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Abstract
To study the trade-off between information and disturbance, we obtain the first and
second derivatives of the disturbance with respect to information for a fundamental
class of quantum measurements. We focus on measurements lying on the boundaries
of the physically allowed regions in four information–disturbance planes, using the
derivatives to investigate the slopes and curvatures of these boundaries and hence
clarify the shapes of the allowed regions.

Keywords Quantum measurement · Shannon entropy · Estimation fidelity ·
Operation fidelity · Physical reversibility

1 Introduction

In quantum theory, anymeasurement that provides information about a physical system
also inevitably disturbs the system’s state in a way that depends on the measurement’s
outcome. This trade-off between information and disturbance is of great interest in
establishing the foundations of quantum mechanics and plays an important role in
quantum information processing and communication [1] techniques, such as quantum
cryptography [2–5].Many authors [6–23] have therefore discussed this trade-off, using
several different formulations. For example, Banaszek [7] found an inequality between
the amount of information gained and the size of the state change, whereas Cheong
and Lee [20] found another one between the amount of information gained and the
reversibility of the state change. These inequalities have both been verified [24–27] in
single-photon experiments.

Recently, we have also studied this trade-off, deriving the allowed regions in four
types of information–disturbance plane [28]. These four information–disturbance pairs
combine one information measure, namely the Shannon entropy [6] or estimation
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fidelity [7], with one disturbancemeasure, namely the operation fidelity [7] or physical
reversibility [29]. The boundaries of the allowed regions give upper and lower bounds
on the information for a given disturbance, together with the optimal measurements
that saturate the upper bounds. The optimal measurements are different for each of the
four pairs, because the allowed regions’ upper boundaries have different curvatures
on each of the information–disturbance planes [28].

Contrary to expectations, the allowed regions show that measurements providing
more information do not necessarily cause larger disturbances. This is because the
allowed regions have finite areas, i.e., for any given measurement corresponding to
an interior point of an allowed region, there always exists another measurement that
provides more information with smaller disturbance near that point. However, mea-
surements that lie on the boundary of an allowed region in the information–disturbance
plane are subject to a trade-off, meaning that modifying them to increase the informa-
tion obtained by moving along the boundary also increases the disturbance according
to the boundary’s slope.

In this paper, we obtain the first and second derivatives of the disturbance with
respect to the information obtained from measurements lying on the allowed regions’
boundaries for each of the four information–disturbance pairs. These measurements
are described by a diagonal operator with a continuous parameter and applied to a
d-level system in a completely unknown state. For such measurements, we calculate
these derivatives to demonstrate the slopes and curvatures of the allowed regions’
boundaries, clarifying the regions’ shapes and, hence, broadening our perspective on
the trade-off between information and disturbance in quantum measurements. In fact,
it was difficult to judge from the allowed regions shown in Ref. [28] whether the slopes
of the boundaries are finite and whether the curvatures of the boundaries are negative
at some points. In contrast, the first and second derivatives obtained in this paper give
the values of the slopes and curvatures of the boundaries to answer these questions.

The rest of this paper is organized as follows: Sect. 2 reviews the procedure for
quantifying the information and the disturbance in quantum measurements, giving
their explicit forms for a fundamental class of measurements as functions of a certain
parameter. Section 3 presents the first and second derivatives of the information and
the disturbance for such measurements with respect to this parameter, while Sect. 4
gives the first and second derivatives of the disturbancewith respect to the information.
Finally, Sect. 5 summarizes our results.

2 Information and disturbance

In this section,we recall the information and the disturbance in quantummeasurements
at the single-outcome level [11,30–33] and summarize the results of Ref. [28] in order
for this paper to be self-contained. Suppose we want to measure a d-level system that
is known to be in one of a predefined set of pure states {|ψ(a)〉}, the probability of
the system being in the state |ψ(a)〉 is given by p(a), but we do not know the actual
states of the system. To study the case where no prior information about the system
is available, we assume that the set {|ψ(a)〉} consists of all possible pure states and
p(a) is uniform according to a normalized invariant measure over the pure states.
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First, we quantify the amount of information provided by a given quantum mea-
surement [28]. An ideal quantum measurement [34] can be described by a set of
measurement operators {M̂m} [1] that satisfy

∑

m

M̂†
m M̂m = Î , (1)

where m denotes the outcome of the measurement and Î is the identity operator.
When the system is in state |ψ(a)〉, a measurement {M̂m} yields the outcome m with
probability

p(m|a) = 〈ψ(a)|M̂†
m M̂m |ψ(a)〉 (2)

and changes the state to

|ψ(m, a)〉 = 1√
p(m|a)

M̂m |ψ(a)〉. (3)

The measurement outcome provides some information about the system’s state.
For example, given the outcome m, the probability that the initial state was |ψ(a)〉 is
given by

p(a|m) = p(m|a) p(a)

p(m)
(4)

using Bayes’ rule, where

p(m) =
∑

a

p(m|a) p(a) (5)

is the total probability of the outcome m. This therefore changes the state probability
distribution from {p(a)} to {p(a|m)}, decreasing the Shannon entropy by

I (m) =
[
−

∑

a

p(a) log2 p(a)

]
−

[
−

∑

a

p(a|m) log2 p(a|m)

]
. (6)

This entropy change, I (m), quantifies the amount of information provided by a mea-
surement {M̂m} with outcome m [11,35] and satisfies

0 ≤ I (m) ≤ log2 d − 1

ln 2
[η(d) − 1], (7)

where

η(n) =
⎧
⎨

⎩

n∑
k=1

1
k (if n = 1, 2, . . .)

