Skip to main content
Log in

Authenticated semiquantum dialogue with secure delegated quantum computation over a collective noise channel

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Semiquantum communication permits a communication party with only limited quantum ability (i.e., “classical” ability) to communicate securely with a powerful quantum counterpart and will obtain a significant advantage in practice when the completely quantum world has not been built up. At present, various semiquantum schemes for key distribution, secret sharing and secure communication have been proposed. In a quantum dialogue (QD) scenario, two communicants mutually transmit their respective secret messages and may have equal power (such as two classical parties). Based on delegated quantum computation model, this work extends the original semiquantum model to the authenticated semiquantum dialogue (ASQD) protocols, where two “classical” participants can mutually transmit secret messages without any information leakage and quantum operations are securely delegated to a quantum server. To make the proposed ASQD protocols more practical, we assume that the quantum channel is a collective noise channel and the quantum server is untrusted. The security analysis shows that the proposed protocols are robust even when the delegated quantum server is a powerful adversary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Nguyen, B.A.: Quantum dialogue. Phys. Lett. A 328(1), 6–10 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  2. Shi, G.F., Xi, X.Q., Hu, M.L., Yue, R.H.: Quantum secure dialogue by using single photons. Opt. Commun. 283(9), 1984–1986 (2010)

    Article  ADS  Google Scholar 

  3. Luo, Y.P., Lin, C.Y., Hwang, T.: Efficient quantum dialogue using single photons. Quantum Inf. Process. 13(11), 2451–2461 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  4. Gao, G.: Two quantum dialogue protocols without information leakage. Opt. Commun. 283(10), 2288–2293 (2010)

    Article  ADS  Google Scholar 

  5. Shen, D., Ma, W., Yin, X., Li, X.: Quantum dialogue with authentication based on bell states. Int. J. Theor. Phys. 52(6), 1825–1835 (2013)

    Article  MathSciNet  Google Scholar 

  6. Thapliyal, K., Pathak, A.: Applications of quantum cryptographic switch: various tasks related to controlled quantum communication can be performed using Bell states and permutation of particles. Quantum Inf. Process. 14(7), 2599–2616 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  7. Banerjee, A., Shukla, C., Thapliyal, K., Pathak, A., Panigrahi, P.K.: Asymmetric quantum dialogue in noisy environment. Quantum Inf. Process. 16(2), 49 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  8. Sharma, V., Thapliyal, K., Pathak, A., Banerjee, S.: A comparative study of protocols for secure quantum communication under noisy environment: single-qubit-based protocols versus entangled-state-based protocols. Quantum Inf. Process. 15(11), 1–30 (2016)

    Article  MathSciNet  Google Scholar 

  9. Yang, C.W., Hwang, T.: Quantum dialogue protocols immune to collective noise. Quantum Inf. Process. 12(6), 2131–2142 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  10. Yang, C.W., Tsai, C.W., Hwang, T.: Fault tolerant two-step quantum secure direct communication protocol against collective noises. Sci. China Phys. Mech. Astron. 54(3), 496–501 (2011)

    Article  ADS  Google Scholar 

  11. Ye, T.Y.: Robust quantum dialogue based on the entanglement swapping between any two logical Bell states and the shared auxiliary logical Bell state. Quantum Inf. Process. 14(4), 1469–1486 (2015)

    Article  ADS  Google Scholar 

  12. Ye, T.Y.: Quantum secure direct dialogue over collective noise channels based on logical Bell states. Quantum Inf. Process. 14(4), 1487–1499 (2015)

    Article  ADS  Google Scholar 

  13. Bin, G.U., Zhang, C.Y.: Robust quantum secure direct communication with a quantum one-time pad over a collective-noise channel. Sci. China Phys. Mech. Astron. 54(5), 942–947 (2011)

    Article  ADS  Google Scholar 

  14. Ye, T.Y.: Fault-tolerant authenticated quantum dialogue using logical bell states. Quantum Inf. Process. 14(9), 3499–3514 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  15. Li, X.H., Deng, F.G., Zhou, H.Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A 78(2), 022321 (2012)

