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Abstract

Sequential Quantum Secret Sharing schemes (QSS) do not use entangled states for secret shar-
ing, rather they rely on sequential operations of the players on a single state which is circulated
between the players. In order to check the viability of these schemes under imperfect operations
and noise in the channels, we consider one such scheme in detail and show that under moder-
ate conditions it is still possible to extract viable secure shared keys in this scheme. Although
we specifically consider only one type of sequential scheme and three different noise models, our
method is fairly general to be applied to other QSS schemes and noise models as well.

1 Introduction
Quantum Key Distribution (QKD) [1, 2] and Quantum Secret Sharing (QSS) [3-17] are among the
most promising areas in the rapidly developing field of quantum technology. With the growth of
demand for secure communication, it is imaginable that in the near future these two protocols will
soon be integrated parts of modern communication systems. Both these schemes try to share random
sequences of bits between two or more parties in a secure way so that they can use these sequences as
a key for encryption and decryption of messages in their further communications. In this sense, QKD
is a special case of QSS. In general if there are N players involved in a QSS scheme, the final result is
that each player Ri, (i = 1, · · ·N ) acquires a random strings of n− bits, denoted by Ki so that

K1 +K2 + · · ·KN = 0 (1)

where the summation is bitwise and modulo 2. Therefore when a dealer say R1 wants to send a
message M to the other players R2, · · ·RN , so that they can only retrieve the message by their full
collaboration, he encrypts the message as

M −→M +K1 (2)

and sends it to the players who will add their own Ki to make it non-retrievable for any subset of
players and retrievable only to the last (authorized player RN ) who, finds the message in the form

M +K1 +K2 + · · ·KN =M. (3)

The main ingredient of almost all the QSS protocols is a multi-partite entangled state, like a
Greenberger-Horne-Zeilinger (GHZ) state which acts as splitter of information. In view of the extreme
fragility of these states and the difficulty for their preparation, there has been a series of attempts to
devise QSS protocols which do not need any entanglement [18, 19, 20, 21, 22].

While there has been some studies on the performance of entanglement-based QSS schemes
[23, 24], it seems that there has been almost no studies of the more promising and more practical
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sequential QSS schemes. There is a report on the effect of noise on a sort of QSS scheme [25], how-
ever it is not really related to the protocol that we discuss here, since the dealers manipulate entangled
states. A related report is that of [26] who studies a protocol with three parties. We should stress
that in the protocol [18] that we study here, only a single qubit is circulated between the parties with
no entanglement at any stage of the protocol. It is important to note that in view of the highly fragile
character of GHZ and other entangled states [27], it seems that if QSS schemes become practical in the
future, they will be of the sequential rather than the entanglement-based type. Therefore it is highly
desirable to see how in a noisy environment, errors accumulate and how the final error depends on the
number of players.

Here we study noise effects in QSS scheme of [18] for arbitrary number of players. We consider
two classes of noise. The first class concerns imperfections in the unitary actions of the players and
the second class concerns the noise in the channels between consecutive players. In this later class we
study the effect of a number of well-known and physically motivated channels, namely de-phasing,
depolarizing, phase-flip and bit-flip channels. We find that in both classes of imperfections and chan-
nel noises, the required precision for establishing a reliable secret scales inversely with the number of
players.

The structure of the paper is as follows. In section 2 we briefly describe the general idea of se-
quential QSS [18, 21, 22] with emphasis on the special case of the scheme of [18], which will be our
model of choice for studying noise effects. To study the sequence of actions of players followed by the
effect of noise, we resort to the vectorized formalism for describing states and operations in section 3.
Then in section 4, we briefly study the effect of imperfections of unitary actions of players and then
in section 5 we use this formalism to study the effect of de-phasing, depolarizing and bit-flip channels
respectively. We end the paper with a conclusion.