0 (if n = 0).
(8)
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Note that I (m) is a measure of the information generated by a single outcome, unlike

I =
∑

m

p(m) I (m), (9)

which was discussed in Ref. [6].
The measurement outcome m can also be used to estimate the system’s state as

|ϕ(m)〉, where an optimal |ϕ(m)〉 is the eigenvector of M̂†
m M̂m corresponding to its

maximum eigenvalue [7]. The quality of this estimate can be evaluated in terms of the
estimation fidelity G(m):

G(m) =
∑

a

p(a|m)
∣∣〈ϕ(m)|ψ(a)〉∣∣2. (10)

This also quantifies the amount of information provided by the outcomem and satisfies

1

d
≤ G(m) ≤ 2

d + 1
. (11)

Again, note that G(m) relates to a single outcome, unlike

G =
∑

m

p(m)G(m), (12)

which was discussed in Ref. [7].
Next, we quantify the degree of disturbance caused by the measurement {M̂m} [28].

The outcomem changes the system’s state from |ψ(a)〉 to |ψ(m, a)〉, given by Eq. (3).
The size of this change can be evaluated using the operation fidelity F(m):

F(m) =
∑

a

p(a|m)
∣∣〈ψ(a)|ψ(m, a)〉∣∣2. (13)

This quantifies the degree of disturbance caused when a measurement {M̂m} yields
the outcome m and satisfies

2

d + 1
≤ F(m) ≤ 1. (14)

Again, note that F(m) relates to a single outcome, unlike

F =
∑

m

p(m) F(m), (15)

which was discussed in Ref. [7].
In addition to the size of the state change, the reversibility of the change can also

be used to quantify the disturbance in the context of physically reversible measure-
ments [36–46]. Even though |ψ(a)〉 and |ψ(m, a)〉 are unknown, the change can be
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physically reversed by a reversing measurement on |ψ(m, a)〉 if M̂m has a bounded
left inverse M̂−1

m [39,40]. Such a reversing measurement can be described by another

set of measurement operators {R̂(m)
μ } that satisfy
∑

μ

R̂(m)†
μ R̂(m)

μ = Î (16)

and R̂(m)
μ0 ∝ M̂−1

m for a particular μ = μ0, where μ denotes the reversing measure-
ment’s outcome. When this measurement on |ψ(m, a)〉 yields the preferred outcome
μ0, the system’s state returns to |ψ(a)〉 because R̂(m)

μ0 M̂m ∝ Î . The state recovery
probability for an optimal reversing measurement [29] is

R(m, a) = inf |ψ〉 〈ψ |M̂†
m M̂m |ψ〉

p(m|a)
, (17)

and we can use this to evaluate the reversibility of the state change as

R(m) =
∑

a

p(a|m) R(m, a). (18)

This also quantifies the degree of disturbance causedwhen ameasurement {M̂m} yields
the outcome m and satisfies

0 ≤ R(m) ≤ 1. (19)

Again, note that R(m) relates to a single outcome, unlike

R =
∑

m

p(m) R(m), (20)

which was discussed in Refs. [20,29].
As an important example, we consider a diagonal measurement operator M̂ (d)

k,l (λ)

with diagonal elements

1, 1, . . . , 1︸ ︷︷ ︸
k

, λ, λ, . . . , λ︸ ︷︷ ︸
l

, 0, 0, . . . , 0︸ ︷︷ ︸
d−k−l

(21)

for k = 1, 2, . . . , d − 1 and l = 1, 2, . . . , d − k, with a parameter λ satisfying
0 ≤ λ ≤ 1. In an orthonormal basis {|i〉} with i = 1, 2, . . . , d, the measurement
operator M̂ (d)

k,l (λ) can be written as

M̂ (d)
k,l (λ) =

k∑

i=1

|i〉〈i | +
k+l∑

i=k+1

λ|i〉〈i |. (22)
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The information that was yielded and the disturbance that was caused by this operator
can be quantified in terms of I (m), G(m), F(m), and R(m), given by Eqs. (6), (10),
(13), and (18) as functions of the parameter λ. Using the general formula derived in
Ref. [33], I (m) can be calculated to be