    Article  ADS  Google Scholar 

  16. Li, X.H., Zhao, B.K., Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Fault tolerant quantum key distribution based on quantum dense coding with collective noise. Int. J. Quantum Inf. 7(08), 1479–1489 (2010)

    Article  Google Scholar 

  17. Boileau, J.C., Gottesman, D., Laflamme, R., et al.: Robust polarization-based quantum key distribution over a collective-noise channel. Phys. Rev. Lett. 92(1), 017901 (2004)

    Article  ADS  Google Scholar 

  18. Wang, X.B.: Fault tolerant quantum key distribution protocol with collective random unitary noise. Phys. Rev. A 72(5), 762–776 (2004)

    MathSciNet  Google Scholar 

  19. Kwiat, P.G., Berglund, A.J., Altepeter, J.B., White, A.G.: Experimental verification of decoherence-free subspaces. Science 290(5491), 498–501 (2000)

    Article  ADS  Google Scholar 

  20. Walton, Z., Abouraddy, A.F., Sergienko, A., Saleh, B., Teich, M.: Decoherence-free subspaces in quantum key distribution. Phys. Rev. Lett. 91(8), 087901 (2003)

    Article  ADS  Google Scholar 

  21. Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical bob. Phys. Rev. Lett. 99(14), 140501 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  22. Boyer, M., Gelles, R., Kenigsberg, D., Mor, T.: Semiquantum key distribution. Phys. Rev. A 79(3), 032341 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  23. Zou, X., Qiu, D., Li, L., Wu, L., Li, L.: Semiquantum-key distribution using less than four quantum states. Phys. Rev. A 79(5), 1744–1747 (2009)

    Article  Google Scholar 

  24. Wang, J., Zhang, S., Zhang, Q., Tang, C.J.: Semiquantum key distribution using entangled states. Chin. Phys. Lett. 28(10), 100301 (2011)

    Article  ADS  Google Scholar 

  25. Yu, K.F., Yang, C.W., Liao, C.H., Hwang, T.: Authenticated semi-quantum key distribution protocol using bell states. Quantum Inf. Process. 13(6), 1457–1465 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  26. Zou, X., Qiu, D., Zhang, S., Mateus, P.: Semiquantum key distribution without invoking the classical partys measurement capability. Quantum Inf. Process. 14(8), 2981–2996 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  27. Zou, X.F., Qiu, D.W.: Three-step semiquantum secure direct communication protocol. Sci. China Phys. Mech. Astron. 57(9), 1696–1702 (2014)

    Article  ADS  Google Scholar 

  28. Zhang, M.H., Li, H.F., Xia, Z.Q., Peng, J.Y., Peng, J.Y.: Semiquantum secure direct communication using epr pairs. Quantum Inf. Process. 16(5), 117 (2017)

    Article  ADS  Google Scholar 

  29. Luo, Y.P., Hwang, T.: Authenticated semi-quantum direct communication protocols using bell states. Quantum Inf. Process. 15(2), 947–958 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  30. Shukla, C., Thapliyal, K., Pathak, A.: Semi-quantum communication: protocols for key agreement, controlled secure direct communication and dialogue. Quantum Inf. Process. 16(12), 295 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  31. Lu, H., Cai, Q.: Quantum key distribution with classical alice. Int. J. Quantum Inf. 06(06), 1195–1202 (2009)

    Article  Google Scholar 

  32. Krawec, W.O.: Mediated semi-quantum key distribution. Phys. Rev. A 91(3), 032323 (2014)

    Article  ADS  Google Scholar 

  33. Childs, A.M.: Secure assisted quantum computation. Quantum Inf. Compt. 5(6), 456–466 (2005)

    MathSciNet  MATH  Google Scholar 

  34. Broadbent, A., Fitzsimons, J., Kashefi, E.: Universal blind quantum computation. In: Proceedings of the 50th Annual IEEE Symposium on Foundations of Computer Science, pp. 517–526 (2009)

  35. Li, Q., Chan, W.H., Wu, C., Wen, Z.: Triple-server blind quantum computation using entanglement swapping. Phys. Rev. A 89(4), 2748–2753 (2014)

