Proposition 2 (KS trade-off curve) For SKSq � 1, the parallelization trade-off of
Grover’s algorithm for Key Search is given by

(
TKS
q

)2
SKSq = 0.476 . . . · N .

In the followings, the optimal expected number of iterations and trade-off curves
are defined and analyzed in the same way as in this subsection, but briefly.
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3.3 Trade-off in Grover’s algorithm for Pre-image Search

Let X be the restricted domain of the function f : {0, 1}∗ → Y , and assume |X | =
|Y | = N . We may assume that the restriction of f on X , denoted by f |X , is also a
random function. In Pre-image Search, there exist t pre-images of the given y with
probability q(t) in Eq. 5. The success probability of measuring one of the targets after
i-times iterations is a summation of q(t) · pt (i) over possible t’s as

PPS
rand(i) =

∑
t≥0

q(t) · pt (i).

Since p0(i) = 0 and q(t) = r(t)/t for t ≥ 1, it can be written as PPS
rand(i) = PKS

rand(i).
The important difference between Key Search and Pre-image Search is the existence
of failure probability. If the domain of size N is used, the probability there is no
pre-image of y in X is q(0) = 1/e ≈ 0.368 . . ..

Two resolutions canbe sought. Thefirst is to change the domain X in every execution
of Grover’s algorithm. In this case, the result on the optimal iteration number of Pre-
image Search becomes the same as Proposition 1. The second is to expand the domain,
|X | = aN ∈ N for some a > 1. The success probability then reads PPS

rand,(aN )(i) =∑
t≥1 q(aN )(t) · pt,(aN )(i).

Proposition 3 If |X | � N, the optimal expected number of iterations, denoted by
I PSrand,(�N ), for Pre-image Search is written as

I PSrand,(�N ) = 0.690 . . . · √
N .

When N = 2256, the proposition can be assumed to hold for a ≥ 210. Subscript ‘� 1’
specifies the assumption. The fact that I PSrand,(�N ) ≈ I1,N , i.e., better performance up
to some converged value for larger domain size, is remarked. If a grows to 8, the
failure probability decreases below 0.0004 . . . ≈ 1/e8.

In the case of inner parallelization for |X | = |Y |, the pre-images of y are distributed
to different divided spaces with overwhelming probability when Sq � 1. The success
probability reads

PPS:IP
rand,N (i) =

∑
t≥1

q(t) ·
{
1 − (

1 − p1,(N/Sq )(i)
)t}

.

and the optimal expected iteration number is written as

I PS:IP
rand,N = 0.981 . . . ·

√
(N/Sq). (11)

Since PPS
rand(i)=PKS

rand(i), the behavior of outer parallelization of Pre-image Search
is the same as in Key Search. The optimal expected iteration number is

I PS:OP
rand = 0.784 . . . ·

√
(N/Sq)

(
= IKS:OP

rand

)
. (12)
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When |X | = aN ∈ N for some a > 1, if Sq > a2, it can be assumed that all
pre-images of y are separately distributed to the divided space in inner parallelization.
For both of inner and outer parallelization, the optimal expected iteration converges
to the value of Eq. 12 when a � 1 and Sq > a2.

There are subtleties in comparing inner and outer parallelization which are inap-
propriate to be pointed out here. We conclude that it is always favored to enlarge
the domain size, and then for large Sq , two parallelization methods show asymptot-
ically the same performance. Denoting the optimal time and space complexities for
Pre-image Search by T PS

q and SPSq , the trade-off curve is given as follows.

Proposition 4 (PS trade-off curve) For SPSq � 1, the parallelization trade-off of
Grover’s algorithm for Pre-image Search is given by

(
T PS
q

)2
SPSq = 0.614 . . . · N .

Note that while the inner parallelization is a better option in Key Search, both
parallelization methods have similar behaviors in Pre-image Search.

3.4 Trade-off in quantum collision finding algorithms

A collision could be found by using Grover’s algorithm in the way of second pre-
image search. This has the same result as Sect. 3.3 if the input of the given pair of ‘first
pre-image’ is not included in the domain. Apart from Grover’s algorithm, the optimal
expected iterations and trade-off curves for parallelizations of two collision finding
algorithms, GwDP and CNS, are given in this subsection.

In collision finding algorithms, searching for a pre-image of large set is required.

Let f : {0, 1}∗ → Y and X ⊂ {0, 1}∗ be a set of size N . For f |X and y
$←Y , the

expected number of pre-images of y becomes 1 ≈ ∑
j≥1 j · q( j). If the size of a set

A ⊂ Y is large enough, it can be assumed that the number of pre-images of A = |A|.

3.4.1 GwDP algorithm

Let Sq = 2s for some s ∈ N and X ⊂ {0, 1}∗ be a set of size N . In each quantum
machine, a parameter (n − 2s + 2) is used for the number of bits to be fixed in DPs.
The parameter (n − 2s + 2) is chosen as an optimal one only among integers in order
to allow the easier implementation by quantum gates.

After i-times Grover iterations, the success probability of measuring a DP becomes
p(22s−2)(i) from Eq. 2. The expected number of DPs found is 2s · p(22s−2)(i) by mea-
surements after i-times iterations on each machine. As a result of birthday problem
(BP) if there are k samples independently selected out of 22s−2 DPs, the probability
of at least one coincidence, denoted by pBP

(22s−2)
: N → [0, 1], is approximated

pBP
(22s−2)

(k) = 1 − exp

( − k2

2 · 22s−2

)
.
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Details of approximation can be found in Sect. A.4 of [30]. The probability of
finding at least one collision, denoted by PGwDP

rand : N → [0, 1], is then

PGwDP
rand (i) = pBP

(22s−2)

(
2s · p(22s−2)(i)

)
.

The optimal expected iteration reads

IGwDPrand = 1.532 . . . ·
√
N

2s
. (13)

Denoting the optimal time and space complexities by TGwDP
q and SGwDPq for Col-

lision Finding by GwDP algorithm, the trade-off curve is given as follows.

Proposition 5 (GwDP trade-off curve) For SGwDPq = 2s � 1, the trade-off curve of
GwDP algorithm for Collision Finding is given by

TGwDP
q SGwDPq = 1.532 . . . · √

N .

Note that the algorithm also requires SGwDPc = O(2s) classical storage.

3.4.2 CNS algorithm

In the list preparation phase, a list L of size 2l , a subset of d-bit DPs, is to be made.
Set X1 ⊂ {0, 1}∗ of size N = 2n and the function

fDP(x) =
{
1, if f (x) is DP,

0, otherwise.

