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We investigate monogamy relations related to quantum entanglement for n−qubit quantum sys-
tems. General monogamy inequalities are presented to the βth (β ∈ (0, 2)) power of concurrence,
negativity and the convex-roof extended negativity, as well as the βth (β ∈ (0,

√
2)) power of en-

tanglement of formation. These monogamy relations are complementary to the existing ones with
different regions of parameter β. In additions, new monogamy relations are also derived which
include the existing ones as special cases.

PACS numbers:

I. INTRODUCTION

Quantum entanglement [1–5] lies at the heart of quantum information processing and quantum computation[6].
Accordingly its quantification has drawn much attention in the last decade. As one of the fundamental differences
between quantum entanglement and classical correlations, a key property of entanglement is that a quantum system
entangled with one of other systems limits its entanglement with the remaining systems. The monogamy relations
give rise to the structures of entanglement distribution in multipartite systems. Monogamy is also an essential feature
allowing for security in quantum key distribution [8].
For a tripartite system A, B and C, the monogamy of an entanglement measure ε implies that [9], the entanglement

betweenA andBC satisfies εA|BC ≥ εAB+εAC . Such monogamy relations are not always satisfied by any entanglement

measures. It has been shown that the squared concurrence C2 [10, 11] and the squared entanglement of formation E2

[12, 13] do satisfy such monogamy relations. In Ref.[14] it has been shown that the general monogamy inequalities are

satisfied by the α(α ≥ 2)th power of concurrence Cα and the α(α ≥
√
2)th power of entanglement of formation Eα

for n−qubit mixed states. Another useful entanglement measure is the negativity[7], a quantitative version of Peres’s
criterion for separability. The authors in Ref.[15] studied the monogamy property of the αth power of negativity

Nα (α ≥ 2) and discussed tighter αth (α ≥ 2) power of the convex-roof extended negativity (CREN) Ñα. In Ref.[16]
tighter monogamy inequalities for concurrence, entanglement of formation and CREN has been investigated for α ≥ 2.
However, it is not clear for the monogamy properties of the αth (0 < α < 2) power of concurrence, negativity

and CREN, and the αth (0 < α <
√
2) power of entanglement of formation. In this paper, we study the general

monogamy inequalities of Cβ , Nβ , Ñβ and Eβ for β ∈ [0,M ], where M is any real number greater than zero.

II. MONOGAMY PROPERTY OF CONCURRENCE

For a bipartite pure state |ψ〉AB , the concurrence is given by [17–19],

C(|ψ〉AB) =
√

2[1− Tr(ρ2A)], (1)

where ρA is reduced density matrix by tracing over the subsystem B, ρA = TrB(|ψ〉AB〈ψ|). The concurrence is
extended to mixed states ρ =

∑

i pi|ψi〉〈ψi|, pi ≥ 0,
∑

i pi = 1, by the convex roof construction,

C(ρAB) = min
{pi,|ψi〉}

∑

i

piC(|ψi〉). (2)

For n−qubit quantum states, the concurrence satisfies [14]

CαA|B1B2...Bn−1
≥ CαAB1

+ ...+ CαABn−1
, (3)

for α ≥ 2, where CA|B1B2...Bn−1
is the concurrence of ρ under bipartite partition A|B1B2...Bn−1, and CABi

, i =
1, 2..., n− 1, is the concurrence of the mixed states ρABi

= TrB1B2...Bi−1Bi+1...Bn−1
(ρ). For CABi

6= 0, i = 1, ..., n− 1,
the concurrence satisfies

CαA|B1...Bn−1
< CαAB1

+ ...+ CαABn−1
, (4)

http://arxiv.org/abs/1812.01134v1


2

for α ≤ 0. Further, in Ref. [16] tighter monogamy inequalities than (3) are derived for the αth (α ≥ 2) power of
concurrence.

Lemma 1 For real numbers x ∈ [0, 1] and t ≥ 1, we have (1 + t)x ≥ 1 + (2x − 1)tx.

