Skip to main content
Log in

Tunable quantum routing via asymmetric intercavity couplings

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Routing efficiently the photon signals between different channels is essential in an optical quantum network. Recent chiral waveguide–emitter coupling techniques are widely applied to improve the routing capabilities in waveguide systems. As a possible alternative, we put forward a proposal to control the quantum routing of photons by adjusting asymmetric intercavity couplings on both sides of a cross-cavity in an X-shaped coupled-resonator waveguide. With the robust and tunable intercavity couplings, high transfer rate between quantum channels and expected probability distributions of two ports in the same output channel can be easily implemented. The asymmetric intercavity coupling may be utilized as a new handle to efficiently control the single-photon routing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kimble, H.J.: The quantum internet. Nature (London) 453, 1023–1031 (2008)

    Article  ADS  Google Scholar 

  2. O’Brien, J.L., Furusawa, A., Vuckovic, J.: Photonic quantum technologies. Nat. Photonics 3, 687–695 (2009)

    Article  ADS  Google Scholar 

  3. Cao, C., Duan, Y.W., Chen, X., Zhang, R., Wang, T.J., Wang, C.: Implementation of single-photon quantum routing and decoupling using a nitrogen-vacancy center and a whispering-gallery-mode resonator-waveguide system. Opt. Express 25(15), 16931 (2017)

    Article  ADS  Google Scholar 

  4. Hu, C.Y.: Photonic transistor and router using a single quantum-dot-confined spin in a single-sided optical microcavity. Sci. Rep. 7, 45582 (2017)

    Article  ADS  Google Scholar 

  5. Aoki, T., Parkins, A.S., Alton, D.J., Regal, C.A., Dayan, B., Ostby, E., Vahala, K.J., Kimble, H.J.: Efficient routing of single photons with one atom and a microtoroidal cavity. Phys. Rev. Lett. 102(8), 083601 (2009)

    Article  ADS  Google Scholar 

  6. Hoi, I.C., Wilson, C.M., Johansson, G., Palomaki, T., Peropadre, B., Delsing, P.: Demonstration of a single-photon router in the microwave regime. Phys. Rev. Lett. 107(7), 073601 (2011)

    Article  ADS  Google Scholar 

  7. Xia, K., Twamley, J.: All-optical switching and router via the direct quantum control of coupling between cavity modes. Phys. Rev. X 3(3), 031013 (2013)

    Google Scholar 

  8. Shomroni, I., Rosenblum, S., Lovsky, Y., Brechler, O., Guendelman, G., Dayan, B.: All-optical routing of single photons by a one-atom switch controlled by a single photon. Science 345(6199), 903–906 (2014)

    Article  ADS  Google Scholar 

  9. Zhou, L., Yang, L.P., Li, Y., Sun, C.P.: Quantum routing of single photons with a cyclic three-level system. Phys. Rev. Lett. 111(10), 103604 (2013)

    Article  ADS  Google Scholar 

  10. Lu, J., Zhou, L., Kuang, L., Nori, F.: Single-photon router: coherent control of multi-channel scattering for single-photons with quantum interferences. Phys. Rev. A 89(1), 013805 (2014)

    Article  ADS  Google Scholar 

  11. Agarwal, G.S., Huang, S.: Optomechanical systems as single-photon routers. Phys. Rev. A 85(2), 021801 (2012)

    Article  ADS  Google Scholar 

  12. Li, X., Zhang, W.Z., Xiong, B., Zhou, L.: Single-photon multi-ports router based on the coupled cavity optomechanical system. Sci. Rep. 6, 39343 (2016)

    Article  ADS  Google Scholar 

  13. Yuan, X.X., Ma, J.J., Hou, P.Y., Chang, X.Y., Zu, C., Duan, L.M.: Experimental demonstration of a quantum router. Sci. Rep. 5, 12452 (2015)

    Article  ADS  Google Scholar 

  14. Yan, G.A., Cai, Q.Y., Chen, A.X.: Information-holding quantum router of single photons using natural atom. Eur. Phys. J. D 70, 93 (2016)

