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Standard tripartite nonlocality and genuine tripartite nonlocality can be detected by the violations of Mermin
inequality and Svetlichny inequality, respectively. Since tripartite quantum nonlocality has novel applications in
quantum information and quantum computation, it is important to investigate whether more than three observers
can share tripartite nonlocality, simultaneously. In the present study we answer this question in the affirmative.
In particular, we consider a scenario where three spin- 1

2 particles are spatially separated and shared between Al-
ice, Bob and multiple Charlies. Alice performs measurements on the first particle; Bob performs measurements
on the second particle and multiple Charlies perform measurements on the third particle sequentially. In this
scenario we investigate how many Charlies can simultaneously demonstrate standard tripartite nonlocality and
genuine tripartite nonlocality with single Alice and single Bob. The interesting result revealed by the present
study is that at most six Charlies can simultaneously demonstrate standard tripartite nonlocality with single Al-
ice and single Bob. On the other hand, at most two Charlies can simultaneously demonstrate genuine tripartite
nonlocality with single Alice and single Bob. Hence, the present study shows that standard tripartite nonlo-
cality can be simultaneously shared by larger number of Charlies compared to genuine tripartite nonlocality in
the aforementioned scenario, which implies that standard tripartite nonlocality is more effective than genuine
tripartite nonlocality in the context of simultaneous sharing by multiple observers.

I. INTRODUCTION

Nonlocality is one of the salient features of quantum me-
chanics. It was initially pointed out by Einstein, Podolsky and
Rosen in their famous EPR paper [1] which challenged some
of the greatest thinkers in physics and philosophy on the con-
sistency of the notion of local-realism with quantum mechan-
ics. It was John Bell who first rescued this debate from meta-
physical argument to experimentally testable criteria, known
as Bell’s inequality [2]. Bell’s inequality demonstrates that
quantum mechanics possesses some correlations which can-
not be described by local realistic theory or local hidden vari-
able models [2]. Bells inequality was later improved for real
experimental purposes by Clauser, Horne, Shimony and Holt
(CHSH) [3]. Entanglement [4] in quantum systems is shown
to be necessary for demonstrating quantum nonlocality. How-
ever, the converse may not be true always. Quantum nonlocal
correlations are found to be fundamental resources in various
information processing tasks, such as device independent ran-
domness generation [5], key distribution [6, 7], reductions of
communication complexity [8] and many more.

Since quantum nonlocal correlations are proved to be pre-
cious quantum information theoretic resources, it is legitimate
to ask whether nonlocality can be shared between multiple ob-
servers. However, contrary to classical correlations, quantum
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correlations cannot be shared between arbitrary number of
spatially separated systems, which is quantitatively expressed
through the monogamy relations for entanglement [9] or the
monogamy relations for nonlocality [10]. One important point
to be stressed here is that the no-signalling condition (the
probability of obtaining one party’s outcome does not depend
on spatially separated other party’s setting), a consequence of
relativistic causality principle, is satisfied between any pair of
observers in case of the multipartite scenario considered in
the monogamy context. Hence, it is interesting to ask whether
sharing of nonlocality among multiple observers can be im-
proved invoking a scenario where no-signalling assumption is
partially relaxed without violating relativistic causality. Silva
et. al. addressed the above issue in the affirmative by con-
sidering a scenario that involves sequential measurements on
one particle by multiple observers [11]. In particular, the sce-
nario is that one observer (say, Alice) in one wing and mul-
tiple observers (say, multiple Bobs) in the other wing share
an entangled system of two spin- 1

2 particles, where Alice is
spatially separated from multiple Bobs. Alice performs mea-
surements on one spin- 1

2 particle and multiple Bobs measure
on another spin- 1

2 particle sequentially. In this scenario it has
been shown numerically [11] as well as analytically [12] that
at most two Bobs can simultaneously demonstrate nonlocal-
ity with single Alice with respect to the quantum violations of
CHSH inequality, when each of the multiple Bobs performs
different measurements with equal probability and when the
measurements of each Bob are independent of the choices of
measurement settings and outcomes of previous Bobs. Ex-
periments have also been carried out confirming the above re-
sult [13, 14]. Note that monogamy relations for nonlocality
states that two observer cannot simultaneously demonstrate
nonlocality with respect to the quantum violations of CHSH
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inequality with a third observer [10].
Recently, quantum steering [15–17] of a single system se-

quentially by multiple observers in the above scenario has also
been demonstrated [18], going beyond monogamy constraint
of quantum steering [19, 20]. Sharing of entanglement by
multiple observers measuring sequentially in the above sce-
nario has been demonstrated [21]. Sharing of nonlocal advan-
tage of quantum coherence [22] in the above scenario has also
been presented recently [23].