[Proof] Let gx(t) =
(1+t)x−1

tx
with x ∈ [0, 1] and t ∈ [1,+∞). Since dgx(t)

dt
= xt−(x+1)[1 − (1 + t)x−1] ≥ 0, we obtain

that gx(t) is an increasing function of t. Hence, gx(t) ≥ gx(1), i.e, (1 + t)x ≥ 1 + (2x − 1)tx.

Theorem 1 For any 2⊗ 2⊗ 2n−2 tripartite mixed state:
(1) if CAB ≤ CAC , the concurrence satisfies

C
β

A|BC ≥ C
β
AB + (2

β
α − 1)CβAC , (5)

where 0 ≤ β ≤ α and α ≥ 2.
(2) if CAB ≥ CAC , the concurrence satisfies

C
β

A|BC ≥ (2
β
α − 1)CβAB + C

β
AC , (6)

where 0 ≤ β ≤ α and α ≥ 2.

[Proof] For arbitrary 2⊗ 2⊗ 2n−2 tripartite state ρABC , one has [14],

CαA|BC ≥ CαAB + CαAC .

If max{CAB, CAC} = 0, i.e., CAB = CAC = 0, obviously we have the inequalities (5) or (6); If min{CAB, CAC} = 0,

obviously Cβ
A|BC ≥ max{CβAB, C

β
AC} ≥ (2

β
α − 1)max{CβAB, C

β
AC} with 0 ≤ β ≤ α, we also have the inequalities (5) or

(6).
If max{CAB, CAC} > 0 and min{CAB, CAC} 6= 0, assuming 0 < CAB ≤ CAC , we have

CαxA|BC ≥ (CαAB + CαAC)
x

= CαxAB

(

1 +
CαAC
CαAB

)x

≥ CαxAB

(

1 + (2x − 1)
(CαAC
CαAB

)x
)

= CαxAB + (2x − 1)CαxAC ,

where the second inequality is due to the inequality (1 + t)x ≥ 1 + (2x − 1)tx for 0 ≤ x ≤ 1 and t =
Cα

AC

Cα
AB

≥ 1. Denote

αx = β. Then β ∈ [0, α] since x ∈ [0, 1] and one gets the inequality (5). If CAB ≥ CAC , similar proof gives the
inequality (6).
One can see that Theorem 1 reduces to the monogamy inequality (3) if β = α ≥ 2. In particular, if we take

β = 1, we have CA|BC ≥ min{CAB, CAC} + (2
1
α − 1)max{CAB, CAC} for α ≥ 2. And the tighter relation is

CA|BC ≥ min{CAB, CAC}+ (
√
2− 1)max{CAB, CAC}.

Example 1. Let us consider the three-qubit case. Any three-qubit state |ψ〉 can be written in the generalized
Schmidt decomposition [14, 20, 21],

|ψ〉 = λ0|000〉+ λ1e
iϕ|100〉+ λ2|101〉+ λ3|110〉+ λ4|111〉, (7)

where λi ≥ 0, i = 0, ..., 4, and
∑4
i=0 λ

2
i = 1. From Eq.(1) and Eq.(2), we have CA|BC = 2λ0

√

λ22 + λ23 + λ24, CAB =
2λ0λ2, and CAC = 2λ0λ3. Without loss of generality, we set λ0 = cos θ0, λ1 = sin θ0 cos θ1, λ2 = sin θ0 sin θ1 cos θ2,
λ3 = sin θ0 sin θ1 sin θ2 cos θ3, and λ4 = sin θ0 sin θ1 sin θ2 sin θ3, θi ∈ [0, π2 ]. Assume λ3 ≥ λ2, i.e CAC ≥ CAB :
(a) if θ2 = π

2 , we have

C
β

A|BC − C
β
AB − (2

β
α − 1)CβAC = (2λ0)

β
[

(λ22 + λ23 + λ24)
β
2 − λ

β
2 − (2

β
α − 1)λβ3

]

= (2λ0)
β sinβ θ0 sin

β θ1

[

1− (2
β
α − 1) cosβ θ3

]

