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Originating in questions regarding work extraction from quantum systems coupled to a heat bath, quantum

deficit, a kind of quantum correlations besides entanglement and quantum discord, links quantum thermodynam-

ics with quantum correlations. In this paper, we evaluate the one-way deficit of two adjacent spins in the bulk for

the XY model and its extend model: the extended Ising model. We find that the one-way deficit susceptibility is

able to characterize the quantum phase transitions in the XY model and even the topological phase transitions

in the extend Ising model. This study may enlighten extensive studies of quantum phase transitions from the

perspective of quantum information processing and quantum computation, including finite-temperature phase

transitions, topological phase transitions and dynamical phase transitions of a variety of quantum many-body

systems.

I. INTRODUCTION

Quantum deficit [1–3] is a kind of nonclassical correlation

besides entanglement and quantum discord. It originates on

asking how to use nonlocal operation to extract work from a

correlated system coupled to a heat bath only in the case of

pure states [1]. In the general case, the advantage is related to

more general forms of quantum correlations. Oppenheim et

al. defined the work deficit [1] as a measure of the difference

between the information of the whole system and the localiz-

able information [4, 5]. Recently, Streltsov et al. [6, 7] give

the definition of the one-way information deficit by means of

relative entropy, which is also called one-way deficit that un-

covers an important role of quantum deficit as a resource for

the distribution of entanglement.

Many developments in quantum information processing [8]

has provided much insight into quantum phase transitions in

many-body systems[9]. Especially, quantum correlations has

been successful in characterizing a large number of critical

phenomena of great interest. In particular, entanglement was

the first and most outstanding member for the detection of

critical points, see Refs. [9–14]. Furthermore, quantum dis-

cord, a significant quantum correlation, is also useful for the

study on quantum phase transitions [15, 16]. Other indica-

tions of quantumness of ground states of critical systems are

also found effective for probing quantum phases and quantum

phase transitions [17–22] and even the identification of topo-

logical phase transitions [16, 23–29].

In this paper, we calculate the one-way deficit of the ther-

mal ground states of two adjacent spins in the bulk of the

XY model and its extended model, the extended Ising model

[30, 31], and use it to detect the topological quantum phase

transitions. In details, we find that the one-way deficit suscep-

tibility of nearby two spins arrives its extremum value almost

∗ yrzhang@csrc.ac.cn

at the critical points of transverse field XY model. More-

over, we investigated the one-way deficit in the extended Ising

model and find that the one-way deficit is also able to charac-

terize the topological phase transitions via its susceptibility.

We also study the one-way deficit of thermal states of there

models at nonzero temperatures. Our results will not only en-

lighten extensive studies of the quantum information proper-

ties of ground states in different phases of critical systems, but

also benefit a number of applications of these ground states,

such as to detect the quantum phase transitions and to evaluate

the capacity of quantum computations.

II. ONE-WAY DEFICIT IN XY MODEL

Like entanglement quantifications and other quantum cor-

relations, the one way deficit considers a bipartite state ρab

and is expressed as the difference of the von Neumann entropy

before and after a on Neumann measurement on one side. It

is exactly given by [32]

∆→(ρab) = min
{Πk}

S(
∑

k

Πkρ
abΠk)− S(ρab), (1)

where S(·) denotes to the von Neumann entropy. As a kind

of quantum correlations besides entanglement and quantum

discord, one-way deficit links quantum thermodynamics with

quantum correlations and deserve further investigations in

critical systems.

We first consider the one-way deficit of ground states of

the XY model [33] for the detection of the quantum phase

transitions. The Hamiltonian of the XY model is as follows

[34]:

H = −
L
∑

j=1

(

1 + γ

2
σj
1σ

j+1

1 +
1− γ

2
σj
2σ

j+1

2 + hσj
3

)

(2)

with L the number of spins in the chain, σj
n the jth spin Pauli

operator in the direction n = 1, 2, 3 and periodic boundary

http://arxiv.org/abs/1701.01629v2
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FIG. 1. (Color online) (a) One-way deficit and (b) deficit suscep-

tibility of two adjacent spins in the bulk for the XY model in the

thermodynamic limit as a function of the quantum parameter h and

γ. The dotted lines are for the critical points for the XY models

between different phases.

conditions assumed: σL+1
n = σ1

n. The XX model and trans-

verse field Ising model thus correspond to the special cases

for this general class of models: For the case that γ → 0, our

model reduces to XX model; and when γ = 1, the model

reduces to transverse field Ising model [35]. In fact, there ex-

ists additional structure of interest in phase space beyond the

breaking of phase flip symmetry at h = 1, which is the criti-

cal point between two quantum phases. It is worth noting that

there exists a quarter of circle, h2 + γ2 = 1, on which the

ground state is fully separable.

