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The standard quantum error correction protocols use projective measurements to extract the error syndromes
from the encoded states. We consider the more general scenario of weak measurements, where only partial
information about the error syndrome can be extracted from the encoded state. We construct a feedback protocol
that probabilistically corrects the error based on the extracted information. Using numerical simulations of one-
qubit error correction codes, we show that our error correction succeeds for a range of the weak measurement
strength, where (a) the error rate is below the threshold beyond which multiple errors dominate, and (b) the error
rate is less than the rate at which weak measurement extracts information. It is also obvious that error correction
with too small a measurement strength should be avoided.
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I. INTRODUCTION

In recent years, the field of quantum information and quan-
tum computation has rapidly progressed from a theoretical
framework to an experimental level, where toy systems carry
out simple but practical tasks. The main hurdle to be over-
come for large scale integration of quantum devices is a con-
trol over errors. No physical system can be perfectly isolated
from the environment, and the inevitable disturbances affect
its operation. Quantum information processors are especially
sensitive in this regard, and designs that would make them
fault-tolerant are an outstanding challenge. A recent road
map for fault-tolerant quantum computation [1] emphasizes
the role that quantum error correction (QEC) would have to
play to protect the quantum data. The QEC strategy is to re-
dundantly encode the quantum information in a larger Hilbert
space, such that the logical qubits experience a significantly
smaller error rate than what the physical qubits do. A cascade
of QEC codes can then make the lifetime of encoded quantum
information as long as desired.

The standard QEC codes are illustrated by the label
[[n, k, d]]. They encode k logical qubits into n physical qubits,
and d is the minimum distance between logical codewords.
The errors are discretized to a finite set in the Pauli op-
erator basis for each qubit, they are detected using projec-
tive measurements of the appropriate syndromes, and then
the measurement-result-dependent inverse transformations re-
store the original information. This procedure corrects upto
[d−1

2 ] Pauli errors, and the residual error rate of the encoded
state is given by the probability of having more than [d−1

2 ] er-
rors. The procedure is worthwhile only when the error rate of
n-qubit encoded state is smaller than the error rate of k-qubit
unencoded state, and that happens only when the error rate
of unencoded state is below a critical threshold. Such codes
were first devised by Shor [2] and Steane [3], and a variety
of them have been constructed since then. For practical appli-
cations, it is paramount to understand the error mechanisms

∗ parveenkumar@chep.iisc.ernet.in
† adpatel@chep.iisc.ernet.in

as well as possible, and then design the codes to maximize
the critical threshold. Attempts to build quantum error correc-
tion procedures for several physical systems have been made,
e.g. liquid [4–6] and solid state [7] NMR, trapped ions [8, 9],
photon modes [10], superconducting qubits [11, 12], and NV
centers in diamond [13, 14].

Projective measurements are instantaneous, they extract
maximum information about the measured observable, and
their post-measurement state is known with certainty. These
properties allow accurate error correction. In contrast, weak
measurements are performed on a stretched out time scale,
with only a gentle disturbance to the quantum system [15].
They extract only partial information about the measured ob-
servable, which rules out complete error correction. With
weak measurements, therefore, we can only aim to restore the
quantum state with as high fidelity as possible. In this work,
we present a protocol to implement quantum error correction
using weak measurements. Obviously, it would be useful only
when projective measurements cannot be carried out for some
reason.

Attempts to construct QEC protocols using weak measure-
ments have been made before [16, 17]. In our work, we
use continuous stochastic measurement dynamics to design
a QEC feedback protocol. We propose a general feedback
scheme based on binary weak measurements, and numerically
investigate its efficacy as a function of the measurement cou-
pling. Our protocol is appropriate for weak measurements
of superconducting transmon qubits, but it can be easily ex-
tended to other physical systems.

This paper is organized as follows. Section II briefly re-
views how a quantum system evolves during weak measure-
ment, using the setting of circuit QED, and presents our feed-
back scheme for a quantum register when all measurements
are binary weak measurements. Section III describes the nu-
merical simulation results of our protocol, for the bit-flip error
correction of a single qubit encoded in a three-qubit register,
and arbitrary error correction of a single qubit encoded in a
five-qubit register. We conclude with a discussion of our re-
sults in Section IV.
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II. WEAK MEASUREMENTS AND FEEDBACK

A quantum system interacting with the environment and the
measuring apparatus undergoes a complex evolution. We omit
any driving term, e.g. the system could be some quantum in-
formation stored in memory, and model the total evolution as:

d

dt
ρ = i[ρ,HE +HF ] +M [Pi, ρ]. (1)

Here HE and HF are the error and the feedback Hamiltoni-
ans respectively, and Pi are the projectors for the measured
observable. Compared to the usual framework for QEC codes
[18], we have replaced the projective measurement evolution,
ρ→∑

i PiρPi, with the weak measurement evolution opera-
tor M [Pi, ρ].

We use the framework of continuous quantum stochastic
dynamics to describe weak measurements [19]. In this frame-
work, an ensemble of quantum trajectories is generated, by
combining geodesic evolution of the initial quantum state to
the eigenstates |i〉 of the measured observable with white
noise fluctuations. In this evolution, every quantum trajec-
tory keeps a pure state pure (i.e. preserves ρ2 = ρ), and the
Born rule is satisfied at every instant of time (upon averaging
over the stochastic noise). We use the notation [20]:

M [Pi, ρ] = g
∑
i

wi[ρPi + Piρ− 2ρ tr(Piρ)], (2)

where the system-apparatus interaction parameter g has di-
mensions of energy (g can be time-dependent, in which case
gτ in the rest of the article should be interpreted as

∫ τ
0
g dt).