2 Sequential quantum secret sharing
Sequential Quantum Secret Sharing (QSS) scheme, tries to avoid the use of multipartite entangled
states and instead tries to develop a scheme which is in the same spirit of the BB84 protocol [1] for
quantum key distribution. That is, it is based on circulating and manipulating specific states among
the players which if measured in the right basis by the last player will establish a shared random
secret key between the players. More concretely, in such schemes there are N players which we
denote by R1, R2, to RN . The first player prepares a reference state |φ1〉 (a specific state in a basis
B = {|e0〉, |e1〉, · · · |ed−1〉}) in a d dimensional space and acts on it by a unitary operator U(s1,p1),
where s and p stand for a number of secret (private) and public parameters. He then passes the state
U(s1,p1)|e0〉 to player R2 who acts similarly until after a full circle the state comes back to the first
player in the form

|ψf ({s,p})〉 = U(sN ,pN ) · · ·U(s2,p2)U(s1,p1)|e0〉 (4)

The players then announce the public parameters p1 to pN . In a certain fraction of rounds (depending
on the scheme, 1

2 for [18] and [21], and 1
d for [22]), which we call valid rounds, the public parameters

are such that the state |ψf ({s,p})〉 is one of the states in the basis B, say |em〉. Since the first players
always measures his state in this basis, in such rounds there will be a precise relation between the
secret parameters si and the final measured parameter m, in the form

F (m, s1, s2, · · · sN ) = 0. (5)
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This relation establishes a shared key between the secret parameters of all the players, in which the
parameter m is also included.

The first QSS scheme of this kind was introduced in [18], where the players use qubits and their
unitary action is a phase gate of the form U(φ)|m〉 = eimφ|m〉, where φ ∈ {0, π2 , φ,

3π
2 }, figure (2).

This set of phase gates can be divided into two classes, Class 0={0, π} and Class 1={π2 ,
3π
2 }. The

1-bit information as to which class has been chosen by a particular player Rn is a public parameter
which is denoted by pn = 0, 1 and the information as to which particular phase has been chosen by the
player Rn within a class is a secret parameter kept only with Rn to be used at the end of the protocol.
Starting from |+〉 = 1√

2
(|0〉+ |1〉), the final state will be

|ψf 〉 =
1√
2
(|0〉+ ei(φ1+φ2+···φN )|1〉). (6)

………..

R1 R2

RN

Rm

+

ψ f

…
…
…
..

Figure 1: The idea case of the sequential QSS scheme of [18], where states are acted by perfect gates
by the players and are transmitted through noiseless channels.

At the end of the protocol, all the players announce their class values, pi. The player R1 or the
dealer, measures the final state () in the X basis. When

∑
i pi = 1 (mod 2) the final state (6) is an

eigenstate of the Y operator, leading to a probabilistic result (with no correlation) and the round should
be discarded as an invalid round. However when

∑
i pi = 0(mod 2), the final state is an eigenstate of

the X operator and a perfect correlation exists between the secure parameters and the measurement of
the final state. That is

φ1 + φ2 + · · ·+ φN = m, (7)

where m is the result of measurement of the player R1 in the X basis. Let us denote the final result of
measurement by m (m = 0, for + and m = 1 for −). Then equations (7) show that the shared secret,
defined as

K1 =
φ1
π

+m,
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Ki =
φi
π
, i = 2, · · ·N, (8)

will have perfect correlation as follows:

K1 +K2 + · · ·KN = 0. (9)

This will then allow the players to share a secure key among the players. Since the work of [18]
many other schemes have also been proposed for sequential QSS [19, 21, 22], where the use of entan-
glement is bypassed.

All this has been described under ideal situation, when the gates act perfectly and the channels
are noiseless. In a realistic situations, both assumptions need to be replaced with modest assumptions.
Here we assume that the classical channels used for public announcements of public parameters are
noiseless, but the gates used by players have some imperfections and also the quantum channels used
for transmitting the states are noisy. We want to see how these two kinds of imperfections affect the
reliability of this QSS scheme.