For the thermal ground states of XY model (2), the Bloch

representation of the reduced density matrix for two nearby

spins at positions i and i+ 1 has been obtained in [36] as

ρab =
1

4
(I ⊗ I + rσ3 ⊗ I + sI ⊗ σ3 +

3
∑

n=1

cnσn ⊗ σn), (3)

where I is the identity, r = s = 〈σj
3〉, c1 = 〈σj

1σ
j+1

1 〉, c2 =

〈σj
2σ

j+1

2 〉, and c3 = 〈σj
3σ

j+1

3 〉. In the thermodynamic limit

L ≫ 1 and at an approximately zero temperature T → 0, we

have 〈σj
3〉 = G0, 〈σj

3σ
j+1

3 〉 = 〈σj
3〉2 − G1G−1, 〈σj

1σ
j+1

1 〉 =
G−1 and 〈σj

2σ
j+1

2 〉 = G1, where

Gl ≡ −
∫ π

0

dφ

πωφ

[cos(lφ)(h+ cosφ)− γ sin(lφ) sinφ] (4)

and ω2
φ = (γ sinφ)2 + (h+ cosφ)2.

The eigenvalues of the X states in Eq. (3) are given by

λ1,2 = (1− c3 ± |c1 + c2|)/4,
λ3,4 = [1 + c3 ±

√

(2r)2 + (c1 − c2)2]/4. (5)

with which the von Neumann entropy is given by

S(ρab) = −
4

∑

i=1

λi logλi. (6)
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FIG. 2. (Color online) One-way deficit of two adjacent spins in the

bulk for the XY model: (a-c) One-way deficit of reduced nearby

two-qubit ground states of XY models for γ → 0 (XX model),

γ = 1 (transverse field Ising model) and γ = 0.5 respectively. (d)

Maximal one-way deficit of the XY model. (e,f) Deficit suscepti-

bility of reduced nearby two-qubit ground states of XY models for

γ = 0.5 and γ = 1, respectively.

By Eqs. (1,6) and Eq. (A18) in the Appendix, the one-way

deficit of the X states (3) is given by

∆→(ρab) = − min
{z2

1
+z2

2
+z2

3
=1}

4
∑

i=1

wi logwi+

4
∑

i=1

λi logλi, (7)

where we have

w1,2 =
1

4

[

1− sz3 ±
√

(r − c3z3)2 + c21z
2
1 + c22z

2
2

]

, (8)

w3,4 =
1

4

[

1 + sz3 ±
√

(r + c3z3)2 + c21z
2
1 + c22z

2
2

]

. (9)

with a constraint condition as z21 + z22 + z23 = 1.

Then, we use the equations above to calculate the one-way

deficit of two adjacent spins in the bulk for the XY model and

analyze the one-way deficit and one-way deficit susceptibility

that is defined as χ = ∂∆→(ρab)/∂h. The main results are

shown in Figs. 1 and 2, in which we plot the one-way deficit

and the one-way deficit susceptibility of two adjacent spins in

the bulk of XY model as a function of h and γ. Given γ a

fixed value, we observe that as the transverse field strength h
increases, the one-way deficit increases for small h and de-

creases for large h, see Fig. 2(c) for γ = 0.5. When γ → 1,

the model reduces to the Ising model and the maximum of

the one-way deficit is attained near h = 1, see Figs. 2(b,d,f).

From Figs. 1(b) and 2(e,f), we clearly show that the one-way

deficit susceptibility reach its extremum when the quantum

phase transitions occur.
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FIG. 3. (Color online) (a) Energy spectra given L = 200 sites, (b)

trajectory of winding vector, (c) one-way deficit and (d) its suscep-

tibility of thermal ground states as a function of h for the extended

Ising model with parameters γ = 1, δ = 1 and λ = 3/2.

