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Abstract We study a scheme of quantum simulator for two-dimensional xy-
model Hamiltonian. Previously the quantum simulator for a coupled cavity
array spin model has been explored, but the coupling strength is fixed by
the system parameters. In the present scheme several cavity resonators can
be coupled with each other simultaneously via an ancilla qubit. In the two-
dimensional Kagome lattice of the resonators the hopping of resonator pho-
tonic modes gives rise to the tight-binding Hamiltonian which in turn can be
transformed to the quantum xy-model Hamiltonian. We employ the transmon
as an ancilla qubit to achieve in situ controllable xy-coupling strength.

1 Introduction

In spite of the remarkable advancements of coherent quantum operation the
realization of fully controlled quantum computing is severely challenging in
quantum information processing technology. On the other hand, significant
attention has been paid to quantum spin models as a promising candidate
for quantum simulation of many-body effects [1,2,3]. Quantum many-body
simulation may provide a variety of possibilities to study the properites of
many-body systems, realize a new phase of quantum matter, and eventually
lead to the scalable quantum computing, which is hard for classical approaches.

Large-scale quantum simulators consisting of many qubits integrated have
been experimentally demonstrated to study the quantum phenomena such
as many-body dynamics and quantum phase transition. Quantum simulators
have been studied in the so-called coupled cavity array (CCA) model, where a
two-level atom in the cavity interacts with its own cavity and the hopping
of a photon bewteen cavities gives rise to the cavity-cavity coupling. The
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2 Mun Dae Kim

CCA model has been applied to study the Jaynes-Cummings Hubbard model
(JCHM) [4,5,6,7,8,9] and the Bose-Hubbard model [6,8] to exhibit the phase
transition between Mott insulator and superfluid. However, in the CCA model
the cavity-cavity hopping amplitude is set by the system parameters and thus
not tunable. In recent studies for one-dimensional quantum simulators using
trapped cold atoms [10] and trapped ion systems [11] the coupling strength
was tunable.

Previously the superconducting resonators in two-dimensional lattice have
been coupled through an interface capacitance, where the resonator-resonator
coupling strength is not controllable as the capacitance is fixed [12,13]. For
superconducting resonator cavities in circuit-quantum electrodynamics (QED)
systems, qubit is located outside of the cavity [14,15]. Hence a qubit can in-
teract with many resonator cavities surrounding the qubit. By using a qubit
as a mediator of coupling between many resonators one can obtain a tun-
able resonator-resonator coupling which is quite different from the coupling
by direct photon hopping in the CCA model.

In this study we consider a lattice model of superconducting resonator cav-
ities coupled by ancilla qubits for simulating the quantum xy-model Hamilto-
nian. The simulation for quantum xy-model has been studied in one-dimensional
[16,17] and two-dimensional [8] JCHM in the CCA model architecture. In the
present model the intervening ancilla qubit which couples cavities has control-
lable qubit frequency. After discarding the ancilla qubit degrees of freedom
by performing a coordinate transformation we show that the photon states
in the resonators are described by the tight-binding Hamiltonian which, in
turn, can be rewritten as the quantum xy-type interaction Hamiltonian. Con-
sequently, the xy-coupling constant depends on the hopping amplitude of the
tight-binding Hamiltonian and thus on the ancilla qubit frequency. We con-
sider two-dimensional Kagome lattice model as well as one-dimensional chain
model for the quantum simulation of xy-model Hamiltonian and show that
the xy-coupling strength is in situ controllable.

2 Hamiltonian of coupled n-resonators

In circuit-QED architectures qubits can be coupled with the transmission res-
onator at the boundaries of the resonator [18,19,20] so that we may couple
several resonators to a qubit as depicted in Fig. 1 (a). In principle, any kind
of qubits are available, but in this study we employ the transmon as the an-
cilla qubit coupling the resonators with the advantage of controllability. The
Hamiltonian of the system with n resonators and an ancilla qubit in Fig. 1(a)
is given by

HnR =
1

2
ωaσ

z
a +

n∑
p=1

[ωrpa
†
pap − fp(a†pσ−a + σ+

a ap)], (1)

where a†p and ap with the frequency ωrp are the creation and annihilation
operators for microwave photon in p-th resonator, respectively, and the Pauli
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matrix σza with the frequency ωa represents the ancilla qubit state, and fp is
the coupling amplitude between the photon mode in the p-th resonator and
the ancilla qubit. This Hamiltonian conserves the excitation number

Ne =

n∑
p=1

Nrp + (saz + 1/2), (2)

where saz ∈ {−1/2, 1/2} are the eigenvalue of the operator Saz = 1
2σ

z
a for

ancilla qubit and Nrp is the excitation number of oscillating mode in p-th
resonator. Here, we consider the subspace that Ne = 1 and thus Nrp ∈ {0, 1},
that is, the state of resonator is the superposition of zero and one-photon
states which was generated in experiments previously [21,22,23].

