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Abstract Control theory concerns with the questions if and how it is possible
to drive the behavior of a complex dynamical system. A system is said to be
controllable if we can drive it from any initial state to any desired state in finite
time. For many complex networks, the precise knowledge of system parameters
lacks. But, it is possible to make a conclusion about network controllability by
inspecting its structure. Classical theory of structural controllability is based
on the Lin’s structural controllability theorem, which gives necessary and suf-
ficient conditions to conclude if a network is structurally controllable. Due to
this fundamental theorem we may identify a minimum driver vertex set, whose
control with independent driving signals is sufficient to make the whole system
controllable. I show that Lin’s theorem does not apply to quantum networks,
if local operations and classical communication between vertices are allowed.
Any quantum network can be modified to be structurally controllable obeying
a single driving vertex.
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Modern science is more diverse than ever. Seemingly distant terms such
as quantum, network, learning, neural, complex and cryptography are now
combined into all-new scientific disciplines. While quantum cryptography is a
present technology [1], the study of the structure and dynamics of complex
quantum networks [2] is at infancy. These networks are radically different
from their classical counterpart due to quantum superposition and nonlocality,
and unique features of quantum dynamics and measurements [3]. Quantum
networks exhibit non-classical clustering [4] and synchronization [5], and may
undergo non-trivial phase transitions [6,7].

M. Siomau
Physics Department, Jazan University, P.O. Box 114, 45142 Jazan, Kingdom of Saudi Arabia
E-mail: m.siomau@gmail.com

http://arxiv.org/abs/1703.10236v3


2 Michael Siomau

V1

V3

V5

V2

V4

U1

a

V3

V1

V2

V4

V5

V7

U1

b

V6

Fig. 1 (a) A digraph with a single root. Network vertices and edges are shown in grey;
driving vertices and edges - in blue. Vertex {V4} is inaccessible from the driving vertex {U1}.
Vertices {V1, V3, V2} form a dilation. (b) Elementary path {V6, V3, V1} and two elementary
cycles {V2, V4} and {V5, V7} connected to the root {U1} form a cactus. This network is
structurally controllable by a single drive.

Whenever a complex system is concerned, be it classical or quantum, we are
likely to think if it’s useful. And it surely is, if we can predict its behavior and
control it. The Lin’s structural controllability theorem [8] is a bedrock of mod-
ern control theory [9], which severely restricts our ability to gain control over
a complex system. I show that this restriction is no longer valid for quantum
networks, if we allow local operations and classical communication (LOCC)
between the network vertices. Following general geometrical consideration, I
show that a quantum network with an arbitrary structure can exhibit struc-
tural controllability with a single driving vertex, if modified with a polynomial
number of LOCC.

In classical control theory, if a complex system (A;B) can be described
with a set of linear differential equations

ẋ(t) = Ax(t) +Bu(t) (1)

at any time, it is called Linear Time-Invariant system [9]. Here, x(t) is the
vector of system parameters; u(t) is the input vector of independent driving
signals; the state matrix A describes which system components interact with
each other and the direction of the interaction; the input matrix B identifies
externally driven system parameters.

Such a systemmay be represented with a directed graph (digraph)G(A;B) =
(VG;E), which structure doesn’t change in time. The vertex set VG = V

⋃
U

includes both the state vertices V corresponding to the N vertices of the net-
work, and the driving vertices U , corresponding to the M input signals that
are called the roots of the digraph G(A;B). The edge set E = EV

⋃
EU con-

sists of the edges among state vertices EV , corresponding to the connections
of the network, and the edges connecting driving vertices to state vertices EU .
In this terms, Lin’s theorem is given as: The system (A;B) is not structurally
controllable if and only if it has inaccessible nodes or dilations [8].
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Fig. 2 (a) A graph to find a minimum driver set. (b) Maximum matching is shown in red.
Only two vertices {V6} and {V7} are unmatched. The network requires two independent
drives/roots to be controllable.

A state vertex is inaccessible if there are no directed paths reaching it from
the input vertices. An inaccessible vertex can not be influenced by driving sig-
nals, making the whole network uncontrollable. The digraph G(A;B) contains
a dilation if there is a subset of vertices S ⊂ V such that the neighborhood set
of S has fewer vertices than S itself. Roughly speaking, dilations are subgraphs
in which a small subset of vertices attempts to rule a larger subset of vertices
(see Fig. 1a).

This formulation is not practical, because doesn’t tell us how many driving
signals we should have in a given network to make it controllable. Alternatively,
we may state that: An LTI system (A;B) is structurally controllable if and
only if G(A;B) is spanned by cacti.