    Article  ADS  Google Scholar 

  15. Yan, G.A., Qiao, H.X., Lu, H., Chen, A.X.: Quantum information-holding single-photon router based on spontaneous emission. Sci. China Phys. Mech. Astron. 60(9), 090311 (2017)

    Article  ADS  Google Scholar 

  16. Gonzalez-Ballestero, C., Moreno, E., Garcia-Vidal, F.J., Gonzalez-Tudela, A.: Nonreciprocal few-photon routing schemes based on chiral waveguide–emitter couplings. Phys. Rev. A 94(6), 063817 (2016)

    Article  ADS  Google Scholar 

  17. Cheng, M.T., Ma, X.S., Zhang, J.Y., Wang, B.: Single photon transport in two waveguides chirally coupled by a quantum emitter. Opt. Express 24(17), 19988–19993 (2016)

    Article  ADS  Google Scholar 

  18. Yan, C.H., Li, Y., Yuan, H., Wei, L.F.: Targeted photonic routers with chiral photon–atom interactions. Phys. Rev. A 97(2), 023821 (2018)

    Article  ADS  Google Scholar 

  19. Li, X., Wei, L.F.: Ideal photonic absorption, emission, and routings in chiral waveguides. Opt. Commun. 425, 13–18 (2018)

    Article  ADS  Google Scholar 

  20. Tao, L., Miranowicz, A., Hu, X., Xia, K., Nori, F.: Quantum memory and gates using a \(\Lambda \)-type quantum emitter coupled to a chiral waveguide. Phys. Rev. A 97(6), 062318 (2018)

    ADS  Google Scholar 

  21. Coles, R.J., Price, D.M., Dixon, J.E., Royall, B., Clarke, E., Kok, P.: Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer. Nat. Commun. 7, 11183 (2015)

    Article  ADS  Google Scholar 

  22. Söllner, I., Mahmoodian, S., Hansen, S.L., Midolo, L., Javadi, A., Kiršanskė, G., et al.: Deterministic photon–emitter coupling in chiral photonic circuits. Nat. Nanotechnol. 10(9), 775–778 (2015)

    Article  ADS  Google Scholar 

  23. Mirza, I.M., Schotland, J.C.: Multi-qubit entanglement in bidirectional-chiral-waveguide QED. Phys. Rev. A 94(1), 012302 (2016)

    Article  ADS  Google Scholar 

  24. Gonzalez-Ballestero, C., Gonzalez-Tudela, A., Garcia-Vidal, F.J., Moreno, E.: Chiral route to spontaneous entanglement generation. Phys. Rev. B 92(15), 155304 (2015)

    Article  ADS  Google Scholar 

  25. Scheucher, M., Hilico, A., Will, E., Volz, J., Rauschenbeutel, A.: Quantum optical circulator controlled by a single chirally coupled atom. Science 345(6319), 1577–1580 (2016)

    Article  ADS  Google Scholar 

  26. Sayrin, C., Junge, C., Mitsch, R., Albrecht, B., O’Shea, D., Schneeweiss, P., Volz, J., Rauschenbeutel, A.: Nanophotonic optical isolator controlled by the internal state of cold atoms. Phys. Rev. X 5(4), 041036 (2015)

    Google Scholar 

  27. Pichler, H., Ramos, T., Daley, A.J., Zoller, P.: Quantum optics of chiral spin networks. Phys. Rev. A 91(4), 042116 (2015)

    Article  ADS  Google Scholar 

  28. Mahmoodian, S., Lodahl, P., SãRensen, A.S.: Quantum networks with chiral-light–matter interaction in waveguides. Phys. Rev. Lett. 117(24), 240501 (2016)

    Article  ADS  Google Scholar 

  29. Akahane, Y., Asano, T., Song, B.S., Noda, S.: High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature 425(6961), 944–947 (2003)