In details, for the case that γ → 0 as shown in Fig. 2(a),

the XY model reduces into the XX model, where we find

that the one-way deficit is nonzero in the domain h ∈ [0, 1)
and then suddenly becomes zero as h ≥ 1. As the XX model

undergoes a first order transition at the critical point h = 1
from fully polarized to a critical phase with quasi-long-range

order, we conclude that one-way deficit can effectively detect

quantum phase of the XX model. The conclusion is in con-

sistent with the result obtained in [37]. In Fig. 2(b) for the case

that γ = 1, the model reduces to transverse field Ising model

and we find that one-way deficit of the Ising model increases

for small h and decreases for large h. When one-way deficit

susceptibility reach its extremum nearly at h = 1, transverse

field Ising model undergoes a first order transition. Generally,

as shown in Fig. 1(b), we infer that one-way deficit can be

used to detect quantum phase of the XY model given differ-

ent values of γ.

III. ONE-WAY DEFICIT IN EXTENDED ISING MODEL

In recent years, the quantum topological order [23] in ex-

tended critical systems [30, 31, 38, 39] has become more and

more important in both topological quantum computation and

condensed matter physics [24–28, 40, 41]. Here we consider

the extended Ising model that contains several kinds of topo-

logical phases and is written as [30, 31]

H =

L
∑

j=1

λσj
3

(

1 + δ

2
σj−1

1 σj+1

1 +
1− δ

2
σj−1

2 σj+1

2

)

+

L
∑

j=1

(

1 + γ

2
σj
1σ

j+1

1 +
1− γ

2
σj
2σ

j+1

2 + hσj
3

)

(10)

with the periodic boundary conditions assumed σ0
n = σL

n and

σL+1
n = σ1

n. The Bloch representation of the reduced density
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FIG. 4. (Color online) (a) Energy spectra given L = 200 sites, (b)

trajectories of winding vectors for different value of λ, (c) one-way

deficit and (d) its susceptibility of thermal ground states as a function

of λ for the extended Ising model with parameters γ = 1, δ = −1

and h = 1.

matrix for two nearby spins at positions j and j + 1 is shown

in Eq. (3) with parameters r̃ = s̃ = G̃0, c̃1 = G̃−1, c̃2 =

G̃1, and c̃3 = G̃2
0 − G̃1G̃−1, where the spin-spin correlation

functions with β = 1/T the inverse of temperature can be

written as

G̃l ≡ −
∫ π

0

dφ tanh(βω̃φ)

π
cos(lφ− Θ̃φ) (11)

with

Θ̃φ = arctan
γ sinφ+ λδ sin 2φ

h+ cosφ+ λ cos 2φ
, (12)

ω̃2
φ = (γ sinφ+ λδ sin 2φ)2 + (h+ cosφ+ λ cos 2φ)2.

(13)

Similarly, we can calculate the one-way deficit of the states (3)

of two nearby spins in the extended Ising model using Eq. (7).

Furthermore, compared with the results of quantum discord

in Ref. [16], we should emphasize that the one-way deficit is

proved to be larger than the quantum discord [42] for the X
states shown in Eq. (3) and shows more properties and struc-

tures of the ground states of the extended Ising models.

For the critical point between two topological phases with

different winding numbers at zero temperature, one needs to

solve the characteristic equation g(ζ) = 0 with zeros on the

contour |ζ| = 1 in the complex plane, where the complex

characteristic function g(ζ) is defined in the Appendix B and

carefully introduced and discussed in Ref. [29]. For instance,

we set the parameters of extended Ising model as γ = 1, δ =
1, λ = 3/2 and change the value of h, and the characteristic

equation is written as [29]

g(ζ) = 3ζ2/2 + ζ − h = 0, (14)

with which the critical points for the emergence of topological

phase transitions at h = 2.5 for ζ = 1, h = 0.5 for ζ =
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FIG. 5. (Color online) One-way deficit and its susceptibility of ther-

mal states of the extended Ising models with parameters (a,b) γ = 1,

δ = 1, λ = 3/2 and (c,d) γ = 1, δ = −1 and h = 1 at different

temperatures T .

−1 and h = −1.5 for ζ = exp[±i arccos(−1/3)] can be

calculated [29]. For this example, energy spectra for L =
200 sites and the trajectory of winding vector are shown in

Fig. 3(a,b), respectively. In Fig. 3(c,d), one-way deficit and

its susceptibility as functions of h are plotted. It is shown that

one-way deficit susceptibility reaches its extremum nearly at

the critical points of topological phase transitions.