≥ (2λ0)
β sinβ θ0 sin

β θ1(2− 2
β
α )

≥ 0,
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where 0 ≤ β ≤ α, α ≥ 2 and the first inequality is due to cosθ3 ≤ 1;
(b) if θ2 6= π

2 , we denote t1 = sinα θ2 cosα θ3
cosαθ2

. We have

C
β

A|BC − C
β
AB − (2

β
α − 1)CβAC = (2λ0)

β
[

(λ22 + λ23 + λ24)
β
2 − λ

β
2 − (2

β
α − 1)λβ3

]

= (2λ0)
β sinβ θ0 sin

β θ1

[

1− cosβ θ2 − (2
β
α − 1) sinβ θ2 cos

β θ3

]

= (2λ0)
β sinβ θ0 sin

β θ1

[

1− cosβθ2

(

1 + (2
β
α − 1)t

β
α

1

)]

≥ (2λ0)
β sinβ θ0 sin

β θ1

[

1− cosβθ2(1 + t1)
β
α

]

= (2λ0)
β sinβ θ0 sin

β θ1

[

1− (cosαθ2 + sinαθ2cos
αθ3)

β
]

≥ 0,

where 0 ≤ β ≤ α and α ≥ 2. The first inequality is due to Lemma 1 with 0 ≤ x = β
α
≤ 1 and the second inequality is

due to cosαθ2 + sinαθ2cos
αθ3 ≤ 1 for α ≥ 2.

Therefore, for this case we have Cβ
A|BC ≥ C

β
AB + (2

β
α − 1)CβAC for 0 ≤ β ≤ α and α ≥ 2. For the case λ3 ≤ λ2, i.e.,

CAB ≥ CAC , similarly one obtains that Cβ
A|BC ≥ (2

β
α − 1)CβAB + C

β
AC with 0 ≤ β ≤ α and α ≥ 2.

By using the Theorem 1 repeatedly, we have the following theorem for multipartite qubit systems.

Theorem 2 For any n-qubit quantum state ρ such that CABi
≤ CA|Bi+1...Bn−1

for i = 1, ...,m, and CABj
≥

CA|Bj+1...Bn−1
for j = m+ 1, ..., n− 2, ∀1 ≤ m ≤ n− 3, n ≥ 4, we have

Cβ(ρA|B1B2...Bn−1
) ≥

m
∑

i=1

(2
β
α − 1)i−1Cβ(ρABi

) (8)

+ (2
β
α − 1)m+1

n−2
∑

i=m+1

Cβ(ρABi
) + (2

β
α − 1)mCβ(ρABn−1

),

where 0 ≤ β ≤ α and α ≥ 2.

[Proof] For convenience, we denote r = 2
β
α − 1. For any 2⊗ 2⊗ 2⊗ ...⊗ 2 quantum states ρAB1...Bn−1

, we have

C
β

A|B1B2...Bn−1
(ρ)

≥ C
β
AB1

+ rC
β

A|B2...Bn−1

≥ C
β

A|B1
+ rC

β

A|B2
+ r2C

β

A|B3...Bn−2

≥ ...

≥
m
∑

i=1

ri−1C
β
ABi

+ rmC
β

A|Bm+1...Bn−1

≥
m
∑

i=1

ri−1C
β
ABi

+ rm
[

rC
β
ABm+1

+ C
β

A|Bm+2...Bn−1

]

≥ ...

≥
m
∑

i=1

ri−1C
β
ABi

+ rm+1
n−2
∑

i=m+1

C
β
ABi

+ rmC
β
ABn−1

,

where the first four inequalities are due to CABi
≤ CA|Bi+1...Bn−1

(i = 1, ...,m) and the inequality (5), the last three
inequalities are due to CABj

≥ CA|Bj+1...Bn−1
(j = m+ 1, ..., n− 2) and the inequality (6).