M [Pi, ρ] vanishes at the fixed points ρ∗i = Pi, ensuring ter-
mination and repeatability of measurements. The weights wi
are normalized to

∑
i wi = 1. They are chosen such that the

system’s dynamics reproduces the well-established quantum
behaviour, and the weak measurement contributes a stochastic
noise to wi [21–24]. The projective measurement is recovered
in the limit gτ →∞.

A. Binary measurement

For a binary weak measurement,

w0 − w1 = Tr(ρP0)− Tr(ρP1) +
1√
g
ξ(t), (3)

where ξ(t) is a white noise with 〈ξ(t)〉 = 0 and 〈ξ(t)ξ(t′)〉 =
δ(t− t′). During weak measurement, w0 −w1 can be experi-
mentally observed along any quantum trajectory.

In recent years, weak measurements have been imple-
mented experimentally for superconducting transmon qubits
[23, 24]. A transmon qubit is essentially a tunable nonlinear
quantum oscillator made of two Josephson junctions in a su-
perconducting loop shunted by a capacitor. The lowest two
energy levels of the nonlinear oscillator are used as a qubit.
The qubit is kept in a microwave cavity with dispersive cou-
pling, and its weak measurements are carried out by probing
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FIG. 1. Quantum logic circuit to correct a single bit-flip error, for a
logical qubit encoded in three physical qubits. Two ancilla qubits,
initialised in the ground state, are coupled to the three physical
qubits, and two parities of qubit-pairs are extracted. These parities
determine the location of the error without disturbing the encoded
logical state. Using the syndrome information, the error is corrected
by applying controlled inverse transformations. Finally, the ancilla
qubits are reset, which disentangles them from the physical qubits.

the cavity by a microwave signal. For weak measurement of a
transmon, the signal observed by the apparatus is a current Im,
and w0 − w1 is obtained by scaling it suitably. We adopt the
convention that the ideal measurement current is ±∆I

2 for the
measurement eigenstates P0 and P1. Then the scaled mea-
surement current, 2Im

∆I = w0 − w1, provides an estimate of
Tr(ρP0)− Tr(ρP1).

The redundancy of the encoding QEC protocol allows ex-
traction of the syndrome information from the encoded state
without disturbing the encoded information. The simplest
code to correct a single bit-flip error encodes the logical qubit
into three physical qubits. Parities of qubit-pairs provide the
syndrome information, which is extracted into two additional
ancilla qubits, using C-NOT logic gates as illustrated in Fig.1.
These parities are then used to apply controlled inverse logic
operations to eliminate the error. (For the sake of simplic-
ity, we have assumed that all gate operations are perfect, and
the qubits are exposed to the error perturbations only before
the measurement and feedback steps. A more elaborate fault-
tolerant prescription can take care of errors occurring any-
where during the evolution.) After using the parities for the
feedback, the ancilla qubits need to be disentangled from the
encoded state, and that is achieved by resetting the ancilla
qubits. This resetting is an irreversible step, and it reduces
the fidelity of the encoded quantum state. Different methods
have been proposed for resetting the ancilla qubits [25, 26],
and they can be applied equally well after strong or weak mea-
surements.

B. Feedback design

Initially the quantum system is in the logical subspace. Un-
der the influence of undesired disturbances, it moves out of the
logical subspace along some of the error directions. The syn-
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drome operators are designed to reveal the information about
the error without disturbing the encoded signal. The binary
syndrome operators have a +1 eigenvalue for the logical sub-
space and a −1 eigenvalue for some of the error states. The
complete error information is constructed from a collection of
binary syndrome measurements.

The measurement evolution, described by Eqs. (1,2,3), can
be expressed in the Itô form as [19]:

dz = g tanh z dt+
√
g dW (t) , (4)

tanh z = Tr(ρP0)− Tr(ρP1) ≡ 2p− 1. (5)

Here the stochastic Wiener increment obeys 〈dW (t)〉 = 0 and
〈(dW (t))2〉 = dt. For any initial state z0, the time evolution
of the quantum trajectory distribution is known [19]. After
time τ , the initial δ-function distribution becomes a sum of
two Gaussians with areas p0 and 1 − p0, centered at z0 + gτ
and z0 − gτ respectively, and with a common variance gτ .

The unperturbed logical space state has p = 1 or z = ∞.
Due to errors, the state gets shifted to some finite z0, and the
feedback task is to move it back to z = ∞. The syndrome
measurement is designed to estimate z0, but ends up shifting
the state more in the process. To figure out what feedback to
apply, with only incomplete information available, we make
the following approximations:
(i) We approximate the measurement evolution as a binary
walk on a line, producing δ-function distributions at z0 ± gτ
with probabilities p0 and 1 − p0. For each step of a quantum
trajectory, only one of the two possibilities occur, i.e. the post-
measurement state is either z0 + gτ or z0− gτ . Of course, gτ
is known from the properties of the measurement apparatus.
(ii) The current measured by the apparatus provides an aver-
age value of the signal over the measurement duration; so we
use 2Im

∆I to estimate either z0 + gτ
2 or z0 − gτ

2 .
(iii) The measured current Im is a combination of Tr(ρσz)
and white noise. We next assume that if Im > 0 then the
post-measurement state is z0 + gτ , and if Im < 0 then the
post-measurement state is z0 − gτ .

