Skip to main content
Log in

Maximal thermal entanglement using three-spin interactions

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Three-spin interactions in three-qubit systems at thermal equilibrium can be used for simple and efficient creation of maximally entangled states. We do not require set of gates to achieve this goal; rather, maximal thermal entanglement naturally arises by appropriately tuning the interactions present in the system. Within the broad range of parameter regimes found, we identify the ones accessible in triple quantum dot and triangular optical lattice, thus opening a way toward simple implementation of maximally entangled states with different types of three-spin interactions. Our results suggest tight connection between the presence of W type of entanglement and magnetization, enabling experimental detection of the W state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

    Article  ADS  Google Scholar 

  2. Schrödinger, E.: Die gegenwärtige situation in der quantenmechanik. Die Naturwissenschaften 23, 807 (1935)

    Article  ADS  Google Scholar 

  3. Bell, J.S.: On the Einstein–Podolsky–Rosen paradox. Physics 1, 195 (1964)

    Article  MathSciNet  Google Scholar 

  4. Bennett, C.H., DiVincenzo, D.P.: Quantum information and computation. Nature 404, 247 (2000)

    Article  ADS  Google Scholar 

  5. Röthlisberger, B., Lehmann, J., Saraga, D.S., Traber, P., Loss, D.: Highly entangled ground states in tripartite qubit systems. Phys. Rev. Lett. 100, 100502 (2008)

    Article  ADS  Google Scholar 

  6. Maleki, Y., Maleki, A.: Entangled multimode spin coherent states of trapped ions. J. Opt. Soc. Am. B 35, 1211–1217 (2018)

    Article  ADS  Google Scholar 

  7. Maleki, Y., Zheltikov, A.M.: Generating maximally-path-entangled number states in two spin ensembles coupled to a superconducting flux qubit. Phys. Rev. A 97, 012312 (2018)

    Article  ADS  Google Scholar 

  8. Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  9. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  10. Greenberger, D.M., Horne, M.A., Shimony, A., Zeilinger, A.: Bell’s theorem without inequalities. Am. J. Phys. 58, 1131 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  11. Sharma, A., Hawrylak, P.: Greenberger–Horne–Zeilinger states in a quantum dot molecule. Phys. Rev. B 83, 125311 (2011)

    Article  ADS  Google Scholar 

  12. Hiltunen, T., Harju, A.: Maximal tripartite entanglement between singlet–triplet qubits in quantum dots. Phys. Rev. B 89, 115322 (2014)

    Article  ADS  Google Scholar 

  13. Loss, D., DiVincenzo, D.P.: Quantum computation with quantum dots. Phys. Rev. A 57, 120 (1998)

    Article  ADS  Google Scholar 

  14. Burkard, G., Loss, D., DiVincenzo, D.P.: Coupled quantum dots as quantum gates. Phys. Rev. B 59, 2070 (1999)

    Article  ADS  Google Scholar 

  15. DiVincenzo, D.P., Bacon, D., Kempe, J., Burkard, G., Whaley, K.B.: Universal quantum computation with the exchange interaction. Nature 408, 339–342 (2000)

    Article  ADS  Google Scholar 

  16. Scarola, V.W., Park, K., Das Sarma, S.: Chirality in quantum computation with spin cluster qubits. Phys. Rev. Lett. 93, 120503 (2004)

    Article  ADS  Google Scholar 

  17. Hsieh, C.-Y., Rene, A., Hawrylak, P.: Herzberg circuit and Berry’s phase in chirality-based coded qubit in a triangular triple quantum dot. Phys. Rev. B 86, 115312 (2012)

    Article  ADS  Google Scholar 

  18. Hsieh, C.-Y., Shim, Y.-P., Korkusinski, M., Hawrylak, P.: Physics of lateral triple quantum-dot molecules with controlled electron numbers. Rep. Prog. Phys. 75, 114501 (2012)

    Article  Google Scholar 

  19. Milivojević, M., Stepanenko, D.: Effective spin Hamiltonian of a gated triple quantum dot in the presence of spin-orbit interaction. J. Phys: Condens. Matter 29, 405302 (2017)

    Google Scholar 

  20. Han, J.-X., Hu, Y., Jin, Y., Zhang, G.-F.: Influence of intrinsic decoherence on tripartite entanglement and bipartite fidelity of polar molecules in pendular states. J. Chem. Phys. 144, 134308 (2016)