For an n-qubit quantum state ρAB1...Bn−1
, in Ref.[14] it has been shown that the βth concurrence Cβ (0 < β < 2)

does not satisfy monogamy inequalities like Cβ(|ψ〉A|B1B2...BN−1
) ≥ ∑n−1

i=1 C
β(ρABi

). Theorem (2) first time gives

the monogamy inequality satisfied by the β−th concurrence Cβ for the case of (0 < β < 2), a problem that was not
solved in Refs.[14, 16]. Specifically, if β = 1 and α = 2, we get the monogamy relation satisfied by the concurrence C:

C(ρA|B1B2...BN−1
) ≥

m
∑

i=1

(
√
2− 1)i−1C(ρABi

) + (
√
2− 1)m+1

n−2
∑

i=m+1

C(ρABi
) + (

√
2− 1)mC(ρABn−1

).
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FIG. 1: u(β, α) for 0 ≤ β ≤ 2 and α ≥ 2.

Example 2. Let us consider the pure state |ψ〉 (7) in the Example 1. Set λ0 =
√
2
2 , λ1 = 1

2 , λ2 = 1
4 , λ3 = 3

√
3

20 and

λ4 =
√
3
5 . We have CA|BC =

√
2
2 ≈ 0.707 and CAB+CAC = 5

√
2+3

√
6

20 ≈ 0.721. One can see that CA|BC < CAB+CAC .

Denoting u(β, α) = C
β

A|BC −C
β
AB − (2

β

α − 1)CβAC = (
√
2
2 )β − (

√
2
4 )β − (2

1
α − 1)(3

√
6

20 )β with 0 ≤ β ≤ α and α ≥ 2, we

have u(1, α) ≥ 0.201 for all α ≥ 2. Furthermore, our result shows that u(β, α) ≥ 0 for all 0 ≤ β ≤ 2 and α ≥ 2, see
Fig. 1.

III. MONOGAMY INEQUALITY FOR NEGATIVITY

Given a bipartite state ρAB, the negativity is defined by [24]

N(ρAB) =
||ρTA

AB|| − 1

2
,

where ρTA

AB is the partially transposed matrix of ρAB with respect to the subsystem A, ||X || = Tr
√
XX† denotes the

trace norm of X . For the convenience of discussion, we use the following definition of negativity:

N(ρAB) = ||ρTA

AB|| − 1.

It has been shown that for any n-qubit pure state |ψ〉A|B1...Bn−1
, the negativity satisfies the monogamy inequality

holds for α ≥ 2 [15]:

Nα
A|B1...Bn−1

(|ψ〉) ≥ Nα
AB1

+ ...+Nα
ABn−1

,

and the polygamy inequality for α ≤ 0 :

Nα
A|B1...Bn−1

(|ψ〉) < Nα
AB1

+ ...+Nα
ABn−1

.

Here NA|B1...Bn−1
(|ψ〉) is the negativity of |ψ〉 under bipartite partition A|B1...Bn−1, and NABi

is the negativity of
the quantum state ρABi

= TrB1...Bi−1Bi+1...Bn−1
(|ψ〉). In the following we study the monogamy property of the βth

power of negativity Nβ for β ∈ (0, 2).

Theorem 3 For any n-qubit quantum pure state |ψ〉 such that CABi
≤ CA|Bi+1...Bn−1

for i = 1, ...,m, and CABj
≥

CA|Bj+1...Bn−1
for j = m+ 1, ..., n− 2, ∀1 ≤ m ≤ n− 3 and n ≥ 4, we have

Nβ(|ψ〉A|B1B2...BN−1
) ≥

m
∑

i=1

(2
β
α − 1)i−1Nβ(ρABi

) (9)

+ (2
β
α − 1)m+1

n−2
∑

i=m+1

Nβ(ρABi
) + (2

β
α − 1)mNβ(ρABn−1

),

where 0 ≤ β ≤ α and α ≥ 2.
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Theorem 3 can be seen by using (8) in theorem 2, and noting that C(|ψ〉A|BC = N(|ψ〉A|BC) for 2⊗t⊗s (t ≥ 2, s ≥ 2)
systems and N(ρAB) ≤ C(ρAB) for 2⊗m systems.
Given a bipartite state ρAB, the CREN is defined as the convex roof extended negativity of pure states [15, 22]

Ñ(ρAB) = min
{pi,|ψi〉}

∑

i

piN(|ψi〉),

with the infimum taking over all possible decompositions of ρAB in a mixture of pure states, ρAB =
∑

i pi|ψi〉〈ψi|,
pi ≥ 0,

∑

i pi = 1.