Quantum nonlocality is well understood in the bipartite
scenario. However, multipartite nonlocality is significantly
less explored than its bipartite counterpart and the complex-
ity increases in multipartite scenario resulting in more elegant
and sophisticated foundational significances. Mermin derived
Bell-type inequality in order to capture standard tripartite non-
locality (or, Bell nonlocality) [24]. However, Mermin’s in-
equality does not incorporate “genuineness” of tripartite non-
locality. A multipartite state is called genuine nonlocal if and
only if the state is nonlocal with respect to any possible par-
titions of the multipartite state. For a tripartite system, the
conventionally employed inequality, whose violation implies
genuine tripartite nonlocality, is due to Svetlichny [25]. Mer-
min inequality and Svetlichny inequality can be violated by
both Greenberger-Horne-Zeilinger (GHZ) [26] and W classes
of states for three qubits [27–29].

Besides having foundational significances [30], multipar-
tite quantum correlations are used as resources in quantum
communication and quantum computation as evidenced by a
wide range of theoretical and experimental studies [31–44].
Hence, it is significant to investigate how n-partite quantum
correlation can be used as resource by more than n observers,
simultaneously, by performing sequential measurements. Sur-
prisingly, all the previous studies addressing quantum correla-
tion sharing by multiple sequential observers were restricted
to two spatially separated particles. The generalization of the
above feature of quantum correlation to multiple spatially sep-
arated particles remains unexplored till date. Motivated by
these facts, in the present study we investigate sharing of tri-
partite nonlocality in the scenario where three spin- 1

2 particles
are spatially separated and shared between, say, Alice, Bob
and multiple Charlies. Alice measures on the first particle;
Bob measures on the second particle and multiple Charlies
measure on the third particle sequentially. In this scenario
we investigate how many Charlies can demonstrate standard
tripartite nonlocality as well as genuine tripartite nonlocality
through quantum violations of Mermin inequality [24] and
Svetlichny inequality [25], respectively. Besides providing
a new dimension in the context of nonlocality sharing, the
present study seeks to demonstrate a new method to opera-
tionally distinguish two inequivalent forms of tripartite nonlo-
cality, standard and genuine tripartite nonlocality.

The paper is organized as follows: in Sec. II we recapitu-
late the notions of standard as well as genuine tripartite non-
locality followed by Sec. III, where we describe in detail the
measurement scenario considered in the present study and the
unsharp measurement formalism. In Secs. IV and V we in-
vestigate sharing of standard tripartite nonlocality and genuine
tripartite nonlocality, respectively, contingent upon using se-

quential measurements in the scenario considered. Finally, in
Sec. VI we present the concluding discussion.

II. RECAPITULATING TRIPARTITE NONLOCALITY

Now we are going to discuss the concept of tripartite non-
locality. Consider a tripartite Bell scenario where each of
three spatially separated parties, say, Alice, Bob and Char-
lie performs two dichotomic measurements on their subsys-
tems. In this scenario the correlation is described by the con-
ditional probability distributions P(a, b, c|Ax, By,Cz), where
x, y, z ∈ {0, 1} and a, b, c ∈ {+1,−1}. x, y, z denote the choices
of measurement settings of Alice, Bob and Charlie, respec-
tively; a, b, c denote the outcomes of Alice, Bob and Charlie,
respectively. The correlation P(a, b, c|Ax, By,Cz) is fully local
iff, for all x, y, z, a, b, c, it can be explained by a fully local
hidden variable (LHV) model given by,

P(a, b, c|Ax, By,Cz) =
∑
ξ

p(ξ)P(a|Ax, ξ)P(b|By, ξ)P(c|Cz, ξ),

(1)
where p(ξ) is the probability distribution over the hidden vari-
ables ξ; 0 ≤ p(ξ) ≤ 1 and

∑
ξ p(ξ) = 1. P(a|Ax, ξ) denotes

the conditional probability of getting outcome a when Alice
performs the measurement Ax on her subsystem and ξ is the
hidden variable. P(b|By, ξ), P(c|Cz, ξ) are similarly defined.
The correlation P(a, b, c|Ax, By,Cz) exhibits standard tripartite
nonlocality (i. e., Bell nonlocality) iff it is not fully local.

Standard tripartite nonlocality is detected by violation of
the Mermin inequality [24], which has the following form,

M = |〈A1B0C0〉+〈A0B1C0〉+〈A0B0C1〉−〈A1B1C1〉| ≤ 2. (2)

Here 〈AxByCz〉 =
∑

abc(abc)P(a, b, c|Ax, By,Cz). The maxi-
mum violation of the Mermin inequality in quantum mechan-
ics is 4. Note that Mermin inequality is maximally violated by
a GHZ state [26] and the measurement settings that give rise
to it exhibit the GHZ paradox [45].