    Google Scholar 

  36. Morimae, T., Fujii, K.: Secure entanglement distillation for double-server blind quantum computation. Phys. Rev. Lett. 111(2), 020502 (2013)

    Article  ADS  Google Scholar 

  37. Sheng, Y.B., Zhou, L.: Deterministic entanglement distillation for secure double-server blind quantum computation. Sci. Rep. 5, 7815 (2015)

    Article  Google Scholar 

  38. Chien, C.H., Meter, R.V., Kuo, S.Y.: Fault-tolerant operations for universal blind quantum computation. Acm J. Emerg. Technol. Comput. Syst. 12(1), 1–26 (2015)

    Article  Google Scholar 

  39. Takeuchi, Y., Fujii, K., Ikuta, R., Yamamoto, T., Imoto, N.: Blind quantum computation over a collective-noise channel. Phys. Rev. A 93(5), 052307 (2016)

    Article  ADS  Google Scholar 

  40. Fisher, K.A.G., Broadbent, A., Shalm, L.K., Yan, Z., Lavoie, J., Prevedel, R., Jennewein, T., Resch, K.J.: Quantum computing on encrypted data. Nat. Commun. 5(2), 3074 (2014)

    Article  ADS  Google Scholar 

  41. Li, Q., Chan, W.H., Zhang, S.: Semiquantum key distribution with secure delegated quantum computation. Sci. Rep. 6, 19898 (2016)

    Article  ADS  Google Scholar 

  42. Liu, W.J., Chen, Z.Y., Ji, S., Wang, H.B., Zhang, J.: Multi-party semi-quantum key agreement with delegating quantum computation. Int. J. Theor. Phys. 56(10), 3164–3174 (2017)

    Article  MathSciNet  Google Scholar 

  43. Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76(5), 722 (1996)

    Article  ADS  Google Scholar 

  44. Knill, E., Laflamme, R.: A theory of quantum error-correcting codes. Phys. Rev. A 55(2), 900–911 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  45. Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77(5), 793 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  46. Zanardi, P., Rasetti, M.: Noiseless quantum codes. Phys. Rev. Lett. 79(17), 3306–3309 (1997)

    Article  ADS  Google Scholar 

  47. Huang, W., Wen, Q.Y., Liu, B., Gao, F.: Multi-user quantum key distribution with collective eavesdropping detection over collective-noise channels. Chin. Phys. B 24(7), 114–124 (2015)

    Google Scholar 

  48. Cabello, A.: Six-qubit permutation-based decoherence-free orthogonal basis. Phys. Rev. A 75(2), 441–445 (2007)

    Article  MathSciNet  Google Scholar 

  49. Kielpinski, D., Meyer, V., Rowe, M.A., et al.: A decoherence-free quantum memory using trapped ions. Science 291(5506), 1013–1015 (2001)

    Article  ADS  Google Scholar 

  50. Fortunato, E.M., Viola, L., Hodges, J., et al.: Implementation of universal control on a decoherence-free qubit. New. J. Phys. 4(1), 5 (2002)

    Article  ADS  Google Scholar 

  51. Ollerenshaw, J.E., Lidar, D.A., Kay, L.E.: Magnetic resonance realization of decoherence-free quantum computation. Phys. Rev. Lett. 91(21), 217904 (2003)

    Article  ADS  Google Scholar 

  52. Jin, X.R., Ji, X., Zhang, Y.Q., Zhang, S., Hong, S.K., Yeon, K.H., Um, C.I.: Three-party quantum secure direct communication based on ghz states. Phys. Lett. A 354(1–2), 67–70 (2006)

    Article  ADS  Google Scholar 

  53. Cabello, A.: Quantum key distribution in the holevo limit. Phys. Rev. Lett. 85(26), 5635 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key R&D Program of China under Grant 2017YFB0802300 and Foundation Science and Forefront Technology of Chongqing Science and Technology Commission of China under Grant No. cstc2016jcyjA0571.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Xiao, M. & Song, X. Authenticated semiquantum dialogue with secure delegated quantum computation over a collective noise channel. Quantum Inf Process 17, 342 (2018). https://doi.org/10.1007/s11128-018-2109-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-2109-1

Keywords

Navigation