A graph is spanned by a subgraph if the subgraph and the graph have
the same vertex set. For a digraph, a sequence of oriented edges {v1 →
v2, ..., vk−1 → vk}, where vertices {v1, v2, ..., vk−1, vk} are distinct, is called
an elementary path C. When vk coincides with v1, the sequence of edges is
called an elementary cycle O. For the digraph G(A;B), let me define the fol-
lowing subgraphs: (i) a stem is an elementary path originating from an input
vertex; (ii) a bud is an elementary cycle C with an additional edge e that ends,
but does not begin, in a vertex of the cycle; (iii) a cactus is defined recursively:
a stem C is a cactus. Let C, O, and e be, respectively, a cactus, an elementary
cycle that is disjoint with C, and an arc that connects C to O in G(A;B).
Then, C ∪ {e} ∪O is also a cactus. G(A;B) is spanned by cacti if there exists

a set of disjoint cacti that covers all state vertices.

A cactus is a minimal structure that contains neither inaccessible nodes
nor dilations (see Fig. 1b). A complex network is unlikely to be spanned by a
single cactus. But, it may be spanned by a few. Since the control of a single
cactus requires a single root, to control a complex network we need as many
driving signals as many cacti span the network. In practice, we want to find
the minimal number of the driving signals to control a given network – the
so-called minimum input problem [9]. Hence, we need to find the minimal
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number of cacti to span a given network. At first glance, this combinatorial
problem is a NP-hard, but in fact can be resolved in polynomial time with the

maximum matching algorithm (see Fig. 2).

In a digraph, a matching is defined to be a set of directed edges that do
not share common start or end vertices. A vertex is matched if it is the end
vertex of a matching edge. Otherwise, it is unmatched. Maximum matching
is a matching of the largest size. This definitions allow us to formulate the
Minimum input theorem: To fully control a system G(A;B), the minimum
number of driver vertices is ND = max{N −M, 1}, where M is the size of the
maximum matching in G(A;B). In other words, the driver vertices correspond

to the unmatched vertices. If all vertices are matched M = N (as in case of an
elementary cycle), we need at least one input to control the network, hence
ND = 1. We can choose any vertex as our driver vertex in this case. Note,
that in general the maximum matching is not unique, i.e. the network may
be controllable with different minimal sets of driver vertices. But, all these
minimal sets are of the same size. The algorithm gives us the number and
location of the drivers to apply to the network, hence concludes the study of
the structural controllability.

In quantum networks, a vertex possesses a quantum system, such as atom,
quantum dot or molecule. If two vertices are connected with an edge, they may
communicate photons and classical information. An edge is directed according
to the ability of a vertex to send photons to others. Classical information may
be communicated between connected vertices both ways irrespective of edge
directions. This setup fits most quantum communication protocols [3].

Because the quantum systems interact with each other and the environ-
ment, that may be present in the vertices, the quantum network dynamics is
the subject of open quantum system dynamics [10], which is in general non-
linear. However, there are few occasions, when the dynamics of an open quan-
tum system may be described with linear differential equations as Eq. (1). For
example, dissipative harmonic oscillator may be described with linear Master
and Langevin equations [10]. This type of quantum dynamics of the vertices
we must imply to ensure that the quantum network can be described with
Eq. (1). Whenever the behavior of a quantum system cannot be correctly de-
scribed with a system of linear differential equations (1), further considerations
are invalid.

The difference between classical and quantum networks is that the latter
are non-local. This leads to the fact that distant vertices may become entangled
and display correlated dynamics, even so they are not connected with an edge.
The entanglement may appear spontaneously as a result of the non-linear
dynamics [5] or may be created by LOCC [6]. The entanglement between
distant vertices may be interpreted as a new edge of the network [6,7]. The
direction of this entanglement edge is defined by the direction of the classical
communication. The LOCC may be used to loop all inaccessible vertices and
dilations into elementary cycles, modifying the network so, that it is spanned
by a single cactus, i.e. all its vertices are matched.



Any Quantum Network is Structurally Controllable by a Single Driving Signal 5

a

b

V1
V2

V3

V4 V5 V6

V7

U1

V1

V3

V4

V7

U1

V5

V2-6

Fig. 3 (a) By LOCC we may loop the elementary path {V6, V5, V4, V2} into an elementary
circle increasing maximal matching of the quantum digraph. (b) The modification of the
quantum digraph with LOCC may be viewed as creation of a supervertex {V2−6}.