If a correlation violates Mermin inequality, it does not nec-
essarily imply that the correlation exhibits genuine tripartite
nonlocality [25, 46]. Svetlichny introduced the strongest form
of genuine tripartite nonlocality in Ref. [25] (see Ref. [46]
for the other two forms of genuine nonlocality). A correlation
demonstrates genuine tripartite nonlocality iff it does not have
the following hybrid nonlocal-local hidden variable (NLHV)
model,

P(a, b, c|Ax, By,Cz)=
∑
ξ

p(ξ)P(b, c|By,Cz, ξ)P(a|Ax, ξ)

+
∑
ξ

q(ξ)P(a, c|Ax,Cz, ξ)P(b|By, ξ)

+
∑
ξ

r(ξ)P(a, b|Ax, By, ξ)P(c|Cz, ξ), (3)

where p(ξ), q(ξ), r(ξ) are three probability distributions over
the hidden variables ξ;

∑
ξ p(ξ) +

∑
ξ q(ξ) +

∑
ξ r(ξ) = 1. The

bipartite probability distribution P(a, b|Ax, By, ξ) denotes the



3

conditional probability of getting outcomes a and b when the
measurement setting are Ax and By, respectively, and ξ is the
hidden variable. P(b, c|By,Cz, ξ) and P(a, c|Ax,Cz, ξ) are de-
fined similarly. Each of the bipartite probability distributions
in the above decomposition can have arbitrary nonlocality.

Genuine tripartite nonlocality is detected by violation of the
Svetlichny inequality [25], which has the following form,

S = |〈A0B0C0〉 + 〈A1B0C0〉 − 〈A0B1C0〉 + 〈A1B1C0〉

+ 〈A0B0C1〉 − 〈A1B0C1〉 + 〈A0B1C1〉 + 〈A1B1C1〉| ≤ 4.
(4)

The magnitude of maximum quantum violation of Svetlichny
inequality is 4

√
2. GHZ state gives rise to this maximal quan-

tum violation of Svetlichny inequality for a different choice of
measurement settings which do not demonstrate GHZ para-
dox [45].

III. SETTING UP THE SCENARIO VIA WEAK
MEASUREMENT FORMALISM

Let us consider a scenario where three spin- 1
2 particles are

prepared in the state ρ. These three particles are spatially sep-
arated and shared between Alice, Bob and multiple Charlies
(i. e., Charlie1, Charlie2, Charlie3, ..., Charlien). Alice per-
forms measurements on the first particle; Bob performs mea-
surements on the second particle and multiple Charlies per-
form measurements on the third particle sequentially. Initially,
Charlie1 performs measurements on the third particle and af-
ter doing measurements he delivers the particle to Charlie2,
Charlie2 also passes the particle to Charlie3 after doing mea-
surements and so on. This scenario is depicted in Fig. 1.
One important point to be stressed here is that, in this sce-
nario considered by us, each Charlie performs measurements
independent of the measurement choices and outcomes of the
previous Charlies on the particle of his possession. Moreover,
we are considering unbiased input scenario, i. e., all possible
measurement settings of each Charlie are equally probable.

Note that in the above scenario no-signaling condition (the
probability of obtaining one party’s outcome does not depend
on spatially separated other parties’ settings) is satisfied be-
tween Alice, Bob and any Charlie as they are spatially sepa-
rated and they perform measurements on three different parti-
cles. On the other hand, no-signaling condition is not satisfied
between different Charlies. Because different Charlies per-
form measurements on the same particle sequentially. In fact,
Charliem−1 signals to Charliem (where m ∈ {2, ..., n}) by his
choices of measurements on the state of the particle before he
passes it on.

Against the above backdrop, we investigate how many
Charlies can demonstrate tripartite nonlocality or genuine tri-
partite nonlocality with single Alice and single Bob. To be
precise, we want to explore how many Charlies can have
measurement statistics with single Alice and single Bob vi-
olating Mermin inequality (2) and Svetlichny inequality (4),
respectvely. In this case, each of the Charlies except the fi-
nal Charlie cannot measure sharply. If any Charlie measures

FIG. 1. Sharing Tripartite Nonlocality Task: Consider a scenario
where three spin- 1

2 particles are prepared in the state ψ. These three
particles are spatially separated and shared between Alice, Bob and
multiple Charlies. Alice performs measurements on the first parti-
cle; Bob performs measurements on the second particle and multiple
Charlies perform measurements on the third particle sequentially.

sharply, i.e., performs projective measurements, then there
would be no possibility of violation of the Mermin inequal-
ity or Svetlichny inequality by the next Charlie, since the en-
tanglement of the state shared between Alice, Bob and the
subsequent Charlie would be completely destroyed. Hence,
in order to address the aforementioned problem with n Char-
lies, the measurements of the first (n − 1) Charlies should be
weak. In the present study we will follow the unsharp version
of the weak measurement formalism discussed in [12, 18]. For
completeness we briefly recapitulate in the following the weak
measurement scheme introduced in [11] and then unsharp ver-
sion of that considered in [12, 18].