With these assumptions, we convert Im into a rotation angle
on the Bloch sphere, and design the feedback transformation.
When Im > 0, the act of measurement moves the state from
z0 to z0 + gτ , which is closer to the logical subspace cor-
responding to z = ∞. We then opt to apply no additional
feedback operation. When Im < 0, we construct the feed-
back operation as follows. In terms of polar coordinates on
the Bloch sphere,

Tr(ρP0) =
1 + cos θ

2
, Tr(ρP1) =

1− cos θ

2
. (6)

We estimate the post-measurement state location as,

cos θ = tanh(z0 − gτ)

=
tanh

(
z0 − gτ

2

)
− tanh

(
gτ
2

)
1− tanh

(
z0 − gτ

2

)
tanh

(
gτ
2

)
→

2Im
∆I − tanh

(
gτ
2

)
1− 2Im

∆I tanh
(
gτ
2

) . (7)

Here the replacement of tanh(z0 − gτ
2 ) by 2Im

∆I is the most
severe approximation, due to which the last line of the previ-
ous equation is not restricted to the interval [−1, 1]. Whenever
the value goes outside this interval, we replace it by −1,+1
corresponding to the value being less than −1 or greater than
+1 respectively.

The rotation angle θ represents the combined shift of the
quantum state due to error and measurement. This shift can
be reversed by applying an inverse rotation by −θ. The bi-
nary measurement does not determine the polar angle φ of the
shift on the Bloch sphere. To estimate φ, knowledge of off-
diagonal elements of ρ is needed, which is not available to us.
(In case of projective measurements, θ = 0, π and ignorance
of φ does not matter.) Knowledge of φ is necessary to decide
around which axis in the X-Y plane the feedback rotation −θ
should be applied. Without that knowledge, we ad hoc choose
the X-axis as the rotation axis. Consequently, the feedback
may correct the error or may make it worse. Whenever the
error gets worse, it would become easier to detect, and then to
correct, in the next iteration. We hope that the procedure con-
verges with repeated error correction steps with high fidelity,
and our simulation results support that.

In weak measurements, the measured current, given by
Eq.(3), is a noisy current. We can reduce the noise, and hence
increase the accuracy of Eq.(7), by accumulating the signal
over as long evolution time as possible:

Ĩm =

∫ τ

0

Im(t′) dt′. (8)

Use of the integrated current Ĩm as the signal, instead of the
original current Im, is tantamount to using a stronger inter-
action strength g. Also, a non-uniform integration weight in
the definition of Ĩm would lose some information, and so is
not worthwhile. Once the feedback has been applied, then we
have to erase all the current history, and wait until ample new
current data is accumulated, before deciding on the next feed-
back operation. All this is equivalent to saying that we apply
feedback only when we have sufficient information, and don’t
disturb the system otherwise.

C. Multiple binary measurements

Now consider the situation where the syndrome consists of
two commuting binary measurements, and I1

m and I2
m are the

corresponding measured currents. The physical Hilbert space
can be divided into four sectors corresponding to the mea-
surement projectors P 1

0P
2
0 , P 1

1P
2
0 , P 1

0P
2
1 , P 1

1P
2
1 , where the

superscript denotes the measurement number. For each bi-
nary measurement, we determine the rotation angle as in the
previous subsection:

Ikm > 0⇒ θ = 0 ,

Ikm < 0⇒ cos θk =

[
2Ikm
∆I − tanh

(
gτ
2

)
1− 2Ikm

∆I tanh
(
gτ
2

)]
r

, (9)

where [. . .]r denotes reduction of the value to the interval
[−1, 1], as described after Eq.(7). The feedback operation is
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then constructed from these angles. The syndrome definition
tells us the location of the error in the multi-qubit register; so
we determine the location of the error from the signs of {Ikm}.
For σz-measurements, we do not have knowledge of the polar
angles φk, and as before, we ad hoc choose the X-axis as the
rotation axis.

When all the Ikm are positive, we do not apply any feedback
operation. When only one of the {Ikm} is negative, we use the
inverse rotation −θk as the feedback operation. When more
than one {Ikm} are negative, assuming each Ikm < 0 to be an
equal diagnostic of the error, we estimate movement of the
state out of the logical subspace by averaging the correspond-
ing cos θk. The feedback operation is then the inverse rotation
−θ̄ obtained from the averaged projection. For instance, when
I1
m < 0 and I2

m < 0,

cos θ̄ =
1

2
(cos θ1 + cos θ2) . (10)

This is an empirical prescription, but numerically we find it to
be a good approximation.

III. NUMERICAL SIMULATIONS AND RESULTS

We have performed numerical simulations to ascertain the
accuracy of our feedback scheme. Various terms on the r.h.s.
of the evolution equation (1) contribute simultaneously in re-
ality. For ease of simulation, however, we calculate these con-
tributions one by one for evolution time τ , and then combine
them together. As per Trotter’s formula, the error incurred in
this procedure is O(τ2), and we make that inconsequential by
choosing τ to be sufficiently small.

Within time step τ , the system evolution is broken up into
three parts: (1) evolution under error, (2) evolution under mea-
surement, and (3) evolution under feedback. For evolution un-
der error, we evolve Eq.(1) using the fourth order Runge-Kutta
method and only the HE contribution.