I (m) = log2 d − 1

ln 2
[η(d) − 1] − log2(k + lλ2) + 1

k + lλ2
J , (23)

where J is given by

J = (−1)l
k−1∑

n=0

(
k + l − n − 2

l − 1

)
a(k+l)
n

(λ2 − 1)k+l−n−1

+ (−1)k
l−1∑

n=0

(
k + l − n − 2

k − 1

)
c(k+l)
n (λ)

(1 − λ2)k+l−n−1 , (24)

with coefficients

a( j)
n = 1

ln 2

(
j

n

)
[η( j) − η( j − n)] , (25)

c( j)
n (λ) = λ2( j−n)

[(
j

n

)
log2 λ2 + a( j)

n

]
(26)

for n = 0, 1, . . . , j . Likewise, G(m), F(m), and R(m) can be calculated to be [33]

G(m) = 1

d + 1

(
1 + 1

k + lλ2

)
, (27)

F(m) = 1

d + 1

[
1 + (k + lλ)2

k + lλ2

]
, (28)

R(m) = d

(
λ2

k + lλ2

)
δd,(k+l). (29)

The measurement operator M̂ (d)
k,l (λ) is very important for obtaining the allowed

regions in the information–disturbance planes by plotting all physically possible mea-
surement operators. We consider four different allowed regions, based on using I (m)

or G(m) to quantify the information and F(m) or R(m) to quantify the disturbance.
Figure 1 shows these four allowed regions for d = 4 in gray [28], where the lines (k, l)
correspond to M̂ (d)

k,l (λ) with 0 ≤ λ ≤ 1 and the Pr ’s denote the points corresponding
to the projective measurement operator of rank r :

P̂(d)
r =

r∑

i=1

|i〉〈i |. (30)
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Fig. 1 Four allowed regions for information versus disturbance for d = 4: a estimation fidelityG(m) versus
operation fidelity F(m); b estimation fidelity G(m) versus physical reversibility R(m); c information gain
I (m) versus operation fidelity F(m); and d information gain I (m) versus physical reversibility R(m)

Clearly, M̂ (d)
k,l (0) = P̂(d)

k , M̂ (d)
k,l (1) = P̂(d)

k+l , and P̂(d)
d = Î . Thus, the line (k, l)

connects Pk to Pk+l and the point Pd is at the top left corner of the plot. In Fig. 1, the
upper boundaries of the allowed regions consist of the lines (1, d − 1) corresponding
to M̂ (d)

1,d−1(λ), whereas the lower boundaries consist of the lines (k, 1) corresponding

to M̂ (d)
k,1 (λ) for k = 1, 2, . . . , d − 1. Therefore, to find the values of the slopes and

curvatures of the boundaries, we need to calculate the first and second derivatives of
the disturbance with respect to information for M̂ (d)

k,l (λ).
The above allowed regions were obtained by considering ideal measurements, as

in Eq. (3), with optimal estimates for G(m). Unfortunately, the lower boundaries can
be violated by non-ideal measurements, which yield mixed post-measurement states
due to classical noise, or non-optimal estimates, which make suboptimal choices for
|ϕ(m)〉. Here, we ignore such non-quantum effects in order to focus on the quantum
nature of measurement.

3 Derivatives with respect to �2

To calculate the derivative of the disturbance with respect to information for M̂ (d)
k,l (λ),

we first consider the derivatives of the information and disturbance with respect to the
parameter λ2. For simplicity, we focus on derivatives with respect to λ2 rather than λ
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Fig. 2 First derivative of I (m)

with respect to λ2 as a function

of λ, for M̂(d)
k,l (λ) with d = 4,

for various (k, l)
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itself. These derivatives are straightforward to calculate because the information and
the disturbance are expressed as functions of λ = √

λ2 in Eqs. (23), (27), (28), and
(29).

However, the expression for the derivative of I (m) is quite long. This is due to the
expression for J given in Eq. (24). From Eq. (23), the first derivative of I (m) is

[I (m)]′ = − 1

ln 2

(
l

k + lλ2

)
− l

(k + lλ2)2
J + 1

k + lλ2
J ′, (31)

where primes represent derivatives with respect to λ2. The first derivative of J can be
written as

J ′ = (−1)l
k−1∑

n=0

(
k + l − n − 1

l

) −la(k+l)
n

(λ2 − 1)k+l−n

+ (−1)k
l−1∑

n=0

(
k + l − n − 1

k

)
kc(k+l)

n (λ)

(1 − λ2)k+l−n

+ (−1)k
l−1∑

n=0

(
k + l − n − 2

k − 1

)
(n + 1) c(k+l)

n+1 (λ)

(1 − λ2)k+l−n−1 (32)

because

[c( j)
n (λ)]′ = (n + 1) c( j)

n+1(λ). (33)

Figure 2 shows [I (m)]′ as a function of λ for d = 4, for various (k, l). From this, we
can observe that [I (m)]′ ≤ 0.