3 Vectorization of states and operations
In a sequential QSS scheme, N players are acting on a reference signal one after the other and in each
transmission between any two consecutive players, the signal is also affected by noise in the channel.
To determine the admissible level of noise in these channels (which at first are assumed to be identi-
cal), we have to find the cumulative effect of both the noise and the actions of different players on the
initial state. The basic question we are faced with is to determine in an analytic form the cumulative
effect of noise and the actions of all individual players. As we will see, the best approach for doing
this is to use the vectorized form of quantum channels which for simplicity is described here for qubit
states and channels.

Let ρ =

(
a b
c d

)
be a general one-qubit state. To this corresponds a vector

|ρ〉 =


a
b
c
d

 . (10)

A state like ρ0 = |+〉〈+| where |+〉 = 1√
2
(|0〉+ |1〉) is depicted as

|ρ0〉 =
1

2


1
1
1
1

 . (11)

More generally a state ρ =
∑
i,j ρi,j |i〉〈j| can be cast into the vector form |ρ〉 =

∑
i,j ρi,j |i, j〉.

The inner product of two matrices A and B is the same as the inner product of their vectorized forms,
that is

tr(A†B) = 〈A|B〉. (12)

A quantum channel acts on the state ρ as follows

ρ −→ ρ′ = E(ρ) =
∑
k

AkρA
†
k, (13)
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where ∑
k

A†kAk = I. (14)

This operation can be depicted as linear map E on the vector |ρ〉. In fact

|ρ〉 −→ |ρ′〉 = E|ρ〉, E =
∑
k

Ak ⊗A∗k. (15)

The unitary action U(sm, pm) : |φ〉 −→ |φ′〉 by the m−th player, can also be written, first as a
quantum channel ρ −→ Um(s, p)ρU†m and then vectorized in the form

|ρ〉 −→ U(sm, pm)|ρ〉 = U(sm, pm)⊗ U(sm, pm)∗|ρ〉. (16)

Combining all these actions we find

|ρf 〉 =
N∏
m=1

(EU(sm, pm))|ρ0〉 (17)

where |ρ0〉 is the vectorization of the first pure state started by the first player R1 and |ρf 〉 is the
vectorized form of the final state received by R1. One can then return back the final state from the
vectorized form |ρf 〉 to the standard matrix form ρf and analyze its various properties, although this
is not really necessary since all the measurement results and probabilities can also be expressed in
vector form as in (12).

4 Gate imperfections
Let us assume that the phases applied by the players are not exactly in the form {0, π2 ,

3π
2 , π}, but have

error with a fixed average. For example suppose that each player Ri, instead of the phase φi applies a
phase φi + εi, where εi is a random phase with average ε. In this case the final state will be

|ψf 〉 =
1√
2
(|0〉+ ei

∑
i(φi+εi)|1〉). (18)

We assume that the errors εi are not large enough to change the class of the phases and they only
randomly shift the phase within a class. Therefore we only have to consider valid rounds where

∑
i φi

is supposed to be 0 or π mod 2π. The error is committed when
∑
i φi = 0 and the measured state is

|−〉 or when
∑
i φi = π and the measured state is |+〉. Assuming that in half of the cases

∑
i φi = 0

and in the other half
∑
i φi = π, we find for a specific set of εi’s

Perror =
1

2
P (−|

∑
i

φi = 0) +
1

2
P (+|

∑
i

φi = π)

=
1

2
| 〈−|ψf (

∑
i

φi = 0)〉 |2 +
1

2
| 〈+|ψf (

∑
i

φi = π)〉 |2= 1

2
(1− cos

∑
i

εi). (19)

The average rater of error will be given by

Perror =
1

2
(1− cosNε). (20)

As long as Perror << 1
2 , one can use a privacy amplification algorithm to extract a shorter error-free

key from a long key. In this paper we do not consider these algorithms and only note that amount of
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the shortening of the key depends on the error probability. Let us demand that Perror < δ
2 , where δ is

a parameter less than one. Then this means that the phase error is bounded as

ε <
arccos(1− δ)

N
≈
√
2δ

N
. (21)

5 Effect of noise in the channels
We now turn to the noise in channels. For simplicity at first we assume that the noise parameters are
identical, but later this assumption will be relaxed. We consider four different physically motivated
noise channels.