Moreover, we consider the parameters of extended Ising

model as γ = 1, δ = −1, h = 1 and change the value

of λ at zero temperature. We can obtain the critical points

of topological phase transitions by solving the characteristic

equation: [29]

g(ζ) = λζ2 + ζ−1 − 1 = 0 (15)

where we can obtain the critical points at λ = 0 for ζ =
1, λ = 2 for ζ = −1, λ = (−

√
5 − 1)/2 for ζ =

exp{±i arccos[(1 −
√
5)/4]}, and λ = (

√
5 − 1)/2 for

ζ = exp{±i arccos[(1+
√
5)/4]}. Similar results of one-way

deficit are shown in Fig. 4.

Therefore, we can conclude that the distinct critical be-

haviors of one-way deficit, presented by the one-way deficit

susceptibility, effectively characterize the topological quan-

tum phase transitions of the extended Ising model. For com-

pleteness, we consider impact of the noise at nonzero temper-

ature, and show one-way deficit and its susceptibility of ther-

mal states at different temperatures in Fig. 5. It is shown that

the extremum points of the one-way deficit susceptibility shift

as the temperature increases, and the detection of topological

phase transition points could be accurate at a low temperature

T ≪ 1.

IV. CONCLUSION

In this paper, we present a method to evaluate the one-way

deficit of the thermal states of two adjacent spins in the bulk

for the XY model and the extended Ising model in the ther-

modynamic limit. The diagram of the one-way deficit and

deficit susceptibility of the ground states of XY model are

plotted. We find it effective to use one-way deficit to detect

quantum phase transitions of the XY model given different

values of the parameter γ. Moreover, we show that the distinct

critical behaviors of one-way deficit, presented by the one-

way deficit susceptibility, effectively characterize the topolog-

ical quantum phase transitions of the extended Ising model.

On one hand, our results may shed lights on the study of prop-

erties of quantum correlations in different quantum phases of

many body systems. On the other hand, our investigations will

also benefit a number of applications in quantum physics in-

cluding the detection of topological orders and the evaluation

of the capacity of quantum computation in critical systems.

Also numerical techniques such as DMRG, MPS and exact di-

agonalization methods deserve to be used to investigate exten-

sive problems of quantum topological phase transitions from

the perspective of quantum information and quantum correla-

tions, including finite-temperature phase transitions, dynami-

cal phase transitions of more quantum many-body models.
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Appendix A: One-way deficit of X states

In this section, we evaluate the one-way deficit of X states

in Eq. (3). Let {Πk = |k〉〈k|, k = 0, 1} be the local measure-

ment on the party b along the computational base |k〉; then any

von Neumann measurement for the party b can be written as

{Bk = VΠkV
† : k = 0, 1} (A1)

given some unitary operator V ∈ U(2). For any V ,

V = tI + i~y · ~σ =

(

t+ y3i y2 + y1i
−y2 + y1i t− y3i

)

. (A2)

with t ∈ R, ~y = (y1, y2, y3) ∈ R
3, and

t2 + y21 + y22 + y23 = 1, (A3)

after the measurement Bk, the state ρab will be changed into

the ensemble {ρk, pk} with

ρk =
1

pk
(I ⊗Bk)ρ(I ⊗Bk), (A4)

pk = Tr(I ⊗Bk)ρ(I ⊗Bk). (A5)



5

To evaluate ρk and pk, we write

pkρk = (I ⊗Bk)ρ(I ⊗Bk)

=
1

4
(I ⊗ V )(I ⊗Πk)[I + rσ3 ⊗ I + sI ⊗ V †σ3V

†

+

3
∑

j=1

cjσj ⊗ (V †σjV )](I ⊗Πk)(I ⊗ V †). (A6)

Using the relations [43]

V †σ1V = (t2 + y21 − y22 − y23)σ1 + 2(ty3 + y1y2)σ2

+2(−ty2 + y1y3)σ3, (A7)

V †σ2V = 2(−ty3 + y1y2)σ1 + (t2 + y22 − y21 − y23)σ2

+2(ty1 + y2y3)σ3, (A8)

V †σ3V = 2(ty2 + y1y3)σ1 + 2(−ty1 + y2y3)σ2

+(t2 + y23 − y21 − y22)σ3, (A9)

and

Π0σ3Π0 = Π0,Π1σ3Π1 = −Π1,ΠjσkΠj = 0, (A10)

for j = 0, 1, k = 1, 2, we obtain

p0ρ0 =
1

4
[I + sz3I + c1z1σ1 + c2z2σ2 + (r + c3z3)σ3]

⊗(VΠ0V
†), (A11)

p1ρ1 =
1

4
[I − sz3I − c1z1σ1 − c2z2σ2 + (r − c3z3)σ3]