Let fDP|X1 be the restriction of fDP on X1. The iteration in this phase is defined by

Q1 = −A1S0A
−1
1 S fDP|X1 ,

where the oracle operator S fDP|X1 is a quantum implementation of the function fDP|X1

and A1 is the usual state preparation operator H⊗n .
Since there are about 2n−d

(= |X1|/2d
)
DPs in X1, the expected number of Grover

iterations to find a DP is the same as I2n−d = 0.690 . . . · 2d/2 of Eq. 4. The expected
number of Grover iterations to build L is 0.690 . . . · 2d/2 · 2l . A classical storage of
size O(2l) is required in addition.

In the collision finding phase, let X2 ⊂ {0, 1}∗ be a set of size N such that X1 ∩
X2 = ∅. Let the state |ψ〉 be an equal-phase and equal-weight superposition of states
encoding all the DPs in X2. State preparation operator A2 such that |ψ〉 = A2|0〉 is
explicitly

A2 =
(
−A1S0A

−1
1 S fDP|X2

) π
4 ·2d/2

A1,
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which is Grover iterations similar to Q1 with repetition number Imp
2n−d of Eq. 3. The

function fL : X2 → {0, 1} is defined as

fL(x) =
{
1, if f (x) ∈ L,

0, otherwise.

To realize the oracle operator S fL—a quantum implementation of fL—without a
need for quantum memory, the authors of CNS algorithm have suggested a computa-
tional method taking O(2l) elementary operations per quantum fL query.

QAA iteration Q2 of the collision finding phase consists of two steps. The first is
acting of the oracle operator S fL . Let tL be the ratio of the time cost of S fL per list
element of L to that of Grover iteration. The second step is acting of the diffusion
operator −A2S0A

−1
2 .

The success probability of QAA algorithm is known to have the same behaviors
of Grover’s algorithm [18]. Since there are about 2n−d DPs encoded in the state with
equal probabilities and about 2l pre-images of L in |ψ〉, by applying Q2 operator
I(2l ),(2n−d ) = 0.690 . . . · 2(n−d−l)/2 times on |ψ〉, the algorithm is expected to find a
collision. The time cost of the collision finding phase reads

0.690 . . . · 2 n−d−l
2 ·

(
2 · π

4
· 2 d

2 + tL · 2l
)

.

Note that the time cost of S0 in collision finding phase and the initial A2 are
negligible. The time cost of CNS algorithm in terms of Grover iterations denoted by
ICNSrand (d, l) reads

ICNSrand (d, l) =
{
0.690 . . . · 2l+ d

2

}
+

{
0.690 . . . · 2 n−d−l

2

(π

2
· 2 d

2 + tL · 2l
)}

. (14)

The optimal value ICNSrand is given as follows.

Proposition 6 The optimal expected number of Grover iterations in CNS algorithm
for Collision Finding reads

ICNSrand = 3.150 . . . · t
1
5
L · N 2

5 ,

when l = d/2 + log2 (π/(2tL)), and d = 2/5{n + log2
(
(2tL)3/π

)}.
Using Sq = 2s quantum machines, natural parallelization of the list prepa-

ration phase is finding 2l−s elements on each machine. Outer parallelization of
QAA algorithm in the collision finding phase has the same expected iterations as
Eq. 12. The expected number of Grover iterations, denoted by ICNS:OP

rand (d, l), where
s < min(l, n − d − l), is written as

ICNS:OP
rand (d, l) =

{
0.690 . . . · 2l+ d

2 −s
}

+
{
0.784 . . . · 2 n−d−l−s

2

(π

2
· 2 d

2 + tL2
l
)}

.
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When l = d/2 + log2 (π/(2tL)), and d = 2/5{n + s + log2
(
1.291 . . . · (2tL)3/π

)},
the optimal expected number of iterations reads

ICNS:OP
rand = 3.488 . . . · t

1
5
L N

2
5

2
3
5 s

. (15)

We denote the optimal time and space complexities by TCNS
q and SCNSq for Collision

Finding by CNS algorithm. TCNS
q can be considered as ICNS:OP

rand . The trade-off curve
of CNS algorithm is then given as follows.

Proposition 7 (CNS trade-off curve) For SCNSq � 1, the parallelization trade-off
curve of CNS algorithm for Collision Finding is given by

(
T CNS
q

)5 (
SCNSq

)3 = (3.488 . . .)5 · tL · N 2.

The algorithm also requires the classical resource SCNSc = O
(
N 1/5(SCNSq )1/5

)
. If

the constant tL is determined, the time–space complexity of CNS algorithm could be
derived from this trade-off curve.

4 Depth–qubit cost metric

Universal quantum computers are capable of carrying out elementary logic operations
such as Pauli X, Hadamard, CNOT, T. See [13] for details on quantum gates. Imple-
mentation of any cryptographic operation in this paper is restricted such that it can only
be realized by using these gates. One may think of the restriction as a quantum version
of software implementation in classical computing. Quantum security of symmetric
cryptosystems can then be estimated in units of elementary logic gates.

It is generally known that each elementary gate has different physical implementa-
tion time. Considering various aspects of quantum computing, we suggest to simplify
a measure of computation time and to ignore all the other factors or gates that com-
plicates the analysis of quantum algorithms.

Two primary resources in quantum computing, circuit depth and qubit, can be
exchanged tomeet a certain attack design criteria. Time–space complexity investigated
in the previous section can be used to give an attribute ‘efficiency’ to each and every
design. To further quantify depth–qubit complexity and to be able to rank the efficiency,
we briefly cover the time–space trade-off of quantum resources in this section.

4.1 Cost measure

Difficulties often arise when it comes to setting quantum complexity measures that
are physically interpretable. There exists a number of factors making it complicate,
for example different architecture each experimental group is pursuing. A qubit or a
certain gate may cost differently in each architecture. It is therefore hardly possible to
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accurately assess operational time of each type of gate in general and to estimate overall
run time. Despite the notable difficulty in quantifying the basic unit cost of quantum
computation, a number of groups have attempted to estimate the algorithm costs in
various applications [5–7]. The cost metric varies depending on author’s viewpoint.
For example, one considering the fault-tolerant computation would estimate the cost
involving specific hardware implementations or error-correction schemes.On the other
hand, one that is not to impose constraints on hardware or error-correction scheme
would estimate the cost in logical qubits and gates. The latter approach is adopted
in this work. Readers should keep in mind that this approach ignores the overheads
introduced by fault tolerance.7

High-level circuit description ofGrover iteration involves not only elementary gates
but also larger gates such as CkNOT. It is very unlikely that such gates can be directly
operated in any realistic universal quantum computers. Decomposition of those gates
into smaller ones is thus required in practical estimates.