For a mixed state ρABC in 2 ⊗ 2 ⊗ 2n−2 systems, the following monogamy inequality holds [15], Ñα
A|BC(ρ) ≥

Ñα
AB + Ñα

AC for α ≥ 2, and the following polygamy inequality holds, Ñα
A|BC(ρ) < Ñα

AB + Ñα
AC for α ≤ 0. For

multiqubit mixed states ρAB1...Bn−1
, one has the following monogamy inequality for the αth power of CREN for

α ≥ 2[15]:

Ñα
A|B1...Bn−1

(ρ) ≥ Ñα
AB1

+ ...+ Ñα
ABn−1

,

and the following polygamy inequality for α ≤ 0:

Ñα
A|B1...Bn−1

(ρ) < Ñα
AB1

+ ...+ Ñα
AB1...Bn−1

,

where ÑA|B1...Bn−1
(ρ) is the negativity of ρ under bipartite partition A|B1...Bn−1, and ÑABi

is the negativity of the
quantum state ρABi

= TrB1...Bi−1Bi+1...Bn−1
(ρ).

With a similar consideration to concurrence, we obtain the following result.

Corollary 1 For any 2⊗ 2⊗ 2n−2 mixed state ρABC, and 0 ≤ β ≤ α, α ≥ 2:
(1) if ÑAB ≤ ÑAC , the CREN satisfies

Ñ
β

A|BC ≥ Ñ
β
AB + (2

β
α − 1)Ñβ

AC ; (10)

(2) if ÑAB ≥ ÑAC , the CREN satisfies

Ñ
β

A|BC ≥ (2
β
α − 1)Ñβ

AB + Ñ
β
AC . (11)

Corollary 2 For any n-qubit quantum state ρAB1...Bn−1
such that ÑABi

≤ ÑA|Bi+1...Bn−1
(i = 1, ...,m) and ÑABj

≥
ÑA|Bj+1...Bn−1

(j = m+ 1, ..., n− 2), ∀1 ≤ m ≤ n− 3, n ≥ 4, we have

Ñβ(ρA|B1B2...BN−1
) ≥

m
∑

i=1

(2
β
α − 1)i−1Ñβ(ρABi

) + (2
β
α − 1)m+1

n−2
∑

i=m+1

Ñβ(ρABi
) + (2

β
α − 1)mÑβ(ρABn−1

),

where 0 ≤ β ≤ α and α ≥ 2.

IV. MONOGAMY INEQUALITY FOR EOF

The entanglement of formation (EoF) [23, 24] is a well-defined and important measure of quantum entanglement
for bipartite systems. Let HA and HB be m- and n-dimensional (m ≤ n) vector spaces, respectively. The EoF of a
pure state |ψ〉 ∈ HA ⊗ HB is defined by E(|ψ〉) = S(ρA), where ρA = TrB(|ψ〉〈ψ|) and S(ρ) = Tr(ρ log2 ρ). For a
bipartite mixed state ρAB ∈ HA ⊗HB, the entanglement of formation is given by

E(ρAB) = min
{pi,|ψi〉}

∑

i

piE(|ψi〉),

with the infimum taking over all possible decompositions of ρAB in a mixture of pure states ρAB =
∑

i pi|ψi〉〈ψi|,
where pi ≥ 0 and

∑

i pi = 1.