We then include the effect of measurement by perform-
ing a probabilistic Bayesian update [27] that effectively in-
tegrates Eq.(2). The measurement current Im = 1

τ

∫ τ
0
I(t′)dt′

is drawn from Gaussian probability distributions centered at
±∆I

2 and with standard deviations σ = ∆I
2
√
gτ . Explicitly, the

conditional probability distributions for the measurement cur-
rent, when the system is in |0〉 or |1〉 state, are [23]:

P (Im||0〉) =
1√

2πσ2
exp

[
− (Im − ∆I

2 )2

2σ2

]
,

P (Im||1〉) =
1√

2πσ2
exp

[
− (Im + ∆I

2 )2

2σ2

]
. (11)

With these conditional distributions, the probability distribu-
tion for the measurement current is,

P (Im) = Tr(ρ(τ)P0)P (Im||0〉) + Tr(ρ(τ)P1)P (Im||1〉).
(12)

For a binary measurement of an N -dimensional system, all
ρii that appear in Tr(ρP0) are updated as [22]:

ρii(τ) =
ρii(0) P (Im||0〉)

P (Im)
, (13)

while all ρjj that appear in Tr(ρP1) are updated as:

ρjj(τ) =
ρjj(0) P (Im||1〉)

P (Im)
. (14)

All the off-diagonal ρij are updated according to the unitary
evolution constraint,

ρij(τ) = ρij(0)

√
ρii(τ) ρjj(τ)

ρii(0) ρjj(0)
. (15)

Finally, we apply the feedback transformation described in
the previous section, by converting the rotation into the feed-
back Hamiltonian HF , and evolving Eq.(1) with only the HF

contribution.

A. Single qubit bit-flip error correction

Consider a single qubit system initialized in the state |0〉
that undergoes a bit-flip error. The error Hamiltonian is

HE = γσx , (16)

where σx is the Pauli operator representing the bit-flip error,
and the error coupling γ is chosen as a Gaussian random num-
ber with zero mean and variance α2. (We choose this form of
γ as a likely scenario in actual experiments.) Evolution un-
der the error Hamiltonian for time τ changes the state of the
system as

ρ(τ) = U ρ(0) U† , (17)

where U = e−iγσxτ . For a system initialized in the state |0〉,
Eq.(17) simplifies to

ρ(τ) =

(
cos2(γτ) i sin(γτ) cos(γτ)

−i sin(γτ) cos(γτ) sin2(γτ)

)
. (18)

Averaging over the distribution of the error coupling γ, the
averaged density matrix becomes:

〈ρ(τ)〉 =

∫ ∞
−∞

1√
2πα2

e−γ
2/α2

ρ dγ ,

=
1

2

(
1 + e−2(ατ)2 0

0 1− e−2(ατ)2

)
. (19)

Fidelity of the quantum state evolves as

fgerr = 〈cos2(γτ)〉 =
1

2

(
1 + e−2(ατ)2

)
, (20)

and eventually the system reaches the completely mixed state.
Choosing γ as a Gaussian random variable is an assump-

tion, and the error distribution may be different in a different
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experimental setting. As another example, we consider the
binary error distribution case, again with zero mean and vari-
ance α2. Then the error coupling is either +α or −α with
equal probability. In this case, the averaged density matrix
after time evolution τ becomes:

〈ρ(τ)〉 =

(
cos2(ατ) 0

0 sin2(ατ)

)
, (21)

and the fidelity is

f berr = cos2(ατ) . (22)

Although we use the Gaussian error distribution in our simu-
lations throughout this work, we note that the choice between
the Gaussian or the binary error distribution does not matter
much for small values of ατ , both giving essentially the same
fidelity as shown in Fig. 2.

To protect a single qubit system against bit-flip error, we
redundantly encode it in a three-qubit register as:

|0〉L → |000〉P ,
|1〉L → |111〉P . (23)

The states |0〉L and |1〉L are basis vectors of the logical space,
while |000〉P and |111〉P are basis vectors of the physical
space. A general logical state to be protected is

|ψ〉 = a|0〉L + b|1〉L, (24)

with |a|2 + |b|2 = 1. In our simulations, we have chosen the
initial state as a = 1 to simplify calculations; the linearity of
evolution ensures that when the protocol works for the basis
states, it will also work for any superposition of basis states.
Our measured fidelity of the encoded state is thus

f (3) = P 〈000|ρ|000〉P . (25)

We diagnose the bit-flip errors using the syndrome operators
ZZI (i.e. σz ⊗ σz ⊗ I) and IZZ (i.e. I ⊗ σz ⊗ σz).

In the three-qubit Hilbert space, the independent bit-flip er-
ror Hamiltonian is:

HE = γ1(XII) + γ2(IXI) + γ3(IIX), (26)

where the error couplings γi are independent Gaussian ran-
dom numbers with zero mean and variance α2.

Let the measurement currents for ZZI and IZZ be I1
m and

I2
m respectively. We take the feedback Hamiltonian to be

HF = λ1(XII) + λ2(IXI) + λ3(IIX), (27)

where λi are the feedback couplings. We estimate the feed-
back rotation angles as described in Section II.C. The feed-
back couplings are then:

λ1 =

{
− θ1

2τ if I1
m < 0 and I2

m > 0,

0 otherwise,

λ2 =

{
− θ̄

2τ if I1
m < 0 and I2

m < 0,

0 otherwise,
(28)

λ3 =

{
− θ2

2τ if I1
m > 0 and I2

m < 0,

0 otherwise.
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FIG. 2. Behaviour of the fidelity as a function of the error ατ for
the single qubit bit-flip error correction model. The orange and the
cyan curves show the fidelity in absence of any measurement or error
correction, for binary and Gaussian error distributions respectively.
The red curve shows the fidelity of the three-qubit register, when we
perform error correction using projective measurement. Rest of the
curves show the fidelity for various values of the measurement cou-
pling. Clearly, the fidelity improves with increasing measurement
coupling, and approaches the one obtained by projective measure-
ment error correction as gτ →∞.