Determining the unit time cost is a subtle matter. We would like to address that the
simplest, yet justified time cost measure involves Toffoli gate.

Definition 6 A unit of quantum computational time cost is the time required to operate
a nonparallelizable logical Toffoli gate.

In other words, Toffoli-depth will be the time cost of the algorithm. We will look
into its justification in Sect. 4.3.

Space cost is estimated as a total number of logical qubits required to perform the
quantum search algorithm.

Definition 7 Quantum computational space cost is the number of logical qubits
required to run the entire circuit.

Decomposition of a high-level circuit component into smaller ones often entails
a need for additional qubits, which sometimes turn into garbage bits or get cleaned
after certain operations. Overall space cost mainly comes from these qubits. To avoid
confusion caused by terminology, we clarify five kinds of qubits.

1. Data qubits are qubits of which the space is searched by the quantum search
algorithm. For example inAES-128, the size of the key space is 2128 which requires
128 data qubits.

2. Work qubits are initialized qubits those assist certain operation. Whether it stays
in an initialized value or gets written depends on the operation.

3. Garbage qubits are previously initialized work qubits, which then get written
unwanted information after a certain operation.

4. Output qubits are previously initialized work qubits, which then get written the
output information of a certain operation.

5. Oracle qubit is a single qubit used for phase kick-back (sign change) in oracle and
diffusion operators.

7 Fault-tolerant cost could be in general huge, butwe expect that logical cost to fault-tolerant cost conversion
would be more or less uniform.
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There is onemore type of qubit not falling into above categories, a borrowed qubit [31].
The concept of the borrowed qubit is not considered in this work. Garbage and output
qubits must be re-initialized before the diffusion of Grover iteration to be disentangled
from data qubits.

4.2 Time–space trade-off

Readers those are familiar with quantum circuit model can safely skip over this sub-
section as it covers some general facts about depth–qubit trade-off. In quantum circuit
model, it is often possible to sacrifice efficiency in qubits for better performance in
time and vice versa. Quantum version of such time–space trade-off forms a main body
of Sects. 5 and 6. As a preliminarywe give an example to introduce the general concept
of trade-off in quantum circuits.

Consider a function f that carries out binary multiplications of k single bit values.
At the end of this subsection we will deal with general k, but for now, let us explicitly
write down the description with k = 2, the multiplication of two bits a and b as
f (a, b) = ab.
In quantum circuit, the implementation of a function has to be a unitary trans-

formation such that the input can be retrieved back by knowing the output. The
implementation of the two-bit binarymultiplication in classical setting can be achieved
by using AND gate. Similar implementation cannot be adopted in quantum setting.
However, classically, by keeping the information of one input stored in one extra
bit, the function would be a reversible classical circuit. Similarly in quantum setting,
one may think of the implementation where the input information is kept all the way
through the operation such as

U f |a〉|b〉|0〉 = |a〉|b〉|0 ⊕ ab〉, (16)

where |a〉 and |b〉 are quantum states encoding a and b, andU f is the quantum imple-
mentation of the function f . Previously zeroed qubit represented by the state |0〉 on
the left-hand side holds the result after the operation. There exists a quantum gate
that exactly performs the operation by U f called a k-fold controlled-NOT (CkNOT)
with k = 2 or better known as Toffoli gate. Figure 4a illustrates the graphical rep-
resentation of Toffoli gate achieving Eq. 16. General CkNOT gates read k input bits
carried by wires intersecting with black dots and change a target bit carried by a wire
intersecting with Exclusive-Or symbol. In this case, the gate works as NOT on target
bit if a = b = 1 and identity otherwise.

Similarly, multiplications of four bits can be implemented by using C4NOT gate
as shown in Fig. 4b. C4NOT gate carries out NOT operation on target bit if a = b =
c = d = 1 and nothing otherwise.

Now assume we are to split up a C4NOT gate into multiple Toffoli gates with the
help of a few extra qubits. Decomposing a large gate into smaller gates is a typical
task one confront in compilation [7]. There can be various ways to achieve the goal,
and one of the immediate designs is the one in Fig. 5a.

123



339 Page 22 of 39 P. Kim et al.

c

d
0   ab0

b

a

b

a

0

b

a

0   abcd

d

c

b

a
(a) (b)
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Fig. 5 Decomposition of C4NOT gate into a five Toffoli gates and b ten Toffoli gates. In (a), the third and
the fifth zeroed qubits from the top are work qubits, whereas in (b), only the fifth arbitrary-valued qubit is
a work qubit

Let us examine the action of each Toffoli gate on the register one-by-one,

|a〉|b〉|0〉|c〉|0〉|d〉|0〉 1©�→ |a〉|b〉|ab〉|c〉|0〉|d〉|0〉
2©�→ |a〉|b〉|ab〉|c〉|abc〉|d〉|0〉 3©�→ |a〉|b〉|ab〉|c〉|abc〉|d〉|abcd〉
4©�→ |a〉|b〉|ab〉|c〉|0〉|d〉|abcd〉 5©�→ |a〉|b〉|0〉|c〉|0〉|d〉|abcd〉,

(17)

where the circled number above themapping arrow indicates the corresponding Toffoli
gate in Fig. 5a. The result actually comes out after 3©, but we further perform a kind
of un-computation with two extra Toffoli gates to re-initialize the work qubits. It is up
to users to decide whether the procedure should stop just after 3© at the cost of two
garbage qubits being generated or go all the way to the end of the circuit. As one can
notice, it is already the trade-off.

A less straightforward decomposition can be found in Fig. 5b. It makes use of
twice as many Toffoli gates as Fig. 5a but requires only a single arbitrary work qubit.8

Similar to Eq. 17, ten Toffoli gates transform the input state into the output state.
Both designswork as desired. In fact for general k, time-efficient design as in Fig. 5a

requires k−2 zeroedwork qubitswithin depth 2k−3,whereas space-efficient design as
in Fig. 5b uses only one arbitrary qubit within depth 8k−24 (for k ≥ 5) [32].We denote
time- and space-efficient designs lower-depth and less-qubit CkNOT, respectively.