To be specific, let us suppose that we have a connected quantum network
represented by a digraph and of the same configuration as in Fig. 2a. We may
investigate its classical structural controllability by executing the maximum
matching algorithm to identify the minimal set of driving vertices. The network
is spanned by two cacti, due to a dilation {V3, V7, V4}. Let us choose one of the
two elementary pathes, let say {V6, V5, V4, V2}, and loop it into an elementary
cycle by LOCC.

The procedure can be exemplified as follows. Suppose we have a quantum
network consisting of three vertices {a, b, c}, so that a is connected to b and b

is connected to c. The quantum system at the vertex a may be entangled with
a quantum field mode, which is communicated to the vertex b. Subjected with
the classical communication vertex a is entangled with b, i.e. we created an en-
tanglement edge. Through this edge, the quantum system at b may influence
the system at a by performing local manipulation at b and communicating
information classically to a [3]. In this case, the direction of the classical com-
munication sets the direction of the entanglement edge. If a is entangled to
b and b is entangled to c, we may apply entanglement swapping at b. This
creates a non-local entanglement edge a − c. The edge may be directed both
ways depending on the classical information flow.

Similarly, we may get rid of inaccessible vertices, in case of their presence. If
we have a subgraph of inaccessible vertices in our connected graph, then there
is at least one border vertex of the subgraph that has an edge directed from
it to an accessible vertex. The inaccessible vertex may become entangled with
the accessible vertex by LOCC. Hence, this two vertices are looped into an
elementary cycle consisting of just two vertices. Iteratively, all the subgraph
of inaccessible vertices may become accessible. As the result, the modified
network is spanned by a single cactus, thus controllable by a single root. In
general, the whole procedure can be executed for arbitrary two distant vertices
in a finite connected network of size N with at most N3 LOCC [11].
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I showed that the restrictions of the Lin’s theorem, that are fundamental for
classical networks, doesn’t apply to quantum networks. This is another radical
difference between classical and quantum instances. The result is independent
of the quantum network structure and is purely based on our ability to create
nonlocal correlations with LOCC.

To make a conclusion about structural controllability of a network, we must
be sure that the structure of the network doesn’t change in time. This may be
guaranteed if the network is described with a system of linear equations. But,
do LOCC change linearity of the quantum dynamical equations? Under some
reasonable assumptions, the initial entanglement between two systems leaves
the dynamical equations linear adding an inhomogeneous term [12]. But, this
is an exception rather than the rule. Can we still conclude about the structural
controllability? Yes, if we consider the entangled vertices as single super-vertex
(see Fig. 3). Then, we must ensure that the super-vertex is coupled linearly to
the neighbors, i.e. the output field operators of the super-vertex and the input
field operators of the neighboring vertices are linearly dependant [13]. In this
case the network remains linear, in spite of the non-liner internal dynamics of
the super-vertex.

Structural controllability analysis is the very first step to evaluate net-
work controllability. Although a network may be structurally controllable, for
some combination of the dynamical parameters, it may not be controllable [9].
Hence, we need to establish the so-called strong structural controllability, that
is the network is controllable for any combination of the dynamical param-
eters. This analysis requires full information about the network parameters
and analytical tools to process this information. The Kalman’s criterion of
controllability [9] is as fundamental as the Lin’s theorem for structural con-
trollability, and may also fail as the latter, if applied to quantum networks.
This urges a revision of our knowledge and strategies to establish control over
complex quantum networks.

References

1. S.-K. Liao, et.al, Nature 549, 43-47 (2017).
2. H.J. Kimble, Nature 453, 10231030 (2008).
3. M.A. Nielsen and I.L. Chuang, Quantum Computation and Quantum Information

(Cambridge University Press, Cambridge, 2000).
4. S. Perseguers, M. Lewenstein, A. Acin and J.I. Cirac, Nature Physics 6, 539-543 (2010).
5. G. Manzano et.al, Scientific Reports 3, 1439 (2013).
6. A. Acin, J.I. Cirac and M. Lewenstein, Nature Physics 3, 256-259 (2007).
7. M. Siomau, J. Phys. B.: At. Mol. Opt. Phys. 49, 175506 (2016).
8. C.-T. Lin, IEEE Trans. Auto. Contr. 19, 201-208 (1974).
9. Y.-Y. Liu and A.-L. Barabasi, Rev. Mod. Phys. 88, 035006 (2016).

10. C.W. Gardiner and P. Zoller, Quantum Noise: A Handbook of Markovian and

Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics

(Springer-Verlag, Heidelberg, 2000)
11. M. Siomau, AIP Conf. Proc. 1742, 030017 (2016).
12. P. Stelmachovic and V. Buzek, Phys. Rev A 64, 062106 (2001).
13. See section 12 Cascaded Quantum Systems of Ref. [10] for details.