In addition, the second derivative of I (m) is

[I (m)]′′ = 1

ln 2

[
l2

(k + lλ2)2

]
+ 2l2

(k + lλ2)3
J − 2l

(k + lλ2)2
J ′ + 1

k + lλ2
J ′′, (34)
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Fig. 3 Second derivative of
I (m) with respect to λ2 as a

function of λ, for M̂(d)
k,l (λ) with

d = 4, for various (k, l)
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and the second derivative of J can be written as

J ′′ = (−1)l
k−1∑

n=0

(
k + l − n

l + 1

)
l(l + 1)a(k+l)

n

(λ2 − 1)k+l−n+1

+ (−1)k
l−1∑

n=0

(
k + l − n

k + 1

)
k(k + 1)c(k+l)

n (λ)

(1 − λ2)k+l−n+1

+ (−1)k
l−1∑

n=0

(
k + l − n − 1

k

)
2k(n + 1) c(k+l)

n+1 (λ)

(1 − λ2)k+l−n

+ (−1)k
l−1∑

n=0

(
k + l − n − 2

k − 1

)
(n + 2)(n + 1) c(k+l)

n+2 (λ)

(1 − λ2)k+l−n−1 . (35)

Figure 3 shows [I (m)]′′ as a function of λ for d = 4, for various (k, l). From this, we
can observe that [I (m)]′′ > 0.

As shown in “Appendix A,” at λ = 0, J and its derivatives become

lim
λ→0

J = a(k)
k−1, lim

λ→0
J ′ = la(k−1)

k−1 ,

lim
λ→0

J ′′ =
{
l(l + 1)a(k−2)

k−1 (if k ≥ 2)

+∞ (if k = 1),
(36)

where a( j)
j+1 is given by

a( j)
j+1 = 1

( j + 1) ln 2
(37)

instead of Eq. (25). Here, J ′′ in Eq. (36) diverges for k = 1 because

lim
λ→0

c( j)
j (λ) = lim

λ→0
log2 λ2 + a( j)

j , (38)
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which appears in the last sum of Eq. (35) when n = l − 1 if k = 1. The derivatives of
I (m) at λ = 0 are thus

lim
λ→0

[I (m)]′ = − l

k2 ln 2
, (39)

lim
λ→0

[I (m)]′′ =
{

l(k2+3kl−2l)
k3(k−1) ln 2

(if k ≥ 2)

+∞ (if k = 1).
(40)

Similarly, at λ = 1, J and its derivatives become

lim
λ→1

J = a(k+l)
k+l−1, lim

λ→1
J ′ = la(k+l)

k+l ,

lim
λ→1

J ′′ = l(l + 1)a(k+l)
k+l+1, (41)

as shown in “Appendix B,” in which case the derivatives of I (m) are

lim
λ→1

[I (m)]′ = 0, (42)

lim
λ→1

[I (m)]′′ = kl

(k + l)2(k + l + 1) ln 2
. (43)

Likewise, from Eqs. (27), (28), and (29), the first derivatives of G(m), F(m), and
R(m) are

[G(m)]′ = − l

d + 1

[
1

(k + lλ2)2

]
, (44)

[F(m)]′ = kl

d + 1

[
(1 − λ)(k + lλ)

λ(k + lλ2)2

]
, (45)

[R(m)]′ = kd

[
1

(k + lλ2)2

]
δd,(k+l), (46)

respectively. These satisfy [G(m)]′ < 0, [F(m)]′ ≥ 0, and [R(m)]′ ≥ 0. Note that
[R(m)]′ is proportional to [G(m)]′ with a non-positive proportionality constant, i.e.,
[R(m)]′ = α[G(m)]′ with

α = −kd(d + 1)

l
δd,(k+l). (47)

In addition, the second derivatives of G(m), F(m), and R(m) are

[G(m)]′′ = 2l2

d + 1

[
1

(k + lλ2)3

]
, (48)

[F(m)]′′ = − kl

2(d + 1)

[
(k + lλ2)2 + 4lλ2(1 − λ)(k + lλ)

λ3(k + lλ2)3

]
, (49)
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Table 1 Signs of the first and
second derivatives of the
information and disturbance
with respect to λ2

Function Derivative

First Second

Information

I (m) − +
G(m) − +

Disturbance

F(m) + −
R(m) + −

[R(m)]′′ = −2kld

[
1

(k + lλ2)3

]
δd,(k+l), (50)

respectively. These satisfy [G(m)]′′ > 0, [F(m)]′′ < 0, and [R(m)]′′ ≤ 0, and
[R(m)]′′ is proportional to [G(m)]′′ with the same proportionality constant α, given
in Eq. (47).

The signs of the derivatives of I (m), G(m), F(m), and R(m) are summarized
in Table 1. These signs mean that when λ2 is increased, I (m) and G(m) decrease,
while F(m) and R(m) increase. There is a trade-off between the information and the
disturbance for M̂ (d)

k,l (λ).