In standard von Neuman measurement, after an interaction
with a meter having the state φ(q), the state |ψ〉 (|ψ〉 = a|0〉 +

b|1〉, |0〉 and |1〉 form orthonormal basis in C2, |a|2 + |b|2 = 1)
of a spin- 1

2 particle becomes

a|0〉 ⊗ φ(q − 1) + b|1〉 ⊗ φ(q + 1). (5)

Weak version of this ideal measurement is characterised by
two parameters: the quality factor F and the precision G of the
measurements. Quality factor is given by, F(φ) =

∫ ∞
−∞
〈φ(q +

1)|φ(q−1)〉dq. It quantifies the extent to which the state of the
system remains undisturbed after the measurement. Precision
of measurement is defined as G =

∫ 1
−1 φ

2(q)dq. It quantifies
the information gain from measurement. In case of strong
projective measurement, F = 0 and G = 1. An optimal
pointer state is defined as the one which gives the best trade-
off between these two quantities, i. e., for a given quality fac-
tor, it provides the greatest precision. It has been shown that
the information-disturbance trade-off condition for an optimal
pointer is given by, F2 + G2 = 1 [11].

This weak measurement formalism can be recast through
the unsharp measurement formalism [12, 18], which is a par-
ticular class of positive operator valued measurement (POVM)
[47, 48]. POVM is a set of positive operators that add to iden-
tity, i. e., E ≡ {Ei|

∑
i Ei = I, 0 < Ei ≤ I}. Effects (Eis)

represent quantum events that may occur as outcomes of a
measurement. In case of dichotomic unsharp measurement
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formalism, the effect operators are given by,

Eλ
± = λP± + (1 − λ)

I2
2
, (6)

where λ (0 < λ ≤ 1) is the sharpness parameter, P+ (P−) is
the projector associated with the outcome +1 (−1), I2 is the
2 × 2 identity matrix. The probability of getting the outcome
+1 and −1 are Tr[ρEλ

+] and Tr[ρEλ
−], respectively, where ρ is

the state on which the measurement is performed. The post-
measurement states are determined by Luder transformation
rule. In case of above dichotomic unsharp measurement per-
formed on the state ρ, the states after the measurements are

given by

√
Eλ

+ρ
√

Eλ
+

Tr[Eλ
+ρ]

and

√
Eλ
−ρ
√

Eλ
−

Tr[Eλ
−ρ]

when +1 and −1 out-

comes are obtained, respectively.
The quality factor F and the precision G defined in the

context of aforementioned weak measurement formalism are
related to the unsharp measurement formalism through F =
√

1 − λ2 and G = λ [12, 18]. Hence, it is evident that the
sharpness parameter λ characterizes the precision of the mea-
surement. For G = λ = 1, F becomes zero, which is the
case of sharp projective measurement. Hence, in unsharp
measurement formalism, the optimal pointer state condition,
F2 + G2 = 1, is automatically satisfied. In the following we
will consider the measurements of all the Charlies except the
final Charlie to be unsharp.

IV. SHARING OF STANDARD TRIPARTITE
NONLOCALITY BY MULTIPLE CHARLIES

In this Section we explore how many Charlies can simul-
taneously demonstrate standard tripartite nonlocality through
the quantum violations of Mermin inequality (2) with single
Alice and single Bob in the scenario discussed in Section III.
Note that Mermin inequality (2) is maximally violated by tri-
partite GHZ state [26] ρGHZ = |ψGHZ〉〈ψGHZ |, where

|ψGHZ〉 =
1
√

2
(|000〉 + |111〉). (7)

Here {|0〉, |1〉} form an orthonormal basis in C2. Hence, in or-
der to probe optimal sharing of standard tripartite nonlocality
through the quantum violation of Mermin inequality (2), we
consider that Alice, Bob and multiple Charlies initially share
tripartite GHZ state given by Eq. (7). Suppose, Alice has a
choice between two dichotomic measurements: spin compo-
nent observables in the directions {x̂0, x̂1} to perform; Bob has
the choice between spin component observables in the direc-
tions {ŷ0, ŷ1} to perform; and Charliem (where m ∈ {1, 2, ..., n})
has the choice between spin component observables in the di-
rections {ẑm