In case of projective measurement (i.e. gτ →∞), cos θi =
±1, and the fidelity of the quantum state after applying the
feedback can be analytically determined as:

fgec =
1

4

(
2− e−6(ατ)2 + 3 e−2(ατ)2

)
. (29)

From Eqs. (20) and (29), we find that

fgec > fgerr , for all ατ <∞ ,

and therefore projective measurement error correction always
improves fidelity, irrespective of the value of ατ .

In our simulations, we varied ατ (by holding α fixed and
varying τ ), and observed how fidelity changes as the mea-
surement strength gτ is varied. Our results, averaged over
105 trajectories to cut down the statistical errors, are shown in
Fig. 2. We observe that for large gτ , the fidelity approaches
the result obtained by performing projective measurement er-
ror correction. For small gτ , the measurement current Im
fluctuates heavily, leading to uncertain feedback that spoils
the fidelity. Increasing gτ reduces these fluctuations, and the
measurement accumulates sufficient information to improve
fidelity. As a consequence, it is not desirable to perform error
correction when gτ is rather small.
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FIG. 3. Upper bound on the error ατ for different values of the
measurement coupling, such that 1−f (3) reduces by at least a factor
of two after applying error correction. With increasing measurement
coupling, more information about the quantum state can be extracted.
That allows the error correction protocol to cancel larger errors, and
the upper bound on ατ increases. The green curve shows the upper
bound on ατ for projective measurement error correction, and it is
approached as gτ →∞.
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FIG. 4. Lower bound on the error ατ for different values of the mea-
surement coupling, such that 1 − f (3) reduces by at least a factor
of two after applying error correction. For small measurement cou-
plings, the quantum state cannot be accurately estimated, unless it is
sufficiently moved away from the logical subspace by a large error.
Consequently, the lower bound on ατ increases with decreasing gτ .

It can also be observed from Fig. 2 that fidelity improve-
ment varies, depending on the relative strengths of g and α.
To illustrate that, we have plotted respectively in Figs. 3, 4,
the upper and lower bounds on ατ for different values of gτ ,
between which 1 − f (3) reduces by at least a factor of two
after applying error correction. These two bounds arise for
different physical reasons, and can be understood as follows.

When the measurement coupling decreases, we need to
evolve the system for long τ to accumulate sufficient infor-
mation. Within the same duration, to keep the overall error
under control, we need to decrease α. As a result, the upper
bound on ατ decreases with decreasing gτ , as displayed in
Fig. 3 (this effect is implicit in Fig. 2). For projective mea-
surement error correction, the upper bound on ατ , calculated
analytically using Eqs.(20) and (29), is 0.4905. Fig. 3 shows
that ατ approaches this value as we increase gτ . Beyond this
threshold, multiple errors overwhelm the error correction pro-
cess and prevent improvement in fidelity.

The lower bound on ατ results from the error correc-
tion protocol becoming noisy, when inadequate information
is extracted by the weak measurement. In case of projective
measurement, the post-measurement state is known precisely,
which allows perfect error correction. But for smaller gτ , it
is difficult to accurately estimate the qubit state from the mea-
surement current Im (the approximations described in Section
II.B become far from precise), unless it is sufficiently per-
turbed by a large ατ . Consequently the lower bound on ατ
increases with decreasing gτ , as displayed in Fig. 4 (this ef-
fect is also visible in Fig. 2).

From our results, we find that the two bounds on ατ meet
around gτ = 5.25. Attempts to correct errors with smaller
values of gτ are pointless; the best option in such situations is
not to perform any error correction.

B. Single qubit arbitrary error correction

In the previous subsection, we described how to correct sin-
gle bit-flip errors. But a complete quantum error correction
protocol has to correct all errors that may occur. For a single
qubit, the complete error Hamiltonian can be written as:

HE = γxσx + γyσy + γzσz . (30)

Here σx represents a bit-flip error, σz represents a phase-flip
error, and σy represents both of them occurring together. We
take the error couplings γi to be independent Gaussian ran-
dom numbers with zero mean and variance α2. Assuming
that the system is initialized in the state |0〉, the density ma-
trix after evolution with the error Hamiltonian HE for time τ
becomes,

〈ρ(τ)〉 =
1

3

(
2 + (1− 4α2τ2)e−2(ατ)2 0

0 1− (1− 4α2τ2)e−2(ατ)2

)
, (31)

when averaged over the distributions of γi. The fidelity of the
quantum state therefore evolves as

fgerr =
1

3

(
2 + (1− 4α2τ2)e−2(ατ)2

)
. (32)

If the error distribution is taken to be a binary distribution,
instead of a Gaussian distribution, the averaged density matrix
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becomes

〈ρ(τ)〉 =
1

3

(
1 + 2 cos2(

√
3ατ) 0

0 2− 2 cos2(
√

3ατ)

)
,(33)

which has the fidelity

f berr =
1

3

(
1 + 2 cos2(

√
3ατ)

)
. (34)

For small values of ατ , Eqs.(32) and (34) give almost the
same fidelity as depicted in Fig. 5, and the choice of error
distribution doesn’t matter much.