4 Derivatives with respect to information

Using the derivatives of the information and disturbance with respect to λ2, we can
now calculate the derivative of the disturbancewith respect to information for M̂ (d)

k,l (λ).
Let f and g be arbitrary functions of λ. Given the derivatives of f and g with respect
to λ2, the first and second derivatives of f with respect to g are

d f

dg
= f ′

g′ ,
d2 f

dg2
= f ′′g′ − f ′g′′

(g′)3
. (51)

The same results can be obtained using derivatives with respect to λ.
From Eqs. (44), (45), (48), and (49), the first and second derivatives of F(m) with

respect to G(m) can be calculated to be

dF(m)

dG(m)
= −k

[
(1 − λ)(k + lλ)

λ

]
, (52)

d2F(m)

dG(m)2
= −k(d + 1)

2l

[
(k + lλ2)3

λ3

]
. (53)

Figures 4a and 5a show these derivatives as functions of G(m) (Eq. 27) for d = 4, for
various (k, l). Because λ = 0 corresponds to Pk and λ = 1 corresponds to Pk+l for
the lines (k, l) in Fig. 1, the derivatives become
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Fig. 4 First derivatives of the disturbance with respect to information for d = 4, for the four information–
disturbance pairs: a estimation fidelity G(m) and operation fidelity F(m); b estimation fidelity G(m) and
physical reversibility R(m); c information gain I (m) and operation fidelity F(m); and d information gain
I (m) and physical reversibility R(m)

lim
λ→0

dF(m)

dG(m)
= −∞, lim

λ→0

d2F(m)

dG(m)2
= −∞ (54)

at Pk and

lim
λ→1

dF(m)

dG(m)
= 0, lim

λ→1

d2F(m)

dG(m)2
= −k(k + l)3(d + 1)

2l
(55)

at Pk+l . The first derivative of F(m) with respect to G(m) (Eq. 52) is non-positive
and the second derivative (Eq. 53) is negative, which means that all the lines (k, l) in
Fig. 1a are monotonically decreasing convex curves.

In contrast, from Eqs. (44), (46), (48), and (50), the first and second derivatives of
R(m) with respect to G(m) are constant:

dR(m)

dG(m)
= −kd(d + 1)

l
, (56)

d2R(m)

dG(m)2
= 0 (57)
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Fig. 5 Second derivatives of the disturbance with respect to information for d = 4, for the four information–
disturbance pairs: a estimation fidelity G(m) and operation fidelity F(m); b estimation fidelity G(m) and
physical reversibility R(m); c information gain I (m) and operation fidelity F(m); and d information gain
I (m) and physical reversibility R(m)

if k + l = d, and both derivatives are zero if k + l �= d. Figures 4b and 5b show
these derivatives as functions of G(m) for d = 4, for various (k, l) satisfying k + l =
d. The first derivative of R(m) with respect to G(m) (Eq. 56) is negative and the
second derivative (Eq. 57) is zero, which means that all the lines (k, l) in Fig. 1b are
monotonically decreasing straight lines.

Similarly, from Eqs. (31), (34), (45), and (49), the first and second derivatives of
F(m) with respect to I (m) are

dF(m)

dI (m)
= [F(m)]′

[I (m)]′ , (58)

d2F(m)

dI (m)2
= [F(m)]′′[I (m)]′ − [F(m)]′[I (m)]′′

{[I (m)]′}3 . (59)

Figures 4c and 5c show these derivatives as functions of I (m) (Eq. 23) for d = 4, for
various (k, l). At Pk , they become

lim
λ→0

dF(m)

dI (m)
= −∞, lim

λ→0

d2F(m)

dI (m)2
= −∞ (60)
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because

lim
λ→0

[F(m)]′ = ∞, lim
λ→0

[F(m)]′′ = −∞. (61)

Note that the numerator ofEq. (59) goes to positive infinity asλ → 0when [I (m)]′ < 0
because [F(m)]′′ diverges faster than [F(m)]′. In contrast, in the limit as λ → 1,
Eqs. (58) and (59) yield the indeterminate form 0/0 due to Eq. (42) and

lim
λ→1

[F(m)]′ = 0. (62)

However, by applying L’Hôpital’s rule and considering higher derivatives, we can find
that

lim
λ→1

dF(m)

dI (m)
= − (k + l)(k + l + 1) ln 2

2(d + 1)
, (63)

lim
λ→1

d2F(m)

dI (m)2
=

⎧
⎪⎨

⎪⎩

+∞ (if k < l)

− k(2k+1)3

(2k+3)(d+1) (ln 2)
2 (if k = l)

−∞ (if k > l)

(64)

at Pk+l , as shown in “Appendix C.” The first derivative of F(m) with respect to I (m)

(Fig. 4c) is negative, and the second derivative (Fig. 5c) is always negative if k ≥ l
but can be positive near Pk+l if k < l. This means that the lines (k, l) in Fig. 1c
are monotonically decreasing convex curves if k ≥ l, but monotonically decreasing
S-shaped curves if k < l. In particular, even though it is difficult to see from Fig. 1c,
the upper boundary (1, d − 1) has a slight dent near Pd when d ≥ 3 [28].