0 , ẑ
m
1 } to perform. Outcomes of these measurements

are labeled by {+1,−1}.
We assume that the two possible choices of measurement

settings of Alice are the spin component observables in the
directions x̂i given by,

x̂i = sin θx
i cos φx

i X̂ + sin θx
i sin φx

i Ŷ + cos θx
i Ẑ, (8)

where 0 ≤ θx
i ≤ π; 0 ≤ φx

i ≤ 2π and i ∈ {0, 1}. X̂, Ŷ , Ẑ are
three orthogonal unit vectors in Cartesian coordinates. The
two possible choices of measurement settings of Bob are the
spin component observables in the directions ŷi given by,

ŷi = sin θy
i cos φy

i X̂ + sin θy
i sin φy

i Ŷ + cos θy
i Ẑ, (9)

where 0 ≤ θy
i ≤ π; 0 ≤ φy

i ≤ 2π and i ∈ {0, 1}. Similarly, the
two possible choices of measurement settings of Charliem are
the spin component observables in the directions ẑm

i given by,

ẑm
i = sinθzm

i cosφzm

i X̂ + sinθzm

i sinφzm

i Ŷ + cosθzm

i Ẑ, (10)

where 0 ≤ θzm

i ≤ π; 0 ≤ φzm

i ≤ 2π and i ∈ {0, 1}.
Suppose P(a, b, c1, c2|x̂i, ŷ j, ẑ1

k , ẑ
2
l ) denotes joint probabil-

ity of obtaining the outcomes a, b, c1, c2 when Alice, Bob,
Charlie1 and Charlie2 measures spin component observables
in the directions x̂i, ŷ j, ẑ1

k and ẑ2
l , respectively (a, b, c1, c2

∈ {+1,−1}; i, j, k, l ∈ {0, 1}). In the following we consider that
Alice and Bob perform sharp measurements; Charliem (where
m ∈ {1, 2, ..., (n − 1)}) performs unsharp measurements with
sharpness parameter λm.

P(a, b, c1, c2|x̂i, ŷ j, ẑ1
k , ẑ

2
l ) can be evaluated using the Born

rule given below:

P(a, b, c1, c2|x̂i, ŷ j, ẑ1
k , ẑ

2
l ) = Tr

[
Eλ2

c2 · ρ
C2

un

]
. (11)

Here Eλ2

c2 = λ2
I2 + c2ẑ2

l · ~σ

2
+ (1 − λ2)

I2
2

; ~σ = (σ1, σ2, σ3) is

a vector composed of Pauli matrices. ρC2

un is the unnormalized
state at Charlie2’s side when the outcomes a, b, c1 are ob-
tained by Alice, Bob, Charlie1 by performing measurements
of the spin component observables in the directions x̂i, ŷ j, ẑ1

k ,
respectively and ρC2

un is given by,

ρC2

un = TrAB

[{ I2 + ax̂i · ~σ

2
⊗
I2 + bŷ j · ~σ

2
⊗

√
Eλ1

c1

}
· ρGHZ ·

{ I2 + ax̂i · ~σ

2
⊗
I2 + bŷ j · ~σ

2
⊗

√
Eλ1

c1

}]
, (12)

where,√
Eλ1

c1 =

√
1 + λ1

2
I2 + c1ẑ1

k · ~σ

2
+

√
1 − λ1

2
I2 − c1ẑ1

k · ~σ

2
(13)

TrAB[...] denotes partial trace over the subsystems of Alice
and Bob. From Eq.(11) one can obtain P(a, b, c2|x̂i, ŷ j, ẑ1

k , ẑ
2
l ),

the joint probability of obtaining the outcomes a, b, c2 when
Alice, Bob, Charlie2 measures spin component observables in
the directions x̂i, ŷ j, ẑ2

l , respectively and given that Charlie1

has performed spin component observables in the directions
ẑ1

k ,:

P(a, b, c2|x̂i, ŷ j, ẑ1
k , ẑ

2
l ) =

∑
c1=+1,−1

P(a, b, c1, c2|x̂i, ŷ j, ẑ1
k , ẑ

2
l ).

(14)
Let C2

i jkl denotes the correlation between Alice, Bob and
Charlie2 when Alice, Bob, Charlie1 and Charlie2 measures
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spin component observables in the directions x̂i, ŷ j, ẑ1
k and

ẑ2
l , respectively. From the above joint probability (14) the cor-

relation C2
i jkl can be obtained in the following way,

C2
i jkl =

∑
a=+1,−1

∑
b=+1,−1

∑
c2=+1,−1

(abc2)P(a, b, c2|x̂i, ŷ j, ẑ1
k , ẑ

2
l ).