5.1 Phase damping channel
The first channel that we study is the phase dampling channel

E1(ρ) = (1− p)ρ+ pA0ρA
†
0 + pA1ρA

†
1, (22)

with A0 =

(
1 0
0 0

)
and A1 =

(
0 0
0 1

)
. Such a channel which decreases the phase coherence of

the state, is perhaps the most relevant type of noise both in the present context and in view of practical
considerations. It acts on any single-qubit density matrix as follows(

a b
c d

)
−→

(
a (1− p)b

(1− p)c d

)
. (23)

E1 =


1

1− p
1− p

1

 (24)

The action of phase gate can also be depicted by a diagonal matrixR(φi)

U(φi) =


1

eiφi

eiφi

1

 . (25)

In view of the vectorized form of the initial state (11), we find

|ρf 〉 = EU(φN ) · · · EU(φ2)EU(φ1)|ρ0〉 =
1

2


1

(1− p)Ne
∑

m iφm

(1− p)Ne
∑

m iφm

1

 (26)

In matrix form the final state will be given by

ρf =

(
1 (1− p)Ne

∑
m iφm

(1− p)Ne
∑

m iφm 1

)
(27)

This shows that when, after a full round, the first player measures the state in the X-basis, there
is not perfect correlation anymore. In fact the first player obtains both |+〉 and |−〉 with the following
conditional probabilities:
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P (+|
∑
i

φi) = 〈+|ρf |+〉 =
1

2

(
1 + (1− p)N cos(

N∑
i=1

φi)

)

P (−|
∑
i

φi) = 〈−|ρf |−〉 =
1

2

(
1− (1− p)N cos(

N∑
i=1

φi)

)
. (28)

It can be seen that in the absence of noise (when p = 0), there is perfect correlation between the result
of the last measurement and the sum of phases. For example we have P (+ |

∑
i φi = 0) = 1, and

P (− |
∑
i φi = 0) = 0.

The presence of noise decreases this correlation and leads to errors. Assuming that all the phases
are chosen randomly by the players, we have P (

∑
i φi) = 1

2 and hence the probability of error is
given by

Perror =
1

2
P (− |

∑
i

φi = 0) +
1

2
P (+ |

∑
i

φi = π) =
1

2
(1− (1− p)N ) (29)

Again if we demand that Perror < δ
2 , this leads to the following bound for the noise parameter p,

p < 1− (1− δ) 1
N ≈ δ

N
, (30)

showing that the level of admissible noise decreases inversely with the number of players.

If the noise parameters are not equal which is quite expected in view of different distances be-
tween the players, then a simple look at the previous analysis leads to generalization of (29) with the
following

Perror =
1

2

(
1−

N∏
i=1

(1− pi)

)
. (31)

This shows that if one of the channels has a large noise, i.e. pi ≈ 1, then Perror ≈ 1
2 , rendering the

whole scheme useless. To understand this effect note that assume that the i−th channel has pi = 1.

Then any previous state which is necessarily in the form 1
2

(
1 c
c∗ 1

)
, when passing through this

channel becomes equal to 1
2I and this completely mixed state is never affected by the actions of the

subsequent players, leading to no correlation at the end of the protocol.