Finally, fromEqs. (31), (34), (46), and (50), the first and second derivatives of R(m)

with respect to I (m) are

dR(m)

dI (m)
= [R(m)]′

[I (m)]′ , (65)

d2R(m)

dI (m)2
= [R(m)]′′[I (m)]′ − [R(m)]′[I (m)]′′

{[I (m)]′}3 . (66)

Figures 4d and 5d show these derivatives as functions of I (m) for d = 4, for various
(k, l) satisfying k + l = d. (Both derivatives are zero if k + l �= d.) When k + l = d,
they become

lim
λ→0

dR(m)

dI (m)
= −kd ln 2

l
, (67)

lim
λ→0

d2R(m)

dI (m)2
=

{
k3
k−1

( d ln 2
l

)2
(if k ≥ 2)

+∞ (if k = 1)
(68)
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Table 2 Signs of the first and
second derivatives of the
disturbance with respect to
information

Disturbance Information Derivative

First Second

F(m) G(m) − −
R(m) G(m) − 0

F(m) I (m) − ±
R(m) I (m) − +

at Pk , and

lim
λ→1

dR(m)

dI (m)
= −∞, lim

λ→1

d2R(m)

dI (m)2
= +∞ (69)

at Pk+l . In Eq. (68), the second derivative diverges for k = 1 because of the corre-
sponding result in Eq. (40), and the divergences seen in Eq. (69) likewise come from
Eq. (42). Note that

lim
λ→1

1

[I (m)]′ = −∞ (70)

because [I (m)]′ tends to zero from below, as shown in Fig. 2. The first derivative of
R(m) with respect to I (m) (Fig. 4d) is negative and the second derivative (Fig. 5d) is
positive, which means that all the lines (k, l) in Fig. 1d are monotonically decreasing
concave curves.

The signs of the derivatives for the four information–disturbance pairs are summa-
rized in Table 2. All the first derivatives have negative signs, which implies that there
is a trade-off between the information and the disturbance for each of the four pairs.
In contrast, the second derivatives have different signs, which implies that the optimal
measurements are different for each of the four pairs [28].

5 Conclusion

In this paper, we have obtained the first and second derivatives of the disturbance
with respect to information for a class of quantum measurements described by the
measurement operator M̂ (d)

k,l (λ) (Eq. 22). When the measurement performed on a d-
level system in a completely unknown state yields a single outcomem, the information
is quantified by the Shannon entropy I (m) (Eq. 23) and the estimation fidelity G(m)

(Eq. 27), while the disturbance is quantified by the operation fidelity F(m) (Eq. 28) and
the physical reversibility R(m) (Eq. 29). In these four information–disturbance planes,
M̂ (d)

k,l (λ) with 0 ≤ λ ≤ 1 corresponds to a line (k, l), as shown in Fig. 1. In particular,
the lines (1, d − 1) and (k, 1) form the boundaries of the allowed regions obtained by
plotting all physically possible measurement operators in these planes [28].
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The slope and curvature of each line (k, l) are given by the first and second deriva-
tives of the disturbance with respect to the information for M̂ (d)

k,l (λ). For these four
information–disturbance pairs, the first derivatives are given by Eqs. (52), (56), (58),
and (65) (shown for d = 4 in Fig. 4), while the second derivatives are given by
Eqs. (53), (57), (59), and (66) (shown for d = 4 in Fig. 5). For the derivative of
F(m)with respect to G(m), all the lines (k, l) in Fig. 1a are monotonically decreasing
convex curves, because the first and second derivatives are non-positive and negative,
respectively, as shown in Figs. 4a and 5a. For the derivative of R(m) with respect
to G(m), all the lines (k, l) in Fig. 1b are monotonically decreasing straight lines,
because the first and second derivatives are negative and zero, respectively, as shown
in Figs. 4b and 5b. For the derivative of F(m) with respect to I (m), the lines (k, l)
in Fig. 1c are monotonically decreasing convex curves if k ≥ l and monotonically
decreasing S-shaped curves if k < l, because the first derivative is negative and the
second derivative is always negative if k ≥ l but can be positive near Pk+l if k < l,
as shown in Figs. 4c and 5c. Finally, for the derivative of R(m) with respect to I (m),
all the lines (k, l) in Fig. 1d are monotonically decreasing concave curves, because
the first and second derivatives are negative and positive, respectively, as shown in
Figs. 4d and 5d. See also Table 2 for a summary of the signs of the derivatives.