(15)
Since Charlie2 is ignorant about the measurement settings

of Charlie1, the above correlation has to be averaged over the
two possible measurement settings of Charlie1 (spin compo-
nent observables in the directions {ẑ1

0, ẑ
1
1}). This average cor-

relation function between Alice, Bob and Charlie2 is given by,

C2
i jl =

∑
k=0,1

C2
i jklP(ẑ1

k), (16)

where P(ẑ1
k) is the probability with which Charlie1 performs

measurement of spin component observables in the direction
ẑ1

k (k ∈ {0, 1}). Since we are considering an unbiased input
scenario, all the possible measurement settings of Charlie1 are
equally probable, i. e., P(ẑ1

0) = P(ẑ1
1) = 1

2 .
In a similar way the average correlation between Alice, Bob

and any Charliem, Cm
i jl (i, j, l ∈ {0, 1}, m ∈ {1, 2, 3, ..., n}), can

be evaluated. Using these average correlations the Mermin
inequality (2) for Alice, Bob and Charliem can be expressed
as follows:

Mm = |Cm
100 + Cm

010 + Cm
001 −Cm

111| ≤ 2, (17)

whose violation implies that standard tripartite nonlocality is
demonstrated by Alice, Bob and Charliem.

Now we want to find out whether Charlie1 and Charlie2

can simultaneously demonstrate standard tripartite nonlocal-
ity with Alice and Bob. Consider the measurements of the
final Charlie, i. e., Charlie2 to be sharp (λ2 = 1), and the mea-
surements of Charlie1 to be unsharp. We observe that, when
Charlie1 gets 5% violation of the Mermin inequality (17), i.
e., when M1 = 2.10, then the maximum quantum violation
of Mermin inequality (17) obtained by Charlie2 is 85%, i.e.,
M2 = 3.70. This happens for the choice of measurement set-
tings: (θx

0, φx
0, θx

1, φx
1, θy

0, φy
0, θy

1, φy
1, θz1

0 , φz1

0 , θz1

1 , φz1

1 , θz2

0 , φz2

0 ,
θz2

1 , φz2

1 ) ≡ ( π2 , π
2 , π

2 , 0, π
2 , π

2 , π
2 , 0, π

2 , π
2 , π

2 , 0, π
2 , π

2 , π
2 , 0) with

λ1 = 0.52.
Next, we address the question whether Charlie1, Charlie2

and Charlie3 can simultaneously demonstrate standard tripar-
tite nonlocality with Alice and Bob. In this case, the measure-
ments of the final Charlie, i. e., Charlie3 are sharp (λ3 = 1),
and the measurements of Charlie1 and Charlie2 are unsharp.
In this case we observe that, when each of the quantum vi-
olations of Mermin inequality (17) by Alice, Bob, Charlie1

and Alice, Bob, Charlie2 is 5%, i. e., when M1 = 2.10 and
M2 = 2.10, then the maximum quantum violation of Mer-
min inequality (17) by Alice, Bob, Charlie3 is 69%, i. e.,
M3 = 3.38. This happens for the choice of measurement set-
tings: (θx

0, φx
0, θx

1, φx
1, θy

0, φy
0, θy

1, φy
1, θz1

0 , φz1

0 , θz1

1 , φz1

1 , θz2

0 , φz2

0 ,
θz2

1 , φz2

1 , θz3

0 , φz3

0 , θz3

1 , φz3

1 ) ≡ ( π2 , π
2 , π

2 , 0, π
2 , π

2 , π
2 , 0, π

2 , π
2 , π

2 , 0,
π
2 , π

2 , π
2 , 0, π

2 , π
2 , π

2 , 0) with λ1 = 0.52 and λ2 = 0.57. Hence,

it is possible for Charlie1, Charlie2 and Charlie3 to simulta-
neously demonstrate standard tripartite nonlocality with Alice
and Bob.

Proceeding in a similar way we observe that Charlie1,
Charlie2, Charlie3, Charlie4, Charlie5, Charlie6 can simulta-
neously demonstrate standard tripartite nonlocality with Al-
ice and Bob. Now we want to investigate whether Charlie1,
Charlie2, Charlie3, Charlie4, Charlie5, Charlie6 and Charlie7

can simultaneously demonstrate standard tripartite nonlocal-
ity with single Alice and single Bob. Here the measurements
of the final Charlie, i. e., Charlie7 are sharp (λ7 = 1), and the
measurements of all other Charlies are unsharp. In this case
we observe that, when each of the quantum violations of Mer-
min inequality (17) by Charlie1, Charlie2, Charlie3, Charlie4,
Charlie5, Charlie6 is 2.5%, i. e., when M1 = 2.05, M2 = 2.05,
M3 = 2.05, M4 = 2.05, M5 = 2.05, M6 = 2.05, then the
maximum quantum value of the left hand side of Mermin in-
equality (17) by Alice, Bob, Charlie7 is M7 = 1.49. In fact,
it is observed that when M1 = 2, M2 = 2, M3 = 2, M4 = 2,
M5 = 2, M6 = 2, then the maximum quantum value of the left
hand side of Mermin inequality (17) by Alice, Bob, Charlie7

is M7 = 1.76. Hence, Charlie1, Charlie2, Charlie3, Charlie4,
Charlie5, Charlie6, Charlie7 cannot demonstrate standard tri-
partite nonlocality via violation of Mermin inequality with Al-
ice and Bob simultaneously.