8 The first Toffoli gate in Fig. 5b is redundant in this case, but needed if one wants to carry out z ⊕ abcd,
where z is the initial value of the last qubit.
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Fig. 6 Addition of two bits a and b in terms of a Toffoli and b T gates (Fig. 7(d) in [46]). The third qubit
(output qubit) is written a carry. The third and the second qubits save the binary representation of a + b as
ab · 21 + (a ⊕ b) · 20

Bit multiplication is one of examples qubit and depth are mutually exchangeable.
In Sects. 5 and 6 wewill compare multiple circuits that do the same job with a different
number of qubits, and examine the consequence of each design when parallelized.

4.3 Remarks on Toffoli gate

Toffoli gate plays an important role in this work as it is defined as a basic time unit.
Some remarks on Toffoli gates are given below.

First, Toffoli (and single) gates are universal [33–35]. Any quantum mechanically
permitted computations can be implemented by these gates.

Second, circuits consisting only ofClifford gates are not advantageous over classical
computing, implying that a use of non-Clifford gates such as Toffoli is essential for
quantum benefit [36,37].

Third, logical Toffoli gates are expected to be the main source of time bottleneck in
real applications [5,38–40]. Interested readers are encouraged to refer to [39], where
resources for quantum applications are counted in terms of Toffoli gates. To summarize
their reasoning, presently envisioned quantum computing architecture will dedicate
its performance mostly on producing a special gate called T gate [41]. Production or
preparation of T gates is hardware-dependent, whereas the number of Toffoli gates
(which consists of several T gates) is machine-independent but rather depends only on
the algorithm, justifying the choice for the resource unit. Similar analysis that T gates
are muchmore expansive than all the other gates can be found in [5], where the ratio of
physical execution time in all Clifford gates to all T gates is about 0.0001 in breaking
SHA-256. Because of the importance of T gates, there are scientific communities
focusing on finding better implementation of T [41–44] and reducing the number
of T gates applied [8,45–48]. Therefore, it is more transparent to connect the time
complexity with Toffoli gates than any other gates.

Toffoli gate is a non-Clifford gate that is composed of a few T and Clifford gates.
Taking Toffoli gate over T gate as a basic unit of time resource has its merits and
demerits.We cautiously compare the relation betweenToffoli and T to the one between
high- and low-level languages. Example of implementation of a two-bit addition in
terms of Toffoli and T gates is given in Fig. 6.

Being reminded that Toffoli and CNOT operate as

TOFFOLI|a〉|b〉|0〉 = |a〉|b〉|0 ⊕ ab〉, CNOT|a〉|b〉 = |a〉|a ⊕ b〉,
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respectively, it is immediately noticeable fromFig. 6a that the circuit works as a two-bit
addition operator. The same operation realized by depth-optimized Clifford+T set [46]
is described in Fig. 6b. Assuming that a given quantum computer can only perform
gates in Clifford+T set, this circuit enables more transparent expectation of runtime.

Typically in previous studies a quantum algorithm is first implemented in Toffoli
level, and then, the circuit undergoes a kind of ‘compilation’ process that looks for
an elementary-level circuit [5,8]. Finding an optimal compiling method is very com-
plicated and worth researching [7]. At this stage however, it is hardly possible to find
true optimal elementary-level circuit from compiling huge high-level circuit. In this
work therefore, we stay in Toffoli-level implementation conforming the purpose of
providing a general framework.

5 Complexity of AES-128 Key Search

This section presumes that readers are familiar with standard AES-128 encryption
algorithm [26]. We assume that a quantum adversary is given a plaintext–ciphertext
pair and asked to find the key used for the encryption. Since AES-128 works as a PRF,
it is possible that multiple keys lead to the same ciphertext,

AES(k0, p) = AES(k1, p) = · · · ,

where ki ∈ {0, 1}128 are different keys and p is a given plaintext. The term pre-image
will be used to denote each key ki that generates given ciphertext upon the encryption
of given plaintext.

The idea of applying Grover’s algorithm to exhaustive attack on AES-128 is as
follows. Linearly superposed 2128 input keys encoded in 128 data qubits are fed as an
input to AES-C shown in Fig. 7. AES-C contains a reversible circuit implementation of
AES-128 encryption algorithm. The AES-C encrypts the given plaintext, outputting
superposed ciphertexts encoded in output qubits. Superposed ciphertexts are then
compared with given ciphertext via C128NOT gate to mark the target. After marking is
done, every qubit except the oracle qubit is passed on to AES-C Reverse to disentangle
the data qubits from other qubits.

oracle

data

work

128

128 COMP.
ciphertext

AES-C

in

ou
t0

AES-C
Reverse

output

0

0

Fig. 7 Oracle circuit for the key search attack on AES
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5.1 Circuit implementation cost

AES-128 encryption internally performs SubBytes, MixColumns, ShiftRows,
AddRoundKey, SubWord, RotWord, and Rcon. Quantum circuits for these operations
are mostly adopted from [6] with improvements and fixes.

MixColumns, ShiftRows, and RotWord are linear operations acting on 32 bits that
do not require any work qubit nor Toffoli gate. Among them, last two are simple bit
permutations which require no quantum gates (by re-wiring) or at most SWAP gates.
MixColumns needs to be treated more carefully as it is not a bit permutation. Treating
each four-byte column of the internal state as a length-four vector, MixColumns is
expressed as a matrix multiplication,

⎛
⎜⎜⎝
s′
0, j
s′
1, j
s′
2, j
s′
3, j

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⎞
⎟⎟⎠

⎛
⎜⎜⎝
s0, j
s1, j
s2, j
s3, j

⎞
⎟⎟⎠ , for 0 ≤ j ≤ 3, (18)

where 01, 02, 03 are submatrices when each byte si, j is treated as a length-eight vector,
written as

01 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, 02 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 1 0 0 0
1 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, 03 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0 0 0 0
0 1 1 0 0 0 0 0
0 0 1 1 0 0 0 0
1 0 0 1 1 0 0 0
1 0 0 0 1 1 0 0
0 0 0 0 0 1 1 0
1 0 0 0 0 0 1 1
1 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Since an explicit form of transformation matrix is given in Eq. 18, the quantum circuit
implementation of the matrix can be found by methods given in [49,50].

AddRoundKey and Rcon are XOR-ings of fixed-size strings which can also be
efficiently realized by CNOT or X gates only.

SubBytes and SubWord are the only operations which require quantum resources.
Since SubBytes and SubWord consist of 16 and 4 S-boxes, the S-box is the only
operation to be carefully discussed.

Classically, S-box can be implemented as a look-up table. However, a quantum
counterpart of such table should involve the notion of the quantummemory aforemen-
tioned in Sect. 2.3. Therefore in this work, S-box is realized by explicitly calculating
multiplicative inverse followed by affine transformations as described in Sect. 3.2.1
of [6].