To protect the single logical qubit from arbitrary error, we
encode it in a five-qubit physical register [28, 29], according
to [30]:

|0〉L → |00000〉P + |10010〉P + |01001〉P + |10100〉P
+ |01010〉P + |00101〉P − |11110〉P − |01111〉P
− |10111〉P − |11011〉P − |11101〉P − |01100〉P
− |00110〉P − |00011〉P − |10001〉P − |11000〉P ,

|1〉L = X̄|0〉L, (35)

where X̄ = XXXXX . In our simulations, without loss of
generality, we choose the initial state to be |00000〉, which
makes our measured fidelity of the encoded state

f (5) = P 〈00000|ρ|00000〉P . (36)

We diagnose all single Pauli errors using the four syndrome
operators:

M1 = XZZXI,

M2 = IXZZX,

M3 = XIXZZ,

M4 = ZXIXZ. (37)

For the five-qubit register, the independent error Hamilto-
nian can be written as:

HE = γ1(XIIII) + γ2(IXIII) + γ3(IIXII)

+ γ4(IIIXI) + γ5(IIIIX) + γ6(Y IIII)

+ γ7(IY III) + γ8(IIY II) + γ9(IIIY I)

+ γ10(IIIIY ) + γ11(ZIIII) + γ12(IZIII)

+ γ13(IIZII) + γ14(IIIZI) + γ15(IIIIZ), (38)

where the error couplings γi are independent Gaussian ran-
dom numbers with zero mean and variance α2.

Our feedback Hamiltonian is:

HF = λ1(XIIII) + λ2(IXIII) + λ3(IIXII)

+ λ4(IIIXI) + λ5(IIIIX) + λ6(Y IIII)

+ λ7(IY III) + λ8(IIY II) + λ9(IIIY I)

+ λ10(IIIIY ) + λ11(ZIIII) + λ12(IZIII)

+ λ13(IIZII) + λ14(IIIZI) + λ15(IIIIZ), (39)

where λi are the feedback couplings. With four different
binary syndrome measurements, there are 16 possible out-
comes. The one with all four currents positive stands for “no
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f 
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g=20α
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f
g

err
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b

err

FIG. 5. Behaviour of the fidelity as a function of the error ατ for
the single qubit arbitrary error correction model. The orange and the
cyan curves show the fidelity in absence of any measurement or error
correction, for binary and Gaussian error distributions respectively.
The red curve shows the fidelity of the five-qubit register, when we
perform error correction using projective measurement. Rest of the
curves show fidelity for various values of the measurement coupling.
It is obvious that the fidelity improves with increasing measurement
coupling, and approaches the one obtained by projective measure-
ment error correction as gτ →∞.

error”, while the other 15 possibilities correspond to single
qubit X,Y, Z errors. Different combinations of the measured
currents determine the corresponding non-zero λi, as listed in
the following table.

I1
m I2

m I3
m I4

m Non-zero λi
+ + + - λ1

- + + + λ2

- - + + λ3

+ - - + λ4

+ + - - λ5

- + - - λ6

- - + - λ7

- - - + λ8

- - - - λ9

+ - - - λ10

- + - + λ11

+ - + - λ12

+ + - + λ13

- + + - λ14

+ - + + λ15

We estimate the feedback rotation angle by extending the
procedure described in Section II.C to four binary measure-
ments. At every evolution step, only one (or none) of the fif-
teen feedback couplings is non-zero, determined by its unique
syndrome signature. The non-zero rotation angle always
equals − θ̄

2τ .
In our simulations, we once again varied ατ (by holding α

fixed and varying τ ), and observed how the fidelity changes
as the measurement strength gτ varies. Our results, averaged



8

 0

 20

 40

 60

 80

 100

 0.25  0.3  0.35  0.4  0.45  0.5
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FIG. 6. Upper bound on the error ατ for different values of the mea-
surement coupling, such that 1 − f (5) reduces by at least a factor
of two after applying error correction. With increasing measurement
coupling, more information about the quantum state can be extracted.
That allows the error correction protocol to cancel larger errors, and
the upper bound on ατ increases. The upper bound for projective
measurement error correction is ατ = 1.025, and is outside the
range of this figure.

over 105 trajectories to control the statistical errors, are shown
in Fig. 5. We notice the same overall features as in the case
of the bit-flip error. For large gτ , as expected, the fidelity
approaches the value for projective measurement error cor-
rection. For small gτ , large fluctuations of the measurement
current Im make the feedback uncertain and spoil the fidelity.
With increasing gτ , these fluctuations reduce and the fidelity
improves, while error correction with rather small gτ is to be
avoided.

Improvement of the fidelity varies depending on the rela-
tive strength of g and α, which can be observed in Fig.5. To
make that more explicit, we have plotted respectively in Figs.
6 and 7, the upper and lower bounds on ατ for different values
of gτ , between which 1 − f (5) reduces by at least a factor of
two after applying error correction. The physical reasons for
these bounds are the same as those described for the bit-flip
error correction scheme in the previous subsection. The upper
bound specifies the threshold beyond which error correction
fails due to multiple errors, and the lower bound signifies the
minimum information to be extracted by measurement in or-
der to perform error correction. The two bounds meet around
gτ = 9.1, and it is not worthwhile to attempt error correction
for smaller values of gτ .