Denote f(x) = H
(

1+
√
1−x
2

)

, where H(x) = −x log2(x)− (1− x) log2(1 − x). One has [16]

E(ρAB) ≥ f(C2
AB). (12)
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Lemma 2 If 0 ≤ x ≤ y ≤ 1, we have

fβ(x2 + y2) ≥ fβ(x2) + (2
β
α − 1)fβ(y2), (13)

where fβ(x2 + y2) = (f(x2 + y2))β , 0 ≤ β ≤ α and α ≥
√
2.

[Proof] Since 0 ≤ x ≤ y ≤ 1 and f(x) is a monotonically increasing function for 0 ≤ x ≤ 1, one has f(x2) ≤ f(y2)

and fα(x2 + y2) ≥ fα(x2) + fα(y2) for α ≥
√
2 [14]. Let z ∈ [0, 1].

If x = 0, i.e., f(x2) = 0, we have

fαz(x2 + y2) ≥ (fα(x2) + fα(y2))z

= (fα(y2))z

≥ (2z − 1)fαz(y2)).

If x 6= 0, i.e., f(x2) 6= 0, we have

fαz(x2 + y2) ≥ (fα(x2) + fα(y2))z

= fαz(x2)

(

1 +
fα(y2)

fα(x2)

)z

≥ fαz(x2) + (2z − 1)fαz(y2)),

where the last inequality is obtained by using lemma 1. The Lemma 2 is proved by setting αz = β.
It has been shown that the entanglement of formation does not satisfy monogamy inequality such as EAB +

EAC ≤ EA|BC [13]. In [14] the authors showed that Eα(ρA|B1B2...Bn−1
) ≥ ∑n−1

i=1 E
α(ρABi

) for α ≥
√
2, and

Eα(ρA|B1B2...Bn−1
) ≤

∑n−1
i=1 E

α(ρABi
) for α ≤ 0. In Ref. [16] tighter monogamy relation for Eα(α ≥

√
2) has

been derived for n-qubit states.
In fact, applying the same approach to the theorems 1 and 2, we can prove the following results generally:

Theorem 4 For any 2⊗ 2⊗ 2 mixed state ρ ∈ HA ⊗HB ⊗HC, and 0 ≤ β ≤ α, α ≥
√
2.

(1) If CAB ≤ CAC , we have

E
β

A|BC ≥ E
β
AB + (2

β
α − 1)EβAC ; (14)

(2) If CAB ≥ CAC , we have

E
β

A|BC ≥ (2
β
α − 1)EβAB + C

β
AC . (15)

[Proof] Let α ≥
√
2 and β ∈ [0, α]. If CAB ≤ CAC , we have

E
β

A|BC ≥ fβ(C2
A|BC)

≥ fβ(C2
AB + C2

AC)

≥ fβ(C2
AB) + (2

β
α − 1)fβ(C2

AC)

= E
β
AB + (2

β
α − 1)Eβ

AC
,

where the first inequality is due to the inequality (12), the second inequality is obtained from the inequality C2
A|BC ≥

C2
AB + C2

AC , the third inequality holds because of Lemma 2 and the last equality is obtained from E(ρ) = f(C2(ρ))
for two qubit states. The result for the case 2 can be similarly proved.
Example 3. Consider the W state, |W 〉 = 1√

3
(|100〉 + |010〉 + |001〉). We have EA|BC = 0.918296,

EAB = EAC = 0.550048. Therefore, EA|BC < EAB + EAC . It is easily verified that EA|BC > 0.897968 =

maxα≥
√
2

(

EAB + (2
1
α − 1)EAC

)

. Denote u(β, α) = E
β

A|BC − E
β
AB − (2

β
α − 1)EβAC = 0.918296β − 2

β
α × 0.550048β.

For 0 ≤ β ≤ 1 and α ≥
√
2, we have u(β, α) ≥ 0, see Fig.2.

For n−qubit quantum states, we have follow theorem.
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FIG. 2: u(β, α) for 0 ≤ β ≤ 1 and α ≥
√
2.