⊗(VΠ1V
†), (A12)

where

z1 = 2(−ty2 + y1y3), z2 = 2(ty1 + y2y3), (A13)

z3 = t2 + y23 − y21 − y22 . (A14)

Then, we will evaluate the eigenvalues of
∑

k Πkρ
abΠk by

∑

k Πkρ
abΠk = p0ρ0 + p1ρ1, and

p0ρ0 + p1ρ1 =
1

4
(I + rσ3)⊗ I

+
1

4
(sz3I + c1z1σ1 + c2z2σ2 + c3z3σ3)⊗ V σ3V

†. (A15)

The eigenvalues of p0ρ0 + p1ρ1 are the same with the eigen-

values of the states (I ⊗ V †)(p0ρ0 + p1ρ1)(I ⊗ V ), and

(I ⊗ V †)(p0ρ0 + p1ρ1)(I ⊗ V )

=
1

4
(sz3I + c1z1σ1 + c2z2σ2 + c3z3σ3)⊗ σ3

+
1

4
(I + rσ3)⊗ I. (A16)

The eigenvalues of the states in Eq. (A16) are given in

Eqs. (8,9). Thus, the entropy of
∑

k Πkρ
abΠk is

S(
∑

k

Πkρ
abΠk) = −

4
∑

i=1

wi logwi. (A17)

When γ, h are fixed, r, s, c1, c2, c3 are constant. By us-

ing z21 + z22 + z23 = 1, it converts the problem about

min{Πk} S(
∑

k Πkρ
abΠk) to the problem about the function

of three variables z1, z2, z3 for minimum, that is

min
{Πk}

S(
∑

k

Πkρ
abΠk) = min

{z2

1
+z2

2
+z2

3
=1}
S(

∑

k

Πkρ
abΠk). (A18)

Therefore, by Eqs. (1), (6), (A18), the one-way deficit of X
states in Eq. (3) is obtained as shown in Eq. (7).

Appendix B: Diagonalization, winding numbers and

characteristic complex functions of the extended Ising model,

The Hamiltonian of extended Ising model (10) can be

mapped to a spinless fermion Hamiltonian by the Jordan-

Wigner transformation −c1 = σ+
1 = (σx

1 + iσy
1 )/2, −cj =

σ+
j

∏j−1

i=1
σz
i [30]. In the thermodynamic limit L ≫ 1, we

can use the Bogoliubov-Fourier transformation to rewrite a

Bogoliubov-de Gennes (BdG) Hamiltonian as [30]

H =
∑

φ

(c†φ c−φ)Hφ

(

cφ
c†−φ

)

, (B1)

where the complete set of wavevectors is φ = 2πm/L with

m = −L−1

2
,−L−3

2
, · · · , L−3

2
, L−1

2
. Here, we can write [30]

Hφ = r(φ) · σ (B2)

with the vector r(φ) = (0 Y (φ) Z(φ)) in the auxiliary two-

dimensional y − z space,

Y (φ) = λδ sin(2φ) + γ sinφ, (B3)

Z(φ) = λ cos(2φ) + cosφ− h (B4)

and σ = (σ1 σ2 σ3). The winding number of the closed loop

in auxiliary y− z plane around the origin point can be written

as

ν =
1

2π

∮

(Y dZ − ZdY )/|r|2, (B5)

which is used to identify different topological orders in the

BDI class one-dimensional fermion systems [44].

Using the Bogoliubov transformation cφ = cos Θ

2
ηφ +

i sin Θ

2
η†−φ with tanΘ ≡ Y (φ)/Z(φ), we can diagonalize

the Hamiltonian as

H =
∑

φ

ωφ(η
†
φηφ − 1/2) (B6)

and obtain the ground state as

|G〉 =
∏

φ

[cos
Θ

2
+ i sin

Θ

2
η†φη

†
−φ]|0〉, (B7)

where |0〉 is the vacuum state and the energy spectra are

ωφ =
√

Y (φ)2 + Z(φ)2. (B8)
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Via a substitute ζ(φ) ≡ exp(iφ), the characteristic function is defined as [29]

g(ζ) ≡ Z(φ) + iY (φ) (B9)

= λ[ζ2 + (1− δ)ζ−2/2] + ζ + (1 − γ)ζ−1/2− h (B10)

with which we can calculate the critical points for the quan-

tum topological phase transitions by the characteristic equa-

tion g(ζ) = 0 with |ζ| = 1 required.
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