S-box is realized by calculating multiplicative inverse followed by GF-linear map-
ping and addition of S-box constant. By treating a byte as an element in GF(28) =
GF(2)[x]/(x8 + x4 + x3 + x + 1), GF-linear mapping and addition of S-box constant
are summarized as the equation
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Fig. 8 Finding multiplicative inverse of α with seven multipliers involved

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x ′
0
x ′
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x ′
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x ′
3
x ′
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x ′
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⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
0
0
0
1
1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (19)

where addition is XOR operation and xi are coefficients of polynomial of order x7.
No work qubit nor Toffoli gate is required in this step. While XOR operation is simply
done by applying X gates to relevant qubits, implementing a transformation matrix in
Eq. 19 is not trivial. See [49,50] for generalmethods of realizing linear transformations.

Resource estimate of quantum AES-128 encryption has been narrowed down to
estimate the cost of finding multiplicative inverse of the element α in GF(28). In [6],
multiplicative inverse of α is calculated by using two arithmetic circuits, Maslov et
al.’s modular multiplier [51] and in-place squaring [6]. Slight modification of previ-
ous method is found in this work with seven multipliers being used, verified by the
quantum circuit simulation by matrix product state [52]. We visualize the sequence in

a simplified way such that for example, |α〉|0〉|0〉|0〉|0〉 CNOTs�−−−−→ |α〉|0〉|α〉|0〉|0〉 means
CNOT gates are used to copy the string in the first eight-bit register to the third register.

The entire sequence is given in Fig. 8, where each state ket represents eight-bit
register, and Sq and Mul denote modular squaring and multiplication operations. One
can see that in Fig. 8, only seven multipliers have been used. Almazrooie et al. also
came up with a design for multiplicative inverse [4]. We briefly compare the existing
circuit designs in Table 1.

As squaring inGF(28) is linear, it does not involve the use of Toffoli norwork qubits.
Therefore, it is only required to estimate the cost of multipliers. Table 2 summarizes
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Table 1 Comparison of circuit designs for finding multiplicative inverse

Grassl et al.’s Almazrooie et al’s This work

Number of qubits 40 48 40

Number of multiplications 8 7 7

Table 2 Costs of elementary
operations in AES-128

Less-qubit Lower-depth

Multiplier S-box Multiplier S-box

Toffoli-depth 18 126 8 56

Work qubits 8 32 27 108

A quarter of work qubits needed in S-box turn into garbage qubits

the elementary operation costs in AES-128. Two distinct multipliers are considered in
this work, Maslov et al.’s design [51] and Kepley and Steinwandt’s design [53].

First fourmultiplications inS-box are aimed at computing themultiplicative inverse.
Remaining three (reverse) multiplications are then used to clean garbage qubits pro-
duced by previous multiplications. At the end of S-box, a quarter of total work qubits
needed in S-box turn into garbage qubits.

5.2 Design candidates

Four main trade-off points are considered. First point that has an impact on the overall
design is to determinewhether key schedule andAES rounds are carried out in parallel.
As S-box is used in both key schedule and AES round, schedule-round parallel imple-
mentation would require more work qubits. This option is denoted by serial/parallel
schedule-round.

Second, AES round functions can be reversed in the middle of encryption process
to save work qubits. The idea of reverse AES round was suggested in Sect. 3.2.3
in [6]. Since each run of round function produces garbage qubits, forward running
of 10 rounds accumulates ≥ 1280 garbage qubits. Putting reverse rounds in between
forward rounds reduces a large amount of work qubits at the cost of longer Toffoli-
depth. This option is denoted by reverse round when applied.

Thirdly, a choice of multiplier could make an important trade-off point. Less-
qubit and lower-depth multipliers are two options. For simplicity, we do not consider
adaptive use of both multipliers although it is possible to improve the efficiency by
using appropriate multiplier in different part of circuit. This option is denoted by
less-qubit/lower-depth multiplier.

Fourth, to present the extremely depth-optimized circuit design, the cleaning pro-
cess in S-box could be skipped leaving every work qubit used in S-box garbage. This
option is denoted by S-box un-cleaning when applied.

In total, there exist 16 (= 24) different circuit designs.We only take six of them into
account as others seem to be flawed compared with the six. Six designs are denoted
as follows.
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Table 3 Costs of AES-128 encryption circuit and entire attack circuit on a single quantum processor

AES-128 Grover

Toffoli-depth Qubits Toffoli-depth Qubits

AES-C1 11088 984 1.360 . . . × 278 985

AES-C2 4928 3017 1.290 . . . × 277 3018

AES-C3 1260 2208 1.405 . . . × 275 2209

AES-C4 560 7148 1.510 . . . × 274 7149

AES-C5 720 6654 1.808 . . . × 274 6655

AES-C6 320 21854 1.064 . . . × 274 21855

MAXDEPTH is not considered

Table 4 Comparison of time–space complexity of different AES-128 circuit designs

AES-C1 AES-C2 AES-C6 AES-C5 AES-C3 AES-C4

cKS# /cKS4 28.606 . . . 19.705 . . . 1.519 . . . 1.333 . . . 1.070 . . . 1

The smallest cKS# is found by AES-C4 with cKS4 = 1.048 . . . × 233. Other values are divided by cKS4 for
easier comparison

– AES-C1: Serial schedule-round, reverse-round, less-qubit multiplier
– AES-C2: Serial schedule-round, reverse-round, lower-depth multiplier
– AES-C3: Parallel schedule-round, less-qubit multiplier
– AES-C4: Parallel schedule-round, lower-depth multiplier
– AES-C5: Parallel schedule-round, less-qubit multiplier, S-box un-cleaning
– AES-C6: Parallel schedule-round, lower-depth multiplier, S-box un-cleaning.

5.3 Comparison

Toffoli-depth and total number of qubits are carefully estimated for each design. Costs
of quantum AES-128 encryption circuit and entire Grover’s algorithm on a single
quantum processor are summarized in Table 3. Estimates for single Grover iteration is
omitted from the table as it can easily be calculated from costs of AES-128 encryption
circuit;

cost(Grover iteration) = 2 · cost(AES-128) + 2 · cost(C128NOT),

where cost(C) is Toffoli-depth of a circuit C. Note that full Toffoli-depth of the entire
Grover’s algorithm is estimated considering IKSrand in Proposition 1.