It is to be noted here that Charlie7 may obtain quantum me-
chanical violation of the Mermin inequality if the sharpness
parameter of any previous Charlie is small enough not to get
a violation. In fact, it can be easily checked that Alice and
Bob can demonstrate standard tripartite nonlocality through
the quantum violation of Mermin inequality (17) with at most
any six Charlies on one side, simultaneously.

Though Mermin inequality is not maximally violated by W-
state, given by |ψW〉 =

1
√

3
(|001〉+ |010〉+ |100〉), we also inves-

tigate the above issue when W state is initially shared between
Alice, Bob and multiple Charlies as W state and GHZ state are
two inequivalent three qubit maximally entangled states [49].
It is observed that at most three Charlies can demonstrate stan-
dard tripartite nonlocality through the quantum violation of
Mermin inequality (2) with single Alice and single Bob in the
scenario described in Section III when W state is shared.

In the next Section we address the same question discussed
above in the context of genuine tripartite nonlocality.

V. SHARING OF GENUINE TRIPARTITE NONLOCALITY
BY MULTIPLE CHARLIES

Since tripartite nonlocality and genuine tripartite nonlo-
cality are fundamentally different, we also investigate how
many Charlies can demonstrate genuine tripartite nonlocal-
ity through the quantum violations of Svetlichny inequality
(4) with single Alice and single Bob in the scenario discussed
in Section III. Since Svetlichny inequality (4) is maximally
violated by tripartite GHZ state (7), in this case also we con-
sider that GHZ state is initially shared between Alice, Bob and
multiple Charlies. The two possible choices of measurement
settings of Alice, Bob and Charliem are the spin component
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observables in the directions x̂i given by Eq.(8), ŷi given by
Eq.(9) and ẑm

i given by Eq.(10), respectively, where i ∈ {0, 1}.
Outcomes of these measurements are labeled by {−1,+1}.

Using the average correlations Cm
i jl between Alice, Bob and

Charliem calculated by following the procedure described in
Section IV, the Svetlichny inequality (4) for Alice, Bob and
Charliem can be expressed as follows:

S m =|Cm
000 + Cm

100 −Cm
010 + Cm

110 + Cm
001 −Cm

101 + Cm
011 + Cm

111|

≤ 4, (18)

whose violation implies that genuine tripartite nonlocality is
demonstrated by Alice, Bob and Charliem.

Now we are going to find out whether Charlie1 and Charlie2

can simultaneously demonstrate genuine tripartite nonlocal-
ity with Alice and Bob. Here the measurements of the final
Charlie, i. e., Charlie2 are sharp (λ2 = 1), and the mea-
surements of Charlie1 are unsharp. We observe that, when
Charlie1 gets 5% violation of the Svetlichny inequality (18),
i. e., when S 1 = 4.20, then the maximum quantum viola-
tion of Svetlichny inequality (18) obtained by Charlie2 is 18%,
i.e., S 2 = 4.72. This happens for the choice of measurement
settings: (θx

0, φx
0, θx

1, φx
1, θy

0, φy
0, θy

1, φy
1, θz1

0 , φz1

0 , θz1

1 , φz1

1 , θz2

0 ,
φz2

0 , θz2

1 , φz2

1 ) ≡ ( π2 , π
2 , π

2 , 0, π
2 , π

2 , π
2 , 0, π

2 , π
4 , π

2 , 3π
4 , π

2 , π
4 , π

2 ,
3π
4 ) with λ1 = 0.74. Most importantly, it is observed that for
λ1 ∈ [0.71, 0.91] both Charlie1 and Charlie2 can demonstrate
genuine tripartite nonlocality with Alice and Bob simultane-
ously.

Next, we are interested in the question whether Charlie1,
Charlie2 and Charlie3 can demonstrate genuine tripartite non-
locality with single Alice and single Bob simultaneously. In
this case, the measurements of the final Charlie, i. e., Charlie3

are sharp (λ3 = 1), and the measurements of Charlie1 and
Charlie2 are unsharp. In this case we observe that, when each
of the quantum violations of Svetlichny inequality (18) by
Alice, Bob, Charlie1 and Alice, Bob, Charlie2 is 5%, i. e.,
when S 1 = 4.20 and M2 = 4.20, then the maximum quan-
tum value of the left hand side of Svetlichny inequality (18)
by Alice, Bob, Charlie3 is S 3 = 3.44. In fact, when S 1 = 2,
S 2 = 2, then the maximum quantum value of the left hand
side of Svetlichny inequality (18) by Alice, Bob, Charlie3 is
S 3 = 3.77. This happens for the choice of measurement set-
tings: (θx