5.2 Depolarizing channel
The second channel that we consider is the depolarizing channel defined as

E2(ρ) = (1− p)ρ+ p

2
tr(ρ)I. (32)

To vectorize this channel we note that for a qubit tr(ρ) = a+ d, and rewrite this as(
a b
c d

)
−→

(
(1− p

2 )a+
p
2d (1− p)b

(1− p)c (1− p
2 )d+

p
2a

)
. (33)

which shows that the vectorized form of the channel is given by

E2 =


1− p

2
p
2

1− p
1− p

p
2 1− p

2

 . (34)
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The combination of this channel with the unitary action of each player is given by

E2U(φm) =


1− p

2
p
2

(1− p)eiφm

(1− p)e−iφm

p
2 1− p

2

 . (35)

The product of all these matrices is then given by

N∏
m=1

E2R(φm) =


1+ηN

2
1−ηN

2

(1− p)Nei
∑

m φm

(1− p)Ne−i
∑

m φm

1−ηN
2

1+ηN

2

 (36)

where η = (1− p). The final density matrix |ρf 〉 is obtained by acting this linear operator on the
vectorized form of the state |+〉〈+| . This state which will be measured by the player R1 is given by

|ρf 〉 =
1

2


1

(1− p)Nei
∑

m φm

(1− p)Ne−i
∑

m φm

1

 . (37)

Although the channels act differently on general input states, it is seen that the final state is the same
as the one in the previous subsection. Therefore the same analysis and the same bound is also valid
here.

5.3 Bit flip channel
The last channel that we study is the bit flip channel which requires a more detailed analysis. It is
defined by

E3(ρ) = (1− p)ρ+ pXρX. (38)

which transforms the state in the following way(
a b
c d

)
−→

(
(1− p)a+ pd (1− p)b+ pc
(1− p)c+ pb (1− p)d+ pa

)
. (39)

From this we can extract the matrix form of the CPT map E2:

E3 =


1− p p

1− p p
p 1− p

p 1− p

 (40)

The concatenation of the action of the m−th player and the action of the channel E2 is given by

E3R(φm) =


1− p p

(1− p)eiφm pe−φm

peiφm (1− p)e−iφm

p 1− p

 . (41)

The above matrix has a block form, written as

E3U(φm) = Am ⊕Bm, (42)
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where

Am =

(
1− p p
p 1− p

)
(43)

is the outer block matrix and

Bm =

(
(1− p) eiφm p e−iφm

p eiφm (1− p) e−iφm

)
(44)

is the inner block matrix. This form easily allows us to multiply a sequence of such matrices in a
straightforward way. We readily find∏

Am =
1

2

(
1 + γN 1− γN
1− γN 1 + γN

)
, (45)

where
γ = (1− 2p). (46)

The calculation of
∏
mBm is a little tricky. First we note that

Bm = ((1− p)I + pX) eiφmZ . (47)

In general (i.e. for arbitrary values of φm) it is difficult to simplify a product of such matrices, since
the passing of ei]φmZ creates complicated terms when comulated after many passings. However we
note that φm takes only specific values from the set

{0, π
2
, π,

3π

2
} ≡ {I, iZ,−I,−iZ}. (48)

This can be written compactly as

eiφmZ = (−1)sm(iZ)pm ,

where sm ∈ {0, 1} and pm ∈ {0, 1} are respectively the secret and public parameters of the player
Rm. In fact the parameter p shows the class and s shows the phase within the class. p is made public
and s is kept secret. In order to calculate

∏
mBm, we rewrite Bm as follows:

Bm = ((1− p)I + pX) (−1)sm(iZ)pm . (49)

It is now easy to pass Zpm through different terms in the product. For example we find

B1 B2 = (−1)s1+s2 ((1− p)I + pX) (iZ)p1 ((1− p)I + pX) (iZ)p2

= (−1)s1+s2 ((1− p)I + pX) ((1− p)I + p(−1)p1X) (iZ)p1+p2 (50)

Continuing in this way, we find:

∏
m

Bm = (−1)s1+s2+···sN
N∏
m=1

[(1− p)I + pξm−1X] (iZ)
∑N

m=1 pm (51)

where
ξm = (−1)