Based on these results, we can see that the boundaries (1, d − 1) and (k, 1) of the
allowed regions have non-positive slopes for all four information–disturbance pairs,
indicating that there is a trade-off between the information and the disturbance for
measurements on their boundaries. When the information is increased by moving
along a boundary, the disturbance also increases, decreasing F(m) and R(m). In
addition, the rate of change of the disturbance with respect to information is given by
the boundary’s slope. For example, if G(m) is increased by ΔG(m), F(m) decreases
by about

ΔF(m) =
∣∣∣∣
dF(m)

dG(m)

∣∣∣∣ ΔG(m). (71)

Figure 4a shows that |dF(m)/dG(m)| is infinitely large near P1, but almost zero near
Pd .

In contrast, the curvatures of the boundaries (1, d − 1) and (k, 1) for the four
information–disturbance pairs have different signs. This means that the allowed
regions are extended in different ways when the information and disturbance are
averaged over all possible outcomes, as with I , G, F , and R, given by Eqs. (9), (12),
(15), and (20), because the allowed regions for the average values are the convex hulls
of those for a single outcome [28]. The upper boundaries of the allowed regions for
the average values correspond to the optimal measurements that saturate the upper
information bounds for a given disturbance. Consequently, the optimal measurements
are different for each of the four information–disturbance pairs [28].
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Appendix

A Limits as � → 0

Here, we show that the first and second derivatives of J with respect to λ2 are as given
in Eq. (36) in the limit as λ → 0. First, note that

lim
λ→0

J = a(k)
k−1, (72)

as shown in Appendix C of Ref. [33]. The limits of these derivatives can also be shown
in a similar way.

For example, at λ = 0, the first derivative of J (Eq. 32) becomes

lim
λ→0

J ′ =
k−1∑

n=0

(
k + l − n − 1

l

)
(−1)k−n−1la(k+l)

n , (73)

because c( j)
n (0) = 0 if n < j . This equation can be simplified by using the identity

k−1∑

n=0

(
k + l − n − 1

l

)
(−1)k−n−1a(k+l)

n = a(k−1)
k−1 , (74)

which can be derived from

1

(1 + ε)l+1 [(1 + ε)k+l log2(1 + ε)]
= (1 + ε)k−1 log2(1 + ε) (75)

by expanding every factor as a Taylor series. In other words, the first factor in Eq. (75)
can be expanded using the generalized binomial theorem

1

(1 + ε) j
=

∞∑

n=0

(
j − 1 + n

j − 1

)
(−1)n εn, (76)

while the other factors can be expanded in terms of coefficients {a( j)
n } [33],

(1 + ε) j log2 (1 + ε) =
∞∑

n=0

a( j)
n εn, (77)
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where the a( j)
n ’s are given by Eq. (25) for n = 0, 1, . . . , j and by

a( j)
n = (−1)n− j−1

ln 2

[
j ! (n − j − 1)!

n!
]

(78)

for n = j + 1, j + 2, . . .. In particular, Eq. (78) reduces to Eq. (37) for n = j + 1.
The identity in Eq. (74) can then be proven by substituting Eqs. (76) and (77) into
Eq. (75) and comparing the terms of order εk−1 on both sides. Substituting Eq. (74)
into Eq. (73), we find that J ′ is

lim
λ→0

J ′ = la(k−1)
k−1 (79)

at λ = 0, as given in Eq. (36).
Similarly, the second derivative of J (Eq. 35) can be shown to be

lim
λ→0

J ′′ = l(l + 1)a(k−2)
k−1 (80)

if k ≥ 2 by using the identity

k−1∑

n=0

(
k + l − n

l + 1

)
(−1)k−n−1a(k+l)

n = a(k−2)
k−1 , (81)

which can be derived from the terms of order εk−1 in

1

(1 + ε)l+2

[
(1 + ε)k+l log2(1 + ε)

]

= (1 + ε)k−2 log2(1 + ε). (82)

However, if k = 1, J ′′ contains c(l+1)
l+1 (λ), which diverges in the limit as λ → 0, as

shown by Eq. (38). By combining these results, we find that J ′′ is given by Eq. (36)
at λ = 0.

B Limits as � → 1

Here, we show that the first and second derivatives of J with respect to λ2 are as given
in Eq. (41) in the limit as λ → 1. To find the derivatives at λ = 1, we first obtain the
Taylor series for J around λ = 1 by substituting λ2 = 1 − ε into Eq. (24):

J =
∞∑

n=0

jn (−ε)n . (83)

Note that the terms with negative powers of ε cancel each other out in this expansion
because J is finite, even atλ = 1 [33]. The coefficients { jn} are related to the derivatives

123



Derivative of the disturbance with respect to information… Page 19 of 23 63

of J at λ = 1 by

lim
λ→1

J = j0, lim
λ→1

J ′ = j1, lim
λ→1

J ′′ = 2 j2. (84)