Theorem 5 For any n−qubit mixed state ρAB1...Bn−1
such that CABi

≤ CA|Bi+1...Bn−1
(i = 1, ...,m) and CABj

≥
CA|Bj+1...Bn−1

(j = m+ 1, ..., n− 2), ∀1 ≤ m ≤ n− 3 and n ≥ 4, we have

E
β

A|B1B2...BN−1
(ρ) ≥

m
∑

i=1

(2
β
α − 1)i−1Eβ(ρABi

) + (2
β
α − 1)m+1

n−2
∑

i=m+1

Eβ(ρABi
) + (2

β
α − 1)mEβ(ρABn−1

),

where 0 ≤ β ≤ α and α ≥
√
2, EA|B1B2...Bn−1

is the entanglement of formation of ρ under bipartite parti-
tion A|B1B2...Bn−1, and EABi

, i = 1, 2..., n − 1, is the entanglement of formation of the mixed state ρABi
=

TrB1B2...Bi−1Bi+1...Bn−1
(ρ).

[Proof] Denote k = 2
β
α − 1. For α ≥

√
2 and β ∈ [0, α], we have

E
β

A|B1B2...BN−1
≥ fβ(C2

A|B1B2...BN−1
) (16)

≥ fβ(C2
AB1

+ C2
A|B2...Bn−1

)

≥ fβ(C2
AB1

) + kfβ(C2
A|B2...Bn−1

)

≥ ...

≥
m
∑

i=1

ki−1fβ(C2
ABi

) + kmfβ(C2
A|Bm+1...Bn−1

)

=

m
∑

i=1

ki−1Eβ(ρABi
) + kmfβ(C2

A|Bm+1...Bn−1
),

where the first inequality is due to (12), the third to the fifth inequalities are due to CA|Bi
≤ CA|Bi+1...Bn−1

(i =
1, ...,m) and Lemma 2. Moreover,

fβ(C2
A|Bm+1...Bn−1

) ≥ fβ(C2
ABm+1

+ C2
A|Bm+2...Bn−1

) (17)

≥ kfβ(C2
A|Bm+1

) + fβ(C2
A|Bm+2...Bn−1

)

≥ ...

≥ k

n−2
∑

i=m+1

fβ(C2
A|Bi

) + fβ(C2
ABn−1

)

= k

n−2
∑

i=m+1

Eβ(ρABi
) + Eβ(ρABn−1

),

where the second to the fourth inequalities are due to CABi
≥ CA|Bi+1...Bn−1

(i = m+ 1, ..., n− 2) and Lemma 2.
Combining (16)and (17) we obtain the theorem 5.
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Theorem 5 gives the monogamy relations satisfied by the βth (0 ≤ β ≤ α, α ≥
√
2) power of EoF for n-qubit states,

which is a problem remained unsolved in Ref.[14, 16] for β ∈ (0,
√
2). If we take β = α ≥

√
2, Theorem 5 reduces to

the result in Ref.[14]. In addition if we take β = 1 and α =
√
2 for theorem 5, we have

E(|ψ〉A|B1B2...Bn−1
) ≥

m
∑

i=1

(2
1

√

2 − 1)i−1E(ρABi
) + (2

1
√

2 − 1)m+1
n−2
∑

i=m+1

E(ρABi
) + (2

1
√

2 − 1)mE(ρABn−1
),

which gives first time the tight monogamy inequality satisfied by the entanglement of formation itself.

V. CONCLUSION

Entanglement monogamy is a fundamental property of multipartite entangled states. We have investigated the
monogamy relations related to the concurrence, the negativity, CREN and the entanglement of formation for general
n-qubit states. We have derived the monogamy inequalities satisfied by Cβ , Nβ , Ñβ for β ∈ (0, 2), and Eβ for

β ∈ (0,
√
2) for n-qubit states. These monogamy relations are complementary to the existing ones with different

regions of parameter β. Our new monogamy relations also include the existing ones as special cases. Our approach
may be used to study further monogamy properties related to other quantum entanglement measures such as Tsallis-q
entanglement and to quantum correlations such as quantum discord.
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