∑m
i=1 pi . (52)

Hereafter we consider only the case of valid rounds where
∑N
m=1 pm = 0 which considerably sim-

plifies subsequent calculations. Using the fact that HXH = Z, where H = 1√
2

(
1 1
1 −1

)
is the

Hadamard matrix, we find

9



∏
m

Bm = H

(
aN

bN

)
H (53)

where

aN = ηN

N∏
m=1

(1− p+ pξm−1) , bN = ηN

N∏
m=1

(1− p− pξm−1). (54)

in which we have used
√
ξN as a short way of writing (i)

∑N
m=1 pm and ηN is determined by the sum

of secret parameters:

ηN := (−1)
∑N

m=1 sm . (55)

Multiplying the Hadamard matrices, the product of inner matrix blocks is found:∏
m

Bm =
1

2

(
aN + bN aN − bN
aN − bN aN + bN

)
. (56)

The final density matrix in the vectorized form is now given by

|ρf 〉 =
1

2


1 + γN 1− γN

aN + bN (aN − bN )
aN − bN (aN + bN )

(1− γN ) (1 + γN )

 1

2


1
1
1
1

 (57)

or

|ρf 〉 =
1

2


1
aN
aN
1

 (58)

In matrix form this density matrix is given by:

ρf =
1

2

(
1 aN
aN 1

)
. (59)

We can now calculate the error probability. To this end we note that contrary to the previous cases,
the probability of results of measurement in the X basis depend, not on the sum of parameters but on
each of them. This is due to the relation (54). So we find

P (+|{si}) =
1

2
(1 + aN ) =

1

2

(
1 + (−1)

∑N
m=1 sm

N∏
m=1

(1− p+ pξm−1)

)

P (−|{si}) =
1

2
(1− aN ) =

1

2

(
1− (−1)

∑N
m=1 sm

N∏
m=1

(1− p+ pξm−1)

)
. (60)

As a test we note that when p = 0, we find that

P (+|{si}) =
1

2
(1 + (−1)

∑N
m=1 sm) = δ(

N∑
m=1

sm, 0),

P (−|{si}) =
1

2
(1− (−1)

∑N
m=1 sm) = δ(

N∑
m=1

sm, 1), (61)
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which shows that when
∑N
m=1 sm = 0, the measurement result is definitely + and when

∑N
m=1 sm =

1, then the measurement result is definitely −. This is the perfect correlation which is expected in the
absence of noise.

Let us denote by {si}0, the set of all parameters {s1, s2, · · · sN} such that their sum equals zero,
i.e. {si}0 = {s1, s2, · · · sN | s1 + s2 + · · · sN = 0} with a similar definition for {si}1. Then the
conditional probabilities that we need are the following:

P (+|{si}1) =
1

2

(
1−

N∏
m=1

(1− p+ pξm−1)

)

P (−|{si}0) =
1

2

(
1−

N∏
m=1

(1− p+ pξm−1)

)
. (62)

The equality of these two terms makes the calculation of the final error probability feasible, since,
using

∑
{si}0 +

∑
{si}1 =

∑
s1,s2,···sN , we can write

Perror =
∑
{si}0

P (s1, s2, · · · sN )P (−|{si}0) +
∑
{si}1

P (s1, s2, · · · sN )P (+|{si}1)

=
1

2

∑
s1,s2,···sN

P (s1, s2, · · · sN )

(
1−

N∏
m=1

(1− p+ pξm−1)

)
(63)

Naturally, due to independence of the actions of players, we have the uniform distributionP (s1, s2, · · · sN ) =
1
2N

. We also note that all the parameters ξm are also independent, taking the values 1 and −1 with
equal probabilities. Therefore (in view of ξ0 = 1) we find

∑
s

(1− p+ pξ0) =
∑
s

(1− p+ p) = 2
∑
s

(1− p+ pξm) =
∑
s

(1− p+ pξm) = 2− 2p. (64)

Putting everything together, the final error probability will be

Perror =
1

2

(
1− (1− p)N−1

)
. (65)

This leads to the same bound as in (30) with N replaced with N − 1.