In order to obtain the Hamiltonian describing the interaction between pho-
ton modes we introduce the transformation

H̃nR = U†HnRU, (3)

where

U = e−
∑n

p=1 θp(a
†
pσ
−
a −σ

+
a ap). (4)

Here we, for simplicity, assume identical resonators and thus set ωrp = ωr, fp =
f and θp = θ. We then expand U = eM with M = −

∑n
p=1 θp(a

†
pσ

1
a − σ+

a ap)

(a) (b)

J3 /ωr

ωa/ωr

f /ωr

Fig. 1 (a) n cavities of circuit-QED resonators are coupled via an intervening ancilla qubit.
(b) Effective cavity-cavity coupling, J3, for n = 3 as a function of ancilla qubit frequency
ωa and resonator-ancilla coupling f with the frequency ωr of resonator photon mode.
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by using the relation eM = 1 +M + 1
2!M

2 + 1
3!M

3 + · · · to obtain

Upp=1− 1

2!
θ2+

1

4!
nθ4−1

6!
n2θ6+· · · = 1

n
(n−1+cos

√
nθ) (5)

Un+1,n+1=1− 1

2!
nθ2 +

1

4!
n2θ4 − 1

6!
n3θ6 + · · · = cos

√
nθ (6)

Up,n+1=−θ+
1

3!
nθ3−1

5!
n2θ5+· · · = − 1√

n
sin
√
nθ = −Un+1,p (7)

Upq,p6=q=−
1

2!
θ2+

1

4!
nθ4−1

6!
n2θ6+· · · = 1

n
(cos
√
nθ−1). (8)

Here U is a (n+1)×(n+1) matrix in the basis of |Nr1, Nr2, Nr3, · · · , Nrn, saz〉
and p, q ∈ {1, 2, 3, · · · , n}.

The degree of freedoms of ancilla qubit and resonator photon modes in the
Hamiltonian of Eq. (1) can be decoupled by imposing the condition

tan 2
√
nθ = 2

√
n
f

∆
(9)

which can be achieved by adjusting the detuning ∆ ≡ ωa − ωr [18]. The
resulting transformed Hamiltonian of Eq. (3) becomes

H̃nR =



εr1 Jn Jn · · · Jn 0
Jn εr2 Jn · · · Jn 0
Jn Jn εr3 · · · Jn 0
...

...
...

. . .
...

...
Jn Jn Jn · · · εrn 0
0 0 0 · · · 0 εa


, (10)

where εa is the energy for the state that saz = 1/2 and Nrp = 0 for all
p ∈ {1, 2, 3, · · · , n}, and εrp is the energy for the state that saz = −1/2 and
only the p-th resonator has one photon, Nrp = 1 and Nrq = 0 (q 6= p). For
identical resonators, εr1 = εr2 = εr3 = · · · = εr and εa are explicitly evaluated as

εr = − 1

2n

(
∆+ sgn(∆)

√
∆2 + 4nf2

)
+

1

2
ωr, (11)

εa =
1

2
sgn(∆)

√
∆2 + 4nf2 +

1

2
ωr, (12)

and the resonator-resonator coupling is given by

Jn =
1

2n

(
∆− sgn(∆)

√
∆2 + 4nf2

)
, (13)

where sgn(∆) is +1(−1) for ∆ > 0 (∆ < 0).
In the subspace satisfying Ne = 1 the Hamiltonian H̃nR in Eq. (10) can be

represented as

H̃nR =
1

2

2∑
p=1

ω′r(2a
†
pap − 1) +

n∑
p,q=1,p6=q

Jn(a†paq + apa
†
q)

+
1

2
ω′aσ

z
a. (14)
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Consequently, εrp and εa can be rewritten as εrp = εr = −n−22 ω′r− 1
2ω
′
a and εa =

−n2ω
′
r+ 1

2ω
′
a so that we can have the relations, ω′a = −(nεr−(n−2)εa)/(n−1)

and ω′r = −(εr+εa)/(n−1). In this tight-binding Hamiltonian the ancilla qubit
operator σza is decoupled from the resonator photon mode a, and afterward we
will ignore the ancilla term.