    Article  ADS  Google Scholar 

  30. Faraon, A., Waks, E., Englund, D., Fushman, I., Vučković, J.: Integrated quantum optical networks based on quantum dots and photonic crystals. New J. Phys. 13(5), 5314–5317 (2011)

    Article  Google Scholar 

  31. Wallraff, A., Schuster, D.I., Blais, A., Frunzio, L., Huang, R.S., Majer, J., Kumar, S., Girvin, S.M., Schoelkopf, R.J.: Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431(7005), 162–167 (2004)

    Article  ADS  Google Scholar 

  32. Angelakis, D.G., Santos, M.F., Yannopapas, V., Ekert, A.: A proposal for the implementation of quantum gates with photonic-crystal waveguides. Phys. Lett. A 362(5–6), 377–380 (2007)

    Article  ADS  Google Scholar 

  33. Zhou, L., Lu, J., Sun, C.P.: Coherent control of photon transmission: slowing light in a coupled resonator waveguide doped with \(\Lambda \) atoms. Phys. Rev. A 76(1), 012313 (2007)

    ADS  Google Scholar 

  34. Zhou, L., Dong, H., Sun, C.P., Nori, F.: Quantum super-cavity with atomic mirrors. Phys. Rev. A 78(6), 063827 (2008)

    Article  ADS  Google Scholar 

  35. Zhou, L., Gong, Z.R., Liu, Y.X., Sun, C.P., Nori, F.: Controllable scattering of a single photon inside a one-dimensional resonator waveguide. Phys. Rev. Lett. 101(10), 100501 (2008)

    Article  ADS  Google Scholar 

  36. Liao, J.Q., Huang, J.F., Liu, Y.X., Kuang, L.M., Sun, C.P.: Quantum switch for single-photon transport in a coupled superconducting transmission-line-resonator array. Phys. Rev. A 80(1), 014301 (2009)

    Article  ADS  Google Scholar 

  37. Li, Y., Bruder, C., Sun, C.P.: Generalized Stern–Gerlach effect for chiral molecules. Phys. Rev. Lett. 99(13), 130403 (2007)

    Article  ADS  Google Scholar 

  38. Liu, Y.X., You, J.Q., Wei, L.F., Sun, C.P., Nori, F.: Optical selection rules and phase-dependent adiabatic state control in a superconducting quantum circuit. Phys. Rev. Lett. 95(8), 087001 (2005)

    Article  ADS  Google Scholar 

  39. Wallraff, A., Schuster, D.I., Blais, A., Frunzio, L., Majer, J., Devoret, M.H., Girvin, S.M., Schoelkopf, R.J.: Approaching unit visibility for control of a superconducting qubit with dispersive readout. Phys. Rev. Lett. 95(6), 060501 (2005)

    Article  ADS  Google Scholar 

  40. Blais, A., Gambetta, J., Wallraff, A., Schuster, D.I., Girvin, S.M., Devoret, M.H.: Quantum information processing with circuit quantum electrodynamics. Phys. Rev. A 75(3), 032329 (2007)

    Article  ADS  Google Scholar 

  41. Lu, J., Wang, Z.H., Zhou, L.: T-shaped single-photon router. Opt. Express 23(18), 22955–22962 (2015)

    Article  ADS  Google Scholar 

  42. Yang, X., Hou, J.J., Wu, C.: Single-photon routing for a L-shaped channel. Int. J. Theor. Phys. 57(2), 602–608 (2018)

    Article  MATH  Google Scholar 

  43. Schuster, D.I., Wallraff, A., Blais, A., Frunzio, L., Huang, R.S., Majer, J., Girvin, S.M., Schoelkopf, R.J.: ac Stark shift and dephasing of a superconducting qubit strongly coupled to a cavity field. Phys. Rev. Lett. 94(12), 123602 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11247032 and 61765007), and Scientific Research Foundation of the Jiangxi Provincial Education Department (Grant Nos. GJJ170556, GJJ170557, and GJJ180424).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Song Huang.