    Article  ADS  Google Scholar 

  21. Fu, J.-H., Zhang, G.-F.: Effect of three-spin interaction on thermal entanglement in Heisenberg XXZ model. Quantum Inf. Process 16, 275 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  22. Yang, J., Huang, Y.: Tripartite and bipartite quantum correlations in the XXZ spin chain with three-site interaction. Quantum Inf. Process 16, 281 (2017)

    Article  Google Scholar 

  23. Tseng, C.H., Somaroo, S., Sharf, Y., Knill, E., Laflamme, R., Havel, T.F., Cory, D.G.: Quantum simulation of a three-body-interaction Hamiltonian on an NMR quantum computer. Phys. Rev. A 61, 012302 (1999)

    Article  ADS  Google Scholar 

  24. Pachos, J.K., Plenio, M.B.: Three-spin interactions in optical lattices and criticality in cluster Hamiltonians. Phys. Rev. Lett. 93, 056402 (2004)

    Article  ADS  Google Scholar 

  25. Pachos, J.K., Rico, E.: Effective three-body interactions in triangular optical lattices. Phys. Rev. A 70, 053620 (2004)

    Article  ADS  Google Scholar 

  26. Bermudez, A., Porras, D., Martin-Delgado, M.A.: Competing many-body interactions in systems of trapped ions. Phys. Rev. A 79, 060303(R) (2009)

    Article  ADS  Google Scholar 

  27. Capogrosso-Sansone, B., Wessel, S., Büchler, H.P., Zoller, P., Pupillo, G.: Phase diagram of one-dimensional hard-core bosons with three-body interactions. Phys. Rev. B 79, 020503(R) (2009)

    Article  ADS  Google Scholar 

  28. Nielsen, M.A.: Quantum information theory, Ph.D. thesis, The University of New Mexico, USA (1998), quant-ph/0011036

  29. Arnesen, M.C., Bose, S., Vedral, V.: Natural thermal and magnetic entanglement in the 1D Heisenberg model. Phys. Rev. Lett. 87, 017901 (2001)

    Article  ADS  Google Scholar 

  30. Wang, X.G., Fu, H., Solomon, A.I.: Thermal entanglement in three-qubit Heisenberg models. J. Phys. A: Math. Gen. 34, 11307 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  31. Zhang, G.-F.: Thermal entanglement and teleportation in a two-qubit Heisenberg chain with Dzyaloshinskii–Moriya anisotropic antisymmetric interaction. Phys. Rev. A 75, 034304 (2007)

    Article  ADS  Google Scholar 

  32. Wang, J.-B., Zhang, G.-F.: Thermal entanglement between atoms in the four-cavity linear chain coupled by single-mode fibers. Int. J. Theor. Phys. 57, 2585 (2018)

    Article  Google Scholar 

  33. Sabin, C., García-Alcaine, G.: A classification of entanglement in three-qubit systems. Eur. Phys. J. D 48, 435 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  34. Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

  35. Hill, S., Wootters, W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022 (1997)

    Article  ADS  Google Scholar 

  36. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  37. Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000)

    Article  ADS  Google Scholar 

  38. Maleki, Y., Khashami, F., Mousavi, Y.: Entanglement of three-spin states in the context of SU(2) coherent states. Int. J. Theor. Phys. 54, 210 (2015)

    Article  Google Scholar 

  39. Yildirim, T., Harris, A.B., Aharony, A., Entin-Wohlman, O.: Anisotropic spin Hamiltonians due to spin-orbit and Coulomb exchange interactions. Phys. Rev. B 52, 10239 (1995)

    Article  ADS  Google Scholar 

  40. Milivojević, M.: Symmetric spin-orbit interaction in triple quantum dot and minimisation of spin-orbit leakage in CNOT gate. J. Phys.: Condens. Matter 30, 085302 (2018)

    ADS  Google Scholar 

  41. Gühne, O., Toth, G.: Entanglement detection. Phys. Rep. 474, 1 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  42. Maleki, Y., Zheltikov, A.M.: Witnessing quantum entanglement in ensembles of nitrogen–vacancy centers coupled to a superconducting resonator. Opt. Exp. 26, 17849–17858 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Aleksandra Dimić and Nikola Paunković for fruitful discussions. This research is funded by the Serbian Ministry of Science (Project ON171035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marko Milivojević.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milivojević, M. Maximal thermal entanglement using three-spin interactions. Quantum Inf Process 18, 48 (2019). https://doi.org/10.1007/s11128-018-2163-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-2163-8

Keywords

Navigation