The tight-binding Hamiltonian H̃nR can be easily transformed to the xy-
spin model by introducing a pseudo spin operator σp such that 2apa

†
p − 1 =

|1p〉〈1p| − |0p〉〈0p| = σzp and a†paq + apa
†
q = |1p0q〉〈0p1q| + |0p1q〉〈1p0q| =

σ+
p σ
−
q + σ−p σ

+
q = (1/2)(σxpσ

x
q + σypσ

y
q ) as follows:

Hxy =
1

2

n∑
p=1

ω′rσ
z
p +

1

2

n∑
p,q=1,p6=q

Jn(σxpσ
x
q + σypσ

y
q ). (15)

Here, the hopping parameter Jn acts as a xy coupling constant between pseudo
spins.

3 xy-model with tunable coupling

Figure 2(a) shows one-dimensional lattice model by extending the structure in
Fig. 1(a) for two resonators and an ancilla qubit (n = 2). The transformation
of Hamltonian H̃2R = U†H2RU in Eq. (3) can be evaluated by using the

transformation matrix U = eM = e−
∑2

j=1 θj(a
†
jσ
−−σ+aj) with

H2R =

ωr1 − 1
2ωa 0 −f1

0 ωr2 − 1
2ωa −f2

−f1 −f2 1
2ωa

 ,M =

 0 0 −θ1
0 0 −θ2
θ1 θ2 0

 . (16)

For identical resonators such that ωr1 = ωr2 = ωr, f1 = f2 = f , and thus
θ1 = θ2 = θ, the transformation matrix can be calculated as

U =


1
2 (cos

√
2θ + 1) 1

2 (cos
√

2θ − 1) − 1√
2

sin
√

2θ
1
2 (cos

√
2θ − 1) 1

2 (cos
√

2θ + 1) − 1√
2

sin
√

2θ
1√
2

sin
√

2θ 1√
2

sin
√

2θ cos
√

2θ

 (17)

with the basis |Nr1, Nr2, saz〉 ∈ {|1, 0,−1/2〉, |0, 1,−1/2〉, |0, 0, 1/2〉}, the pho-
ton number in 1st (2nd) resonator Nr1(Nr2) and the ancilla qubit spin saz.

The transformed Hamiltonian H̃2R can be represented as the tight-binding
Hamiltonian of Eq. (14),

H̃2R =
1

2

2∑
i=1

ω′r(2a
†
iai − 1) +

N∑
i=1

J2(a†iai+1 + a†i+1ai), (18)

with the hopping parameter J2 = 1
4 (∆−

√
∆2 + 8f2), discarding the decoupled

ancilla term. This tight-binding Hamiltonian describes photon hopping in the
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chain model of Fig. 2(a), which can be subsequently transformed to the one-
dimensional xy-model Hamiltonian similar to Eq. (15) as

H1D
xy =

1

2

N∑
i=1

ω′rσ
z
i +

1

2

N∑
i=1

J2(σxi σ
x
i+1 + σyi σ

y
i+1). (19)

Further, for n = 3 we can construct a two-dimensional lattice model as
shown in Fig. 2(b). Here the ancilla qubits form the hexagonal lattice, but
the resonators the dual lattice, i.e., the Kagoma lattice. The Kagome lattice
has been widely studied in the relation of, for example, the frustrated spin
model [24] and the interacting boson model [25,26]. The Kagome lattice in
Fig. 2(b) consists of three triangular sublattices denoted as ai,j , bi,j and ci,j .
Here, two triangles consisting of, for example, ai,j , bi,j , ci,j , ai+1,j−1 and ci+1,j

in Fig. 2(b), make up the unit cell and thus the xy-model Hamiltonian in the

(a)

(b)

ii-1 i+1

J2 J2

J3 J3

J3
ai,j

ci,j

bi,j

ai+1,j-1

ci+1,j

i i+1i-1

j

j-1

j+1

Fig. 2 (a) One-dimensional chain of cavity resonators coupled via ancilla qubits with the
effective cavity-cavity coupling J2. (b) Two-dimensional Kagome lattice of cavity resonators
consisting of three triangular sublattices, ai,j (red), bi,j(purple) and ci,j(black), with effec-
tive coupling strength J3.
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Kagome lattice can be written as

HKagome
xy =

1

2

N∑
i,j=1

ω′r(σ
z
a,i,j + σzb,i,j + σzc,i,j)

+
1

2

N∑
i,j=1

J3(σxa,i,jσ
x
b,i,j + σxb,i,jσ

x
c,i,j + σxc,i,jσ

x
a,i,j

+σya,i,jσ
y
b,i,j + σyb,i,jσ

y
c,i,j + σyc,i,jσ

y
a,i,j

+σxa,i+1,j−1σ
x
c,i+1,j + σxb,i,jσ

x
a,i+1,j−1 + σxc,i+1,jσ

x
b,i,j

+σya,i+1,j−1σ
y
c,i+1,j + σyb,i,jσ

y
a,i+1,j−1 + σyc,i+1,jσ

y
b,i,j).