In case of projective measurement, we numerically find that
error correction cannot improve fidelity beyond ατ = 1.375.
When we demand a factor of two improvement in 1−f (5), this
threshold decreases to ατ = 1.025. Our results approach this
upper bound rather slowly as gτ increases. This behaviour
sharply contrasts with the fast approach to the upper bound in
case of the bit-flip error correction protocol. It may be that the
considerably larger error subspace of the five-qubit register
requires the measurement to extract more information in order

 9

 10

 11

 12

 13

 0.05  0.1  0.15  0.2  0.25

g
τ

ατ

FIG. 7. Lower bound on the error ατ for different values of the mea-
surement coupling, such that 1 − f (5) reduces by at least a factor
of two after applying error correction. For small measurement cou-
plings, the quantum state cannot be accurately estimated, unless it is
sufficiently moved away from the logical subspace by a large error.
Consequently, the lower bound on ατ increases with decreasing gτ .

to cut down the error.

IV. DISCUSSION

We have constructed an error correction protocol based
on results of weak measurements of qubits, and numerically
tested it as a function of the measurement coupling. Our er-
ror model consists of random Gaussian fluctuations, which are
common in real life situations. We have shown that it is pos-
sible to improve the fidelity of the encoded logical state with
our protocol, provided that the error rate is below the thresh-
old beyond which multiple errors dominate, and the measure-
ment strength is large enough to extract sufficient information
to perform error correction. We have expressed these features
as upper and lower bounds on the error size ατ , for various
values of the measurement strength gτ , between which er-
ror correction succeeds. This range of ατ is maximized for
projective error correction, i.e. gτ → ∞. So projective er-
ror correction is always preferable, whenever it is possible.
In case projective error correction is not possible, in physi-
cal systems where measurement would take sizeable time, we
can use weak measurements to improve fidelity of the quan-
tum state. Even then, the effort is fruitful only when gτ ex-
ceeds certain minimum value. Our simulations have obtained
this minimum value for single qubit bit-flip and arbitrary error
correction codes. Error correction with smaller values of gτ
should be avoided.

On quite general grounds, we can express the combined
state of the system and the ancilla in a form that separates
the logical and the error subspace components:

|ψL〉|aL〉+ |ψE〉⊥|aE〉 .

Here |ψL〉 and |ψE〉 are normalised system states in the logi-
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cal and error subspaces respectively, while |aL〉 and |aE〉 are
some unnormalised states of the ancilla. The magnitude of
|aE〉 determines the fidelity of the encoded quantum state. Ini-
tially, this magnitude is zero, but it becomes O(γ) after evo-
lution under the error Hamiltonian. After applying the error
correction feedback but before resetting the ancilla, the joint
state of the system and the ancilla is entangled. At this stage,
the magnitude of |aE〉 is O(γ2) for projective measurement
error correction, but it remains O(γ) for weak measurement
error correction due to only partial elimination of the error.
Ultimately, resetting the ancilla makes the encoded quantum
state mixed, and the magnitude of |aE〉 is a measure of the
deviation from purity. Our analysis has shown that although
weak measurements cannot produce as good quantum error
correction as projective measurements, they do manage to re-

duce the magnitude of |aE〉 under certain conditions and so
can be useful.

Performing error correction using weak measurements is
becoming feasible, with technological advances in supercon-
ducting transmon systems [11]. It would be interesting to
check our proposal in such experiments.

ACKNOWLEDGMENTS

PK is supported by a CSIR research fellowship from the
Government of India. We are grateful to Rajamani Vija-
yaraghavan for useful discussions and helpful comments on
the earlier draft of this work.

[1] M. H. Devoret and R. J. Schoelkopf, Science 339, 1169 (2013).
[2] P. W. Shor, Phys. Rev. A 52, R2493 (1995).
[3] A. M. Steane, Phys. Rev. Lett. 77, 793 (1996).
[4] D. G. Cory, M. D. Price, W. Maas, E. Knill, R. Laflamme, W. H.

Zurek, T. F. Havel, and S. S. Somaroo, Phys. Rev. Lett. 81,
2152 (1998).

[5] E. Knill, R. Laflamme, R. Martinez, and C. Negrevergne, Phys.
Rev. Lett. 86, 5811 (2001).

[6] N. Boulant, L. Viola, E. M. Fortunato, and D. G. Cory, Phys.
Rev. Lett. 94, 130501 (2005).

[7] O. Moussa, J. Baugh, C. A. Ryan, and R. Laflamme, Phys. Rev.
Lett. 107, 160501 (2011).

[8] J. Chiaverini, D. Leibfried, T. Schaetz, M. D. Barrett,
R. Blakestad, J. Britton, W. M. Itano, J. D. Jost, E. Knill,
C. Langer, R. Ozeri, and D. Wineland, Nature 432, 602 (2004).

[9] P. Schindler, J. T. Barreiro, T. Monz, V. Nebendahl, D. Nigg,
M. Chwalla, M. Hennrich, and R. Blatt, Science 332, 1059
(2011).

[10] T. B. Pittman, B. C. Jacobs, and J. D. Franson, Phys. Rev. A
71, 052332 (2005).

[11] M. D. Reed, L. DiCarlo, S. E. Nigg, L. Sun, L. Frunzio, S. M.
Girvin, and R. J. Schoelkopf, Nature 482, 382 (2012).

[12] J. Kelly, R. Barends, A. Fowler, A. Megrant, E. Jeffrey,
T. White, D. Sank, J. Mutus, B. Campbell, Y. Chen, Z. Chen,
B. Chiaro, A. Dunsworth, I.-C. Hoi, C. Neill, P. O’Malley,
C. Quintana, P. Roushan, A. Vainsencher, J. Wenner, A. Cle-
land, and J. M. Martinis, Nature 519, 66 (2015).