Appendix: Scattering amplitudes in the dissipative case

Appendix: Scattering amplitudes in the dissipative case

In the appendix, the scattering amplitudes in the dissipative case are given. The basic calculation process is similar to the above one in the text. When the dissipations are considered, the corresponding frequencies \(\omega _a\), \(\omega _b\), \(\omega _e\), and \(\omega _f\) are replaced by \(\omega '_a\), \(\omega '_b\), \(\omega '_e\), and\(\omega '_f\), respectively. Here, \(\omega '_{a(b,e,f)}\) \(=\omega _{a(b,e,f)}-i\gamma _{a(b,e,f)}\), and \(\gamma _{a(b,e,f)}\) is the decay rate of CCA-a (CCA-b, atomic excited state \(|e\rangle \), and \(|f\rangle \)). The corresponding effective potentials and dispersive coupling strength are described as

$$\begin{aligned} V'_a(E_k)= & {} \frac{g^2_a\varDelta '_f}{ \varDelta '_e\varDelta '_f-|\varOmega |^2},\nonumber \\ V'_b(E_k)= & {} \frac{g^2_b\varDelta '_e}{\varDelta '_e\varDelta '_f-|\varOmega |^2},\nonumber \\ G'(E_k)= & {} \frac{\varOmega g_ag_b }{\varDelta '_e\varDelta '_f-|\varOmega |^2}, \end{aligned}$$
(A1)

with \(\varDelta '_e=E_k-\omega '_e\) and \(\varDelta '_f=E_k-\omega '_f\).

After some algebra, the exact form of the scattering amplitudes is obtained as

$$\begin{aligned} r_a= & {} \frac{\xi _a\alpha (0)-\xi _a+i\gamma _ae^{-ik_a} }{ \xi _a-i\gamma _ae^{ik_a} } ,\nonumber \\ t_a= & {} \frac{(1+\lambda _a)\xi _a\alpha (0)}{ \xi _a-i\gamma _ae^{ik_a} },\nonumber \\ t_b^u= & {} \frac{(1+\lambda _b)\xi _b\beta (0)}{ \xi _b-i\gamma _be^{ik_b} },\nonumber \\ t_b^d= & {} \frac{\xi _b\beta (0)}{ \xi _b-i\gamma _be^{ik_b} }, \end{aligned}$$
(A2)

with

$$\begin{aligned} \alpha (0)= & {} \frac{ Q_b\xi _a (e^{ik_a}\frac{\xi _a-i\gamma _ae^{-ik_a}}{\xi _a-i\gamma _ae^{ik_a}}-e^{-ik_a}) }{(Q_a-V'_a)(Q_b-V'_b)-|G'|^2},\nonumber \\ \beta (0)= & {} \frac{ G'^*\xi _a(e^{ik_a}\frac{\xi _a-i\gamma _ae^{-ik_a}}{\xi _a-i\gamma _ae^{ik_a}}-e^{-ik_a}) }{(Q_a-V'_a)(Q_b-V'_b)-|G'|^2},\nonumber \\ Q_b= & {} i\gamma _b-2\xi _b\cos {k_b}+\frac{\xi _b^2 e^{ik_b}(2+2\lambda _b+\lambda ^2_b) }{\xi _b-i\gamma _b e^{ik_b}},\nonumber \\ Q_a= & {} i\gamma _a-2\xi _a\cos {k_a}+\frac{\xi _a^2 e^{ik_a}(2+2\lambda _a+\lambda ^2_a) }{\xi _a-i\gamma _a e^{ik_a}},\nonumber \\ \end{aligned}$$
(A3)

When the dissipations are not included, the scattering coefficients in Eq. (A2) can be returned to the forms in Eq. (12) in the text. While the dissipations are added, the conservation relation of the photon flow doesn’t maintain and changes into \(|t_a|^2 + |r_a|^2 + |t_b^u|^2 +|t_b^d|^2< 1\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, JS., Wang, JW., Li, YL. et al. Tunable quantum routing via asymmetric intercavity couplings. Quantum Inf Process 18, 59 (2019). https://doi.org/10.1007/s11128-019-2176-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2176-y

Keywords

Navigation