Proposition 2 basically sets up the criterion for a comparison of circuit designs.
Here we replace TKS

q and SKSq by T KS
q and SKS

q , respectively, denoting Toffoli-depth
and total number of qubits in Key Search, i.e.,

(
T KS
q

)2
SKS
q = cKS# N , (20)
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Table 5 Comparison of attack design with and without a single target

AES-128 Grover

Toffoli-depth Qubits Toffoli-depth Qubits

Unique Key 560 14296 1.269 . . . × 274 14297

AES-C4 560 7148 1.510 . . . × 274 7149

Toffoli-depth of encryption circuit is the same in both, because the same AES design is implemented. It is
noticeable that the full Toffoli-depth of Unique Key is not far different from that of AES-C4, although the
number of qubits is nearly doubled

where cKS# varies depending on circuit designs. Now a parameter cKS# is the only ‘yard-
stick’ that tells us which design is better. When parallelized for large Sq , the expected
iteration number converges to the one given in Eq. 9. Taking the converged value, the
cKS# for each circuit design is summarized in Table 4. Assuming the MAXDEPTH
is capped at some fixed value smaller than

√
N , the table indicates that for example

AES-C1 requires about 28.6…times as many qubits as AES-C4.

5.4 Comparison to ensured single target

It is possible to guarantee an existence of a single target by using multiple plaintext–
ciphertext pairs. To ensure a single target, the oracle now performs r AES encryptions
simultaneously. In [6], r = 3 is chosen for AES-128. Each AES box encrypts different
plaintext with the same superposed input keys. As a result, for example for r = 3 in
AES-128, the probability that two pre-images exist is the same as for k1 to exist such
that

AES(k0, p1)‖AES(k0, p2)‖AES(k0, p3)=AES(k1, p1)‖AES(k1, p2)‖AES(k1, p3),

where ‖ is concatenation, k0 is the true key, and pi are distinct plaintexts. The cost of
guaranteeing a single target is more or less multiplying the total number of qubits by
r .

It is now natural to ask whether the oracle operator with a single target is more
cost-efficient than the random function oracle with less qubits. Assuming r = 2
guarantees a single target, we compare a design dubbed Unique Key with AES-C4.
Unique Key’s encryption circuit design is chosen to be the same as AES-C4, meaning
that the difference in efficiency solely comes from ensuring a single target. Results
are summarized in Table 5. Full Toffoli-depth of Unique Key is estimated considering
I1 in Eq. 4. With a guaranteed single target, Toffoli-depth is expected to be shortened
compared with AES-C4 at the cost of doubling qubits. Although ensuring single target
can be regarded as an optimization point when using single processor, it strictly cannot
be an option in parallel attack since the inner parallelization removes a penalty of
random characteristics as in Eq. 8. Finally regarding Almazrooie et al.’s design [4],
we notice that the authors reduce the number of qubits at the cost of lengthening
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Fig. 9 Oracle circuit for pre-image attack on SHA-2

the oracle circuit.9 We would address that, however, both previous designs result in
inefficient trade-off curves.

6 Complexity of SHA-256 Pre-image Search

This section presumes that readers are familiar with standard SHA-256 [27]. The idea
of applying Grover’s algorithm to pre-image attack on SHA-256 is as follows.

Amessage block consisting ofα bits ofmessage and 512−α bits of padding is input
to SHA-C as shown in Fig. 9. SHA-C contains a reversible circuit implementation of
SHA-256 to permit superposed input. The input of linearly superposed 2α messages
is then passed on to SHA-C resulting in superposed corresponding hashes. Processed
hashes are then compared with the given hash via C256NOT gate. After the target is
marked, the entire qubits except the oracle qubit are further processed through SHA-C
Reverse as in Fig. 9. The quantum state of the data qubits at the end of Fig. 9 reads

|ψ〉 = 1√
2α

(|00 · · · 0〉+|00 · · · 1〉+· · ·−|ti 〉 + · · ·+|11 · · · 1〉) ⊗ |padding〉,

where each ket state encodes a message and ti ’s are pre-images of the given hash
value. The number of targets probabilistically varies depending on α which is capped
at 447(= 512 − 64 − 1).

6.1 Circuit implementation cost

SHA-256 internally performs five elementary operations, σ0(1), �0(1), Ch, Maj, and
ADDER (modular addition) [27].

Among internal operations carried out in SHA-256, �0(1) consists only of XOR-
ings of bit permutations. Results of three ROTR operations are written on 32-bit output
register, with being successively XOR-ed. Only CNOT gates are involved in imple-
mentation with 32 work qubits.

9 Compared with [6], the circuit is about three times longer but requires one-third of qubits.
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Fig. 10 Reversible circuit for serial implementation of SHA-256 message schedule and round function.
The message block consisting of 16 words is recursively updated in place. Note that it is straightforward to
makemessage schedule and round functions work in parallel by expanding the work space. Seven two-qubit
gates at the end of round are SWAP gates. The symbol � is addition modulo 232

Table 6 Costs of elementary operations in SHA-256

ADDER (poly) ADDER (log) σ0(1), �0(1) Ch Maj

Toffoli-depth 61 22 0 1 2

Work qubits 1 53 32 32 32

Work qubits in ADDER columns get cleaned within the respective Toffoli-depth. Outputs of σ0(1), �0(1),
Ch, and Maj are written on work qubits

Similarly, σ0(1) is implemented with one difference from �0(1), that is SHR. SHR
itself is not linear, but writing a result of SHR on 32-bit output register is possible.
Therefore, σ0(1) is also efficiently realized by CNOT gates with 32 work qubits.

Ch and Maj are bit-wise operations that do require Toffoli gates. We adopt Amy
et al.’s design where Ch and Maj require one and two Toffoli gates, respectively. See
Figs. 4 and 5 in [5].

Serial schedule-round implementation of SHA-256 is illustrated in Fig. 10.
Low-level circuit design for each function in this work is mostly adopted from [5]

except ADDER choice and totally re-designed message schedule. A few options are
available for ADDER circuits one can adopt (see for example, [28]). For our purpose
of comparing various circuit designs, we choose two versions of adders, a poly-depth
ADDER [54] and a log-depth ADDER [55]. Table 6 summarizes resource costs of
elementary operations in SHA-256.

6.2 Design candidates

Three optimization points are considered. First point, that has an impact on the overall
design, is to determinewhethermessage schedule and round functions are carried out in
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parallel. Figure 10 shows a serial circuit implementation of SHA-256. In the algorithm
description, i-th round function is fed by i-th word from the schedule meaning that
parallel implementation is possible if enough work qubits are given. This option is
denoted by serial/parallel schedule-round.