(20)

Photons hop between resonators with amplitude Jn which depends on the
sign of detuning ∆ in Eq. (13). If ∆ > 0, the hopping amplitude is negative,
Jn < 0, indicating that the hopping process reduces the total system energy
and the photons hop between cavities, while for ∆ < 0 and Jn > 0 the hopping
process has energy cost and thus the photon state is localized in the resonator
at the ground state. Since typically the transmon qubit frequency ωa/2π ∼
10GHz [27,28] and the resonator microwave photon frequency in circuit-QED
scheme is ωr/2π ∼ 5-10GHz [18], we will consider the parameter range of
∆ = ωa − ωr > 0.

For three resonators coupled to an ancilla qubit (n = 3) in Fig. 1(a) the

hopping amplitude becomes J3 = 1
6 (∆−

√
∆2 + 12f2). Figure 1(b) shows J3 as

a function of the ancilla qubit frequency ωa and the ancilla-resonator coupling
strength f . For the resonant case, ∆ = ωa−ωr = 0, the hopping ampltude has
the maximum value, |J3| = f/

√
3, and diminishes as the detuning ∆ grows,

which means that J3 can be controllable between −f/
√

3 < J3 < 0. Here the
typical value of the coupling between transmon ancilla and resonator f/2π ∼
100MHz [29,30,31].

If we can adjust the parameters, ∆ = ωa−ωr and f , the coupling constant
J3 becomes tunable. The resonator frequency ωr and the resonator-photon
coupling f are usually set in the experiment, but we can tune the ancilla
qubit frequency ωa during the experiment for some qubit scheme. For the
transmon qubit the qubit frequency is represented as ωa ∼

√
8EJEC with

the Josephson coupling energy EJ and the charging energy EC [27]. Since
the Josepson coupling energy EJ = EJ,max| cos(πΦ/Φ0)| is controllable by
varying the magnetic flux Φ threading a dc-SQUID loop [27], we can adjust
the frequency of the transmon qubit, ωa. In the Hamiltonian for the two-
dimensional xy-model in Kagome lattice in Eq. (20) J3, corresponding to the
coupling constant between pseudo spins σ, becomes tunable. Hence, in this
way we can achieve a quantum simulator for the two-dimensional xy-model in
Kagome lattice with in situ tunable coupling.

We can measure the resonator states by attaching measurement ports to
the resonators, resulting in a complex lattice design. Instead, as in a recent
study [32] measurement ports can be attached at the boundary of the lattice,
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but the analysis of the simulation results becomes complicated. In this study
we assume identical resonators with equal ancilla qubit-resonator coupling f
and further consider a restricted subspace with Ne = 1 in the Hilbert space as
shown in Eq. (2). If the couplings fp have some fluctuations from the uniform
value f , the transformed Hamiltonian will deviate from the exact xy-model
Hamiltonian. Furthermore, multiple photons or higher harmonic modes in the
resonators may be generated, giving rise to errors in the processes. The effect
of these non-idealities should be considered in a future study.

4 conclusion

We proposed a scheme for simulating quantum xy-model Hamiltonian in two-
dimensional Kagome lattice of resonator cavities with tunable coupling. By
using an intervening ancilla qubit several cavities are coupled with each other.
We found that the cavity lattice formed by extending this structure can be
transformed to the tight-binding lattice of photons after discarding the ancilla
qubit degree of freedom. In the subspace of zero and one photon mode in the
cavities this Hamiltonian can be described as the quantum xy-model Hamil-
tonian. We introduced the ancilla transmon qubit whose energy levels can be
controlled by varying a threading magnetic flux. The coupling strength can be
in situ tuned by adjusting the frequency of ancilla qubit intervening cavities.

Acknowledgements This work was supported by the Basic Science Research Program
through the National Research Foundation of Korea (NRF) funded by the Ministry of Ed-
ucation, Science and Technology (2011-0023467).
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