In view of the lengthy calculations of this case, let us study the simplest case in a concrete way,
where N = 2 and follow the operations from the beginning. The player R1 prepares the state |ψ0〉 =
|+〉 and acts on it by his phase gate to produce |ψ1〉 = 1√

2
(|0〉+ eiφ1)|1〉. This state undergoes the bit

flip noise and becomes

ρ1 =
1

2

(
1 (1− p)e−iφ1 + peiφ1

(1− p)eiφ1 + pe−iφ1 1

)
. (66)

When reached to R2 it is acted by a second phase gate R(φ2) and becomes

ρ1 =
1

2

(
1 (1− p)e−iφ1−iφ2) + peiφ1−iφ2

(1− p)eiφ1+iφ2 + pe−iφ1+iφ2 1

)
=:

1

2

(
1 a
a 1

)
(67)

where the last equality defines the parameter a. Before deriving the final matrix, when noise acts on
this matrix, let us find the density matrix at this stage for various values of φ1 and φ2 in the valid
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φ1 φ2 a ρ1 P (+) P (−) Perror

0 0 1 |+〉〈+| 1∗ 0 0
0 π −1 |−〉〈−| 0 1∗ 0
π 0 −1 |−〉〈−| 0 1∗ 0
π π 1 |+〉〈+| 1∗ 0 0

π
2

π
2 2p− 1 1

2

(
1 2p− 1

2p− 1 1

)
p (1− p)∗ p

π
2

3π
2 1− 2p 1

2

(
1 1− 2p

1− 2p 1

)
(1− p)∗ p p

3π
2

π
2 1− 2p 1

2

(
1 1− 2p

1− 2p 1

)
p (1− p)∗ p

3π
2

3π
2 2p− 1 1

2

(
1 2p− 1

2p− 1 1

)
(1− p)∗ p p

Table 1: Different final states of the sequential QSS protocol (figure 2) in the presence of bit-flip noise
and the corresponding probabilities for obtaining them.

rounds. These values are shown in table (1) together with the form of the matrix ρ1. It is now clearly
seen that all of these later states are invariant under bit-flip noise and so the final density matrix ρf is
the same as ρ1 shown in table (1). The last three columns show probabilities of obtaining + and −
in the final measurement of X by the first player R1 and the probability of error. Note that in each
row, the superscript ∗ denotes which result is expected (in view of the parameter φ1+φ2). This easily
determines the error probability in each case:

From the table we see that in 4 out of 8 cases the probability of error is p, making the total
probability of error equal to p

2 , in accord with equation (65).

6 Conclusion
We have used the vectorized form of quantum channels and quantum operations to study the ef-
fect of different gate imperfections and different kinds of noise on sequential quantum secret sharing
schemes. The noise model considered are dephasing, depolarizing and bit-flip channels. Quite similar
analysis and results can also be obtained for phase-flip channel and the amplitude damping channels,
although for the sake of brevity the corresponding analysis has not been reported. We have considered
only one type of scheme [18] based on sequential manipulations of qubits and have found the accumu-
lated error probability cannot render the protocol ineffective. In all the noise models, we have found
that in order to extract an error-free shared secret key, the tolerable noise parameter in the channels
and the tolerable error in gates scales linearly with the error and inversely with the number of players
in the scheme. Although we have studied only one type of QSS scheme, the method is fairly general
to apply it for other schemes and for other noise models. This means essentially that the QSS scheme
of [18] and hence the other sequential models [21, 22] are effective even in the presence of noise. An
open problem even in the absence of noise is how to perform QSS with (k,n) access structures in a
sequential way and without entanglement. These are schemes in which any subset of k players out of
n players can retrieve the key and subsets of lower size cannot [28, 29, 30, 31].
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