Second point is to determine which ADDER is to be used. Use of the poly-depth
ADDER is better in saving work space, whereas the log-depth ADDER could shorten
the execution time. For simplicity, we do not consider adaptive use of both ADDERs
although it is possible to improve the efficiency by using appropriate ADDER in
different part of circuit. This option is denoted by poly-depth/log-depth ADDER.

Lastly, it is now optional to decide how many work qubits are to be used to
implement C256NOT gate for marking the targets (hash comparison). As discussed
in Sect. 4.2, CkNOT gate can be one of the trade-off points. However in AES-128,
we do not need to consider C128NOT as an optimization point seriously since the
encryption process accompanies enough number of work qubits that can be reused
in lower-depth C128NOT gate. Situation is different in SHA-256. It is noticeable that
hashing process of SHA-256 does not involve asmanywork qubits as AES-128,mean-
ing that the lower-depth C256NOT gate cannot be implemented unless more qubits are
introduced solely for hash comparison. Toffoli-depth and work qubits required for
lower-depth (less-qubit) C256NOT gate are 509 (2024) and 254 (1), respectively. Note
that lower-depth and less-qubit CkNOT gates present here are only two extreme exem-
plary designs. This option is denoted by less-qubit/lower-depth C256NOT.

In total, there exist 8 (=23) distinct circuit designs. We only analyze six of them
since others do not seem to have merits. Six designs are denoted as follows.

– SHA-C1: Serial schedule-round, poly-depth ADDER, less-qubit C256NOT
– SHA-C2: Serial schedule-round, log-depth ADDER, less-qubit C256NOT
– SHA-C3: Serial schedule-round, log-depth ADDER, lower-depth C256NOT
– SHA-C4: Parallel schedule-round, poly-depth ADDER, less-qubit C256NOT
– SHA-C5: Parallel schedule-round, log-depth ADDER, less-qubit C256NOT
– SHA-C6: Parallel schedule-round, log-depth ADDER, lower-depth C256NOT.

6.3 Comparison

Toffoli-depth and the total number of qubits are carefully estimated for each design.
The number of data qubits α has to be determined at this point. In our numerical
calculation, α = 266 seems to safely achieve the optimal expected iteration number
given by Proposition 3 and to remove the failure probability. Costs of quantum SHA-
256 hashing circuit and the entire Grover’s algorithm on a single quantum processor
are summarized in Table 7. Estimates for single Grover iteration are omitted from the
table as it can easily be calculated from costs of SHA-256 circuit;

cost(Grover iteration) = 2 · cost(SHA-256) + cost(C256NOT) + cost(C266NOT).

Proposition 4 establishes the criterion for the comparison. Similar to Eq. 20, we
replace T PS

q and SPSq by T PS
q and SPS

q , respectively, denoting Toffoli-depth and total
number of qubits, i.e.,
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Table 7 Costs of SHA-256 hashing circuit and entire attack circuit on a single quantum processor

SHA-256 Grover

Toffoli-depth Qubits Toffoli-depth Qubits

SHA-C1 36368 801 1.586 . . . × 2143 802

SHA-C2 13280 853 1.227 . . . × 2142 854

SHA-C3 13280 853 1.163 . . . × 2142 1023

SHA-C4 27584 834 1.216 . . . × 2143 835

SHA-C5 10112 938 1.919 . . . × 2141 939

SHA-C6 10112 938 1.792 . . . × 2141 1023

MAXDEPTH is not considered

Table 8 Comparison of trade-off coefficients of different SHA-256 circuit designs

SHA-C1 SHA-C4 SHA-C3 SHA-C2 SHA-C5 SHA-C6

cPS# /cPS6 9.830 . . . 6.015 . . . 1.685 . . . 1.565 . . . 1.053 . . . 1

The smallest cPS# is found by SHA-C6 with cPS6 = 1.034 . . . × 238. Other values are divided by cPS6 for
easier comparison

(
T PS
q

)2
SPS
q = cPS# N , (21)

where cPS# varies depending on the efficiency of circuits. When parallelized for large
Sq , the expected iteration number converges to the one given in Eq. 12. Taking the
converged value, cPS# for each design is summarized in Table 8. If MAXDEPTH is
capped at some fixed value smaller than

√
N , the table indicates that for example

SHA-C1 requires about 9.8…times as many qubits as SHA-C6.

7 Complexity of SHA-256 Collision Finding

Costs of two collision finding algorithms, GwDP and CNS, are to be estimated in this
section. We adopt SHA-C6 which also turn out to be the most efficient in time–space
complexity in GwDP and CNS algorithms.10

7.1 GwDP algorithm

Estimating the cost of GwDP algorithm is straightforward. Basically, this algorithm
constructs a set of DPs by running multiple instances of Grover’s algorithm so that

10 Details on circuit comparisons in GwDP and CNS algorithms are dropped from the main text. An
interesting point worth noticing is that SHA-C5 has small advantageous range of Sq (< 28) over SHA-
C6. The reason is that while SHA-C5 requires zero additional qubits in hash comparison, SHA-C6 needs
(256−d−2) qubits in comparison where d is the number of fixed bits in DP. Since d grows as Sq increases,
there occurs crossover point. It is also noticeable that SHA-C6 cannot exactly fit into Proposition 5 for the
same reason just mentioned, but the deviation is small.
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Table 9 Costs of GwDP
algorithm for various number of
machines

Sq Toffoli-depth Qubits

22 1.986 . . . × 2141 4084

24 1.985 . . . × 2139 16272

28 1.984 . . . × 2135 258304

216 1.981 . . . × 2127 6.508 . . . × 107

232 1.975 . . . × 2111 4.127 . . . × 1012

264 1.963 . . . × 279 1.732 . . . × 1022

Note that the algorithm also requires classical memory of size O(Sq )

there occurs collision in the set. By using Eq. 13, costs of GwDP algorithm for the
selected number of machines are summarized in Table 9.

If TGwDP
q and SGwDPq in Proposition 5 are replaced by Toffoli-depth T GwDP

q and
number of qubits SGwDP

q , the trade-off curve reads

T GwDP
q SGwDP

q = cGwDP · √
N , (22)

where cGwDP is found to be 1.802 . . . × 225 by using Sq = 264 case.