In Appendix C of Ref. [33], j0 was shown to be a(k+l)
k+l−1, as given in Eq. (41), and the

other coefficients can be handled similarly.
For example, by applying Eq. (77) to c( j)

n (
√
1 − ε), j1 can be given as

j1 =
l−1∑

n=0

(
k + l − n − 2

k − 1

)
(−1)l−n−1

×
[(

k + l

n

)
a(k+l−n)
k+l−n + a(k+l)

n

]
. (85)

The expression in the square brackets satisfies

(
k + l

n

)
a(k+l−n)
k+l−n + a(k+l)

n =
(
k + l

n

)
a(k+l)
k+l , (86)

from Eq. (25). By using the identity

l−1∑

n=0

(−1)l−n−1
(
k + l − n − 2

k − 1

)(
k + l

n

)
= l, (87)

which can be derived from the terms of order εl−1 in

1

(1 + ε)k
(1 + ε)k+l = (1 + ε)l , (88)

we find that j1 is

j1 = la(k+l)
k+l . (89)

Therefore, from Eq. (84), we see that J ′ is given by Eq. (41) at λ = 1.
Similarly, j2 is given by

j2 =
l−1∑

n=0

(
k + l − n − 2

k − 1

)
(−1)l−n−1

×
(
k + l

n

)
a(k+l−n)
k+l−n+1. (90)

From Eq. (37), the last factor satisfies

(
k + l

n

)
a(k+l−n)
k+l−n+1 =

(
k + l + 1

n

)
a(k+l)
k+l+1. (91)
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By using the identity

l−1∑

n=0

(−1)l−n−1
(
k + l − n − 2

k − 1

) (
k + l + 1

n

)

= l(l + 1)

2
, (92)

which can be derived from the terms of order εl−1 in

1

(1 + ε)k
(1 + ε)k+l+1 = (1 + ε)l+1 , (93)

we find that j2 is

j2 = l(l + 1)

2
a(k+l)
k+l+1. (94)

Therefore, from Eq. (84), we see that J ′′ is given by Eq. (41) at λ = 1.
In general, we can use a similar argument to find that jn is

jn =
(
l − 1 + n

l − 1

)
a(k+l)
k+l−1+n, (95)

which shows that the nth derivative of J at λ = 1 is given by

lim
λ→1

J (n) = n! jn = (l − 1 + n)!
(l − 1)! a(k+l)

k+l−1+n . (96)

C Derivative calculations using L’Hôpital’s rule

Here, we show that the first and second derivatives of F(m) with respect to I (m)

are as given in Eqs. (63) and (64), respectively, in the limit as λ → 1. We need to
apply L’Hôpital’s rule to find these derivatives, because Eqs. (58) and (59) yield the
indeterminate form 0/0 in the limit as λ → 1, due to Eqs. (42) and (62). By applying
L’Hôpital’s rule to Eq. (58), we can give the first derivative as

lim
λ→1

dF(m)

dI (m)
= lim

λ→1

[F(m)]′′
[I (m)]′′ , (97)

which allows us to show Eq. (63) based on Eqs. (43) and (49).
Similarly, by applying L’Hôpital’s rule to Eq. (59) twice, we can give the second

derivative as

lim
λ→1

d2F(m)

dI (m)2
= lim

λ→1

{[F(m)]′′[I (m)]′ − [F(m)]′[I (m)]′′}′′
{{[I (m)]′}3}′′ . (98)
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This equation requires the third derivatives of I (m) and F(m) at λ = 1. By differen-
tiating Eqs. (34) and (49) and using Eq. (96), these can be calculated to be

lim
λ→1

[I (m)]′′′ = − 2kl(3kl + 3l2 + k + 5l)

(k + l)3(k + l + 1)(k + l + 2) ln 2
, (99)

lim
λ→1

[F(m)]′′′ = 3kl(k + 3l)

4(d + 1)(k + l)2
. (100)

Then, we note that the numerator of Eq. (98) can be written as (k− l)A with a positive
constant A at λ = 1, whereas its denominator goes to zero from below as λ → 1.
Therefore, from Eq. (70), we find that Eq. (98) goes to positive infinity if k < l and
negative infinity if k > l, as given in Eq. (64), but it still yields the indeterminate form
0/0 if k = l. However, by applying L’Hôpital’s rule once again in this case, the second
derivative can be given as

lim
λ→1

d2F(m)

dI (m)2
= lim

λ→1

{[F(m)]′′[I (m)]′ − [F(m)]′[I (m)]′′}′′′
{{[I (m)]′}3}′′′ . (101)

If k = l, from Eqs. (34), (49), and (96), the fourth derivatives of I (m) and F(m) at
λ = 1 can be calculated to be

lim
λ→1

[I (m)]′′′′ = 3(12k + 19)

8(2k + 1)(2k + 3) ln 2
, (102)

lim
λ→1

[F(m)]′′′′ = − 39k

16(d + 1)
. (103)

Substituting these derivatives into Eq. (101) allows us to show Eq. (64) for k = l.
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