Skip to main content
Log in

The convex set containing two-qutrit maximally entangled states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We construct the convex set \(\mathcal{M}\) of two-qutrit states, and the subset \(\mathcal{P}\subset \mathcal{M}\). We characterize the extremal points of rank one and rank two of \(\mathcal{M}\). We further show that the extremal points of \(\mathcal{P}\) have rank not equaling to two, and at most six. We apply our results to a long-standing conjecture on the locally distinguishable subspace under local operations and classical communications. We prove that rank-one or rank-two matrices in \(\mathcal{M}\) hold for the conjecture. We further simplify the conjecture, by showing that the conjecture holds if and only if it holds for states in \(\mathcal{P}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Buzek, V., Hillery, M., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Deng, F.G., Gui, L.L., Xiao, S.L.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68(4), 113–114 (2003)

    Google Scholar 

  5. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65(3), 032302 (2002)

    Article  ADS  Google Scholar 

  6. Kwiat, P.G., Barraza-Lopez, S., Stefanov, A., Gisin, N.: Experimental entanglement distillation and ’hidden’ non-locality. Nature 409(6823), 1014–7 (2001)

    Article  ADS  Google Scholar 

  7. Sackett, C.A., Kielpinski, D., King, B.E., Langer, C., Meyer, V., Myatt, C.J., Rowe, M., Turchette, Q.A., Itano, W.M., Wineland, D.J.: Experimental entanglement of four particles. Nature 404(6775), 256 (2000)

    Article  ADS  Google Scholar 

  8. Lin, C., Zhu, H., Wei, T.C.: Connections of geometric measure of entanglement of pure symmetric states to quantum state estimation. Phys. Rev. A 83(1), 99–104 (2011)

    Google Scholar 

  9. Facchi, P., Florio, G., Pascazio, S., Pepe, F.: Maximally multipartite entangled states. Phys. Rev. A 77(6), 060304 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  10. O’Meara, C., Pereira, R.: Self-dual maps and symmetric bistochastic matrices. Linear Multilinear Algebra 61(1), 23–34 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Horodecki, M., Horodecki, P.: Reduction criterion of separability and limits for a class of protocols of entanglement distillation. Physics 59(59), 4206–4216 (1997)

    Google Scholar 

  12. Yang, D., Chen, Y.X.: Mixture of multiple copies of maximally entangled states is quasipure. Phys. Rev. A Atomic Mol. Opt. Phys. 69(2), 577–580 (2012)

    Google Scholar 

  13. Ishizaka, S., Hiroshima, T.: Maximally entangled mixed states under nonlocal unitary operations in two qubits. Phys. Rev. A 62(62), 578–592 (2000)

    Google Scholar 

  14. Kent, A.: Entangled mixed states and local purification. Phys. Rev. Lett. 81(14), 2839–2841 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Terhal, B.M., Vollbrecht, K.G.: Entanglement of formation for isotropic states. Phys. Rev. Lett. 85(12), 2625 (2000)

    Article  ADS  Google Scholar 

  16. Flores, M.M., Galapon, E.A.: Mixtures of maximally entangled pure states. Ann. Phys. 372, 297–308 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Kraus, B.: Local unitary equivalence and entanglement of multipartite pure states. Phys. Rev. A 82, 032121 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Vidal, G., Dur, W., Cirac, J.I.: Entanglement cost of bipartite mixed states. Phys. Rev. Lett. 89(2), 027901 (2002)

    Article  ADS  Google Scholar 

  19. Vianna, R.O., Doherty, A.C.: Distillability of werner states using entanglement witnesses and robust semidefinite programs. Phys. Rev. A 74, 052306 (2006)

    Article  ADS  Google Scholar 

  20. Horodecki, P.: Separability criterion and inseparable mixed states with positive partial transposition. Phys. Lett. A 232, 333 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. King, C., Matysiak, D.: On the existence of locc-distinguishable bases in three-dimensional subspaces of bipartite 3 x n systems. J. Phys. A Math. Theor. 40(28), 7939 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Chen, L.: On the locally distinguishable three-dimensional subspace of bipartite systems. J. Phys. A Math. Theor. 51(14), 145301 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank the anonymous referee for improving an earlier version of this paper. This work was supported by the NNSF of China (Grant No. 11871089), Beijing Natural Science Foundation (4173076), and the Fundamental Research Funds for the Central Universities (Grant Nos. KG12040501, ZG216S1810 and ZG226S18C1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L. The convex set containing two-qutrit maximally entangled states. Quantum Inf Process 18, 46 (2019). https://doi.org/10.1007/s11128-018-2159-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-2159-4

Keywords

Navigation