[13] G. Waldherr, Y. Wang, S. Zaiser, M. Jamali, T. Schulte-
Herbrüggen, H. Abe, T. Ohshima, J. Isoya, J. Du, P. Neumann,
and J. Wrachtrup, Nature 506, 204 (2014).

[14] T. H. Taminiau, J. Cramer, T. van der Sar, V. V. Dobrovitski,
and R. Hanson, Nature nanotechnology 9, 171 (2014).

[15] Y. Aharonov, D. Z. Albert, and L. Vaidman, Phys. Rev. Lett.
60, 1351 (1988).

[16] C. Ahn, A. C. Doherty, and A. J. Landahl, Phys. Rev. A 65,
042301 (2002).

[17] M. Sarovar, C. Ahn, K. Jacobs, and G. J. Milburn, Phys. Rev.
A 69, 052324 (2004).

[18] M. A. Nielsen and I. L. Chuang, Cambridge: Cambridge Uni-
versity Press 2, 23 (2000).

[19] N. Gisin, Phys. Rev. Lett. 52, 1657 (1984).
[20] A. Patel and P. Kumar, arXiv:1509.08253 (2015).
[21] A. N. Korotkov, Phys. Rev. B 60, 5737 (1999).
[22] A. N. Korotkov, Phys. Rev. B 63, 115403 (2001).
[23] R. Vijay, C. Macklin, D. Slichter, S. Weber, K. Murch, R. Naik,

A. N. Korotkov, and I. Siddiqi, Nature 490, 77 (2012).
[24] K. Murch, S. Weber, C. Macklin, and I. Siddiqi, Nature 502,

211 (2013).
[25] M. D. Reed, B. R. Johnson, A. A. Houck, L. DiCarlo, J. M.

Chow, D. I. Schuster, L. Frunzio, and R. J. Schoelkopf, Applied
Physics Letters 96, 203110 (2010).

[26] K. Geerlings, Z. Leghtas, I. M. Pop, S. Shankar, L. Frunzio,
R. J. Schoelkopf, M. Mirrahimi, and M. H. Devoret, Phys. Rev.
Lett. 110, 120501 (2013).

[27] A. N. Korotkov, arXiv:1111.4016 (2011).
[28] R. Laflamme, C. Miquel, J. P. Paz, and W. H. Zurek, Phys. Rev.

Lett. 77, 198 (1996).
[29] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Woot-

ters, Phys. Rev. A 54, 3824 (1996).
[30] J. Preskill, Lecture Notes for Course on Quantum Computation

http://www.theory.caltech.edu/people/preskill/ph229/notes/chap7.pdf.

http://dx.doi.org/10.1126/science.1231930
http://dx.doi.org/10.1103/PhysRevA.52.R2493
http://dx.doi.org/10.1103/PhysRevLett.77.793
http://dx.doi.org/10.1103/PhysRevLett.81.2152
http://dx.doi.org/10.1103/PhysRevLett.81.2152
http://dx.doi.org/10.1103/PhysRevLett.86.5811
http://dx.doi.org/10.1103/PhysRevLett.86.5811
http://dx.doi.org/10.1103/PhysRevLett.94.130501
http://dx.doi.org/10.1103/PhysRevLett.94.130501
http://dx.doi.org/10.1103/PhysRevLett.107.160501
http://dx.doi.org/10.1103/PhysRevLett.107.160501
http://dx.doi.org/10.1126/science.1203329
http://dx.doi.org/10.1126/science.1203329
http://dx.doi.org/10.1103/PhysRevA.71.052332
http://dx.doi.org/10.1103/PhysRevA.71.052332
http://dx.doi.org/10.1103/PhysRevLett.60.1351
http://dx.doi.org/10.1103/PhysRevLett.60.1351
http://dx.doi.org/10.1103/PhysRevA.65.042301
http://dx.doi.org/10.1103/PhysRevA.65.042301
http://dx.doi.org/ 10.1103/PhysRevA.69.052324
http://dx.doi.org/ 10.1103/PhysRevA.69.052324
http://www.cambridge.org/us/academic/subjects/physics/quantum-physics-quantum-information-and-quantum-computation/quantum-computation-and-quantum-information-10th-anniversary-edition
http://www.cambridge.org/us/academic/subjects/physics/quantum-physics-quantum-information-and-quantum-computation/quantum-computation-and-quantum-information-10th-anniversary-edition
http://dx.doi.org/10.1103/PhysRevLett.52.1657
http://dx.doi.org/10.1103/PhysRevB.60.5737
http://dx.doi.org/10.1103/PhysRevB.63.115403
http://dx.doi.org/ 10.1063/1.3435463
http://dx.doi.org/ 10.1063/1.3435463
http://dx.doi.org/ 10.1103/PhysRevLett.110.120501
http://dx.doi.org/ 10.1103/PhysRevLett.110.120501
http://dx.doi.org/10.1103/PhysRevLett.77.198
http://dx.doi.org/10.1103/PhysRevLett.77.198
http://dx.doi.org/10.1103/PhysRevA.54.3824
http://arxiv.org/abs/http://www.theory.caltech.edu/people/preskill/ph229/notes/chap7.pdf

	Quantum error correction using weak measurements
	Abstract
	I Introduction
	II Weak measurements and feedback
	A Binary measurement
	B Feedback design
	C Multiple binary measurements

	III Numerical simulations and results
	A Single qubit bit-flip error correction
	B Single qubit arbitrary error correction

	IV Discussion
	 Acknowledgments
	 References