7.2 CNS algorithm

Proposition 6 suggests the optimal expected number of iterations in terms of tL . The
only extra work needs to be done here is to determine tL explicitly. From the definition
of tL , it reads

tL = cost(S fL )

2l · cost(G)
,

cost(S fL ) = 2 · cost(SHA-256) + 2l · cost
(
C(256−d)NOT

)
,

cost(G) = 2 · cost(SHA-256) + cost
(
CdNOT

)
+ cost

(
C256NOT

)
,

l = d

2
+ log2

(
π

2tL

)
, d =

⌊
512

5
+ 2

5
log2

(
(2tL)3

π

)⌉
, (23)

where G is Grover iteration. Numerical approach was taken to find tL , d, and l,
which came out to be 0.015182 . . ., 96 and 54.538 . . ., respectively. By substituting
these values for parameters in Eq. 14, the expected number of iterations becomes
ICNSrand = 1.856 . . . × 2102. Note that this value is somewhat different from that of
Proposition 6 as d has been rounded off. Finally by multiplying ICNSrand and the time
cost of G, we obtain the total Toffoli-depth of CNS algorithm as

ICNSrand · cost(G) = 1.184 . . . × 2117. (24)
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Quantum space cost is cheaper than SHA-C6 because C(256−d)NOT gate used for
list comparison requires less work qubits than C256NOT in Pre-image Search. It is
estimated to be 939 qubits in total.

When parallelized, tL slightly changes since l and d depend on Sq(= 2s), the
number of machines. Modified l and d reads

l = d

2
+ log2

(
π

2tL

)
, d =

⌊
512 + 2s

5
+ 2

5
log2

(
1.291 . . . (2tL)3

π

)⌉
,

where tL , cost(S fL ) and cost(G) are the same as in Eq. 23. We have estimated the
quantum resource costs of CNS algorithm for a few Sq values as summarized in
Table 10. Note that estimated time complexities are different from ones given by
Eq. 15 as the equation is obtained for large Sq , and d here has been rounded off to
the nearest integer. Due to the bound s < min(l, n − d − l), Sq = 266 is almost the
maximum number of quantum machines Proposition 7 holds.

8 Security strengths of AES and SHA-2

Based on the results of previous sections, quantum security strengths of AES and
SHA-2 are drawn in this section. Three MAXDEPTH parameters, 240, 264, and 296,
are adopted from [10]. Note that using these values of MAXDEPTH in our analysis is
a conservative approach as our estimates only count Toffoli gates as time resources,
whereas NIST has counted all gates. Security strength of SHA-2 is determined by
Collision Finding, not by Pre-image Search.

Resource estimates for AES-128 Key Search with circuit AES-C4 are extended to
AES-192 and AES-256, and similarly that of SHA-256 Collision Finding with circuit
SHA-C6 is applied to SHA-384 and SHA-512. Since depth–qubit trade-off curves
Eqs. 20 and 22 must hold for larger key and message digest sizes, we only compare
their trade-off coefficients inTable 11.There is a tendency that the values of coefficients
grow as the key or message digest sizes get larger. Increasing coefficient values reflect
various complexity factors added,more rounds, longer schedules, largerword size, and

Table 10 Parameter values and costs of CNS algorithm for various number of machines

Sq l d tL Toffoli-depth Qubits

22 55.155 . . . 97 0.015064 . . . 1.353 . . . × 2116 3756

24 55.558 . . . 98 0.014987 . . . 1.203 . . . × 2115 15024

28 56.364 . . . 99 0.014834 . . . 1.729 . . . × 2112 240384

216 57.976 . . . 102 0.014527 . . . 1.960 . . . × 2107 6.154 . . . × 107

232 61.201 . . . 109 0.013914 . . . 1.352 . . . × 298 4.033 . . . × 1012

264 67.654 . . . 121 0.012692 . . . 1.100 . . . × 279 1.732 . . . × 1022

Note that the algorithm also requires O(N1/5S1/5q ) classical resources
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Table 11 Trade-off coefficients of AES-k Key Search for k ∈ {128, 192, 256} and SHA-m Collision
Finding for m ∈ {256, 384, 512}. Coefficients cKSk and cCFm are divided by their respective minimal values

cKS128 = cKS4 and cCF256 = cGwDP

AES-128 AES-192 AES-256

cKSk /cKS128 1 1.560 . . . 2.586 . . .

SHA-256 SHA-384 SHA-512

cCFm /cCF256 1 3.837 . . . 3.940 . . .

Fig. 11 Security strengths of AES and SHA-2. This figure shows the trade-off curves of each algorithmwith
three MAXDEPTHs marked. Toffoli-depth 278 is the minimum depth that CNS algorithm has advantages
over GwDP in SHA-256. Values in the table are the approximated numbers of qubits required to run the
respective algorithm for given MAXDEPTH

so on. Especially in hash, size of the message block in SHA-384 is doubled compared
with SHA-256 leading to large gap between cCF256 and c

CF
384. In contrast, c

CF
384 and c

CF
512 do

not show much difference as SHA-384 and SHA-512 algorithms are identical except
truncation and initial values. The result of Sect. 7.2 is also extended to SHA-384 and
reflected in Fig. 11.

Once trade-off coefficients are obtained, we are able to draw the security strength
of each algorithm in terms of required qubits as a function of Toffoli-depth. Note
that somewhere betweenMAXDEPTH = 264 and 296, security strengths of SHA-256
(SHA-384) and AES-192 (AES-256) are reversed in order, due to their different trade-
off curve behaviors. One minor note is that for large MAXDEPTH (for example, 296),
Proposition 2 does not exactly hold since the size of the domain is larger than that of
the codomain in AES-192 and AES-256. This factor is handled in a conservative way
and reflected in Fig. 11.

Figure 11 summarizes the results which can be interpreted as another threshold to
be used, for the security strength classification of proposed schemes in NIST PQC
standardization process.
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9 Summary

Instead of conventional query complexity, we have examined the time–space complex-
ity of Grover’s algorithm and its variants. Three categories of cryptographic search
problems and their characteristics are carefully considered in conjunction with the
probabilistic nature of quantum search algorithms.

To relate the time–space complexitywith physical quantity, we have proposed away
of quantifying the computational power of quantum computers. Despite its simplicity,
counting the number of sequential Toffoli gates reflects the reliable time complexity in
estimating security levels of symmetric cryptosystems. With simplified cost measure,
one can estimate the quantum complexity of a cryptosystem concisely by counting
(and focusing) relevant operations only. It is worth noting that the above scheme is
general for quantum resource estimates in symmetric cryptanalysis.

The scheme has been applied to resource estimates for AES and SHA-2. When
multiple quantum trade-off options are given, the time–space complexity provides
clear criteria to tell which is more efficient. Based on the trade-off observations made
in AES and SHA-2, security strengths of respective systems are investigated with the
MAXDEPTH assumption.
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