0, φx
0, θx

1, φx
1, θy

0, φy
0, θy

1, φy
1, θz1

0 , φz1

0 , θz1

1 , φz1

1 , θz2

0 , φz2

0 ,
θz2

1 , φz2

1 , θz3

0 , φz3

0 , θz3

1 , φz3

1 ) ≡ ( π2 , π
2 , π

2 , 0, π
2 , π

2 , π
2 , 0, π

2 , π
4 , π

2 ,
3π
4 , π

2 , π
4 , π

2 , 3π
4 , π

2 , π
4 , π

2 , 3π
4 ) with λ1 = 0.71 and λ2 = 0.83.

Hence, it is impossible for Charlie1, Charlie2 and Charlie3 to
simultaneously demonstrate genuine tripartite nonlocality via
violation of Svetlichny inequality with Alice and Bob.

It is to be noted here that Charlie3 may obtain quantum me-
chanical violation of the Svetlichny inequality if the sharp-
ness parameter of Charlie1 or that of Charlie2 is small enough
not to get a violation. In fact, it can be easily checked that
Alice and Bob can demonstrate genuine tripartite nonlocality
through the quantum violation of Svetlichny inequality (18)
with any of the combinations: (Charlie1, Charlie2), (Charlie1,
Charlie3), (Charlie2, Charlie3), simultaneously.

In this case also we investigate the above issue when W

state is initially shared between Alice, Bob and multiple Char-
lies. It is observed that at most one Charlie can demonstrate
genuine tripartite nonlocality through the quantum violation
of Svetlichny inequality (4) with single Alice and single Bob
in the scenario described in Section III when W state is shared.

VI. CONCLUDING DISCUSSION

Tripartite as well as multipartite quantum correlations have
various applications in quantum communication and quantum
computation [31–44]. Hence, from foundational aspect as
well as from quantum information theoretic perspective it is
legitimate to ask whether more than three observers can share
tripartite nonlocality, simultaneously. In the present study,
contingent upon considering a particular scenario, we have
answered this question in the affirmative. Moreover, we have
demonstrated that standard tripartite nonlocality can be simul-
taneously shared by more number of observers (Charlies), per-
forming sequential measurements on one particle, compared
to genuine tripartite nonlocality in the particular scenario con-
sidered in Fig.1. Hence, we can state that standard tripartite
nonlocality is more effective than genuine tripartite nonlocal-
ity in the context of simultaneous sharing by multiple ob-
servers.

In particular, we have considered a scenario where three
spin- 1

2 particles are spatially separated and shared between
Alice, Bob and multiple Charlies. Alice performs measure-
ments on the first particle; Bob performs measurements on
the second particle and multiple Charlies perform measure-
ments on the third particle sequentially. Moreover, we have
assumed that all possible measurement settings of each Char-
lie are equally probable and each Charlie performs measure-
ments independent of the choices of measurement settings and
outcomes of previous Charlies. In this scenario we have in-
vestigated how many Charlies can simultaneously show tri-
partite nonlocality with single Alice and single Bob. Inter-
estingly, we have shown that at most six Charlies can simul-
taneously demonstrate standard tripartite nonlocality with re-
spect to quantum violations of Mermin inequality [24]. On the
other hand, at most two Charlies can simultaneously demon-
strate genuine tripartite nonlocality with respect to quantum
violations of Svetlichny inequality [25]. Apart from having in-
formation theoretic applications, these results distinguish two
inequivalent notions of tripartite nonlocality in the context of
nonlocality sharing.

The present work opens a number of interesting questions.
Firstly, addressing the issue of sharing other notions of gen-
uine tripartite nonlocality [46], apart from Svetlichny type
genuine nonlocality, in the aforementioned scenario described
in Fig.1 is worthy of further investigation. Secondly, in the
same spirit of the present work, it would be interesting to in-
vestigate sharing of multipartite quantum steering [50–52] by
multiple observers measuring sequentially on the same par-
ticle. Thirdly, exploring the concept of nonlocality sharing
for higher dimensional quantum systems by using different
many-outcome local realist inequalities [53, 54] remains open
till date. Another interesting direction is to explore the pos-
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sibility of sharing tripartite nonlocal correlations between (i)
single Alice - multiple Bobs - multiple Charlies, (ii) multi-
ple Alices - multiple Bobs - multiple Charlies and finding a
connection of these sharing phenomena with some informa-
tion processing task(s). It is to be noted that the problem pre-
sented in this paper can easily be generalized to multipartite
nonlocality, demonstrated by multiqubit states, using different
multipartite Bell-type local realist inequalities [24, 55–59].
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