Skip to main content
Log in

Distribution of entanglement in multipartite systems

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Distribution of entanglement for the multipartite systems is characterized through monogamy and polygamy relations. In this paper, we study the xth power monogamy properties related to the entanglement measure in bipartite states. The monogamy relations based on the nonnegative power of Tsallis-q entanglement are obtained for N-qubit states and are shown to be tighter than existing relation. We find that for any tripartite mixed state, the Tsallis-q entanglement follows a polygamy relation. This polygamy relation also holds for the multi-qubit systems. The polygamy relations of the Tsallis-q entanglement, that are uniquely defined for generalized multi-qubit W-class states, and partially coherent superposition states are also examined. Moreover, the tighter monogamy bounds for concurrence of assistance and negativity of assistance are also established for these states, which gives more accurate bounds than existing relations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81(2), 865 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Qaisar, S., Rehman, J.U., Jeong, Y., Shin, H.: Practical deterministic secure quantum communication in a lossy channel. Prog Theor Exp Phys 2017(4), 041A01 (2017)

    Article  MathSciNet  Google Scholar 

  3. Kumar, A., Roy, S.S., Pal, A.K., Prabhu, R., De, A.S., Sen, U.: Conclusive identification of quantum channels via monogamy of quantum correlations. Phys. Rev. A 380(43), 3588–3594 (2016)

    MathSciNet  Google Scholar 

  4. Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61(5), 052306 (2000)

    Article  ADS  Google Scholar 

  5. Osborne, T.J., Verstraete, F.: General monogamy inequality for bipartite qubit entanglement. Phys. Rev. Lett. 96(22), 220503 (2006)

    Article  ADS  Google Scholar 

  6. de Oliveira, T.R., Cornelio, M.F., Fanchini, F.F.: Monogamy of entanglement of formation. Phys. Rev. A 89(3), 034303 (2014)

    Article  ADS  Google Scholar 

  7. Ou, Y.C., Fan, H.: Monogamy inequality in terms of negativity for three-qubit states. Phys. Rev. A 75(6), 062308 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  8. Kim, J.S., Das, A., Sanders, B.C.: Entanglement monogamy of multipartite higher-dimensional quantum systems using convex-roof extended negativity. Phys. Rev. A 79(1), 012329 (2009)

    Article  ADS  Google Scholar 

  9. Kim, J.S.: Tsallis entropy and entanglement constraints in multiqubit systems. Phys. Rev. A 81(6), 062328 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  10. Luo, Y., Tian, T., Shao, L.H., Li, Y.: General monogamy of Tsallis \(q\)-entropy entanglement in multiqubit systems. Phys. Rev. A 93(6), 062340 (2016)

    ADS  Google Scholar 

  11. Kim, J.S., Sanders, B.C.: Monogamy of multi-qubit entanglement using Rényi entropy. J. Phys. A: Math. Theor. 43(44), 445305 (2010)

    Article  MATH  Google Scholar 

  12. Kim, J.S., Sanders, B.C.: Unified entropy, entanglement measures and monogamy of multi-party entanglement. J. Phys. A: Math. Theor. 44(29), 295303 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gour, G., Bandyopadhyay, S., Sanders, B.C.: Dual monogamy inequality for entanglement. J. Math. Phys. 48(1), 012108 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Buscemi, F., Gour, G., Kim, J.S.: Polygamy of distributed entanglement. Phys. Rev. A 80, 012324 (2009)

    Article  ADS  Google Scholar 

  15. Kim, J.S., Sanders, B.C.: Generalized W-class state and its monogamy relation. J. Phys. A: Math. Theor. 41(49), 495301 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kim, J.S.: Strong monogamy of quantum entanglement for multiqubit W-class states. Phys. Rev. A 90(6), 062306 (2014)

    Article  ADS  Google Scholar 

  17. Kim, J.S.: Strong monogamy of multiparty quantum entanglement for partially coherently superposed states. Phys. Rev. A 93(3), 032331 (2016)

    Article  ADS  Google Scholar 

  18. Zhu, X.N., Fei, S.M.: General monogamy relations of quantum entanglement for multiqubit W-class states. Quantum Inf. Process. 16(2), 53 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Jin, Z.X., Fei, S.M.: Tighter monogamy relations of quantum entanglement for multiqubit W-class states. Quantum Inf. Process. 17(1), 2 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Uhlmann, A.: Fidelity and concurrence of conjugated states. Phys. Rev. A 62(3), 032307 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  21. Lee, S., Chi, D.P., Oh, S.D., Kim, J.: Convex-roof extended negativity as an entanglement measure for bipartite quantum systems. Phys. Rev. A 68(6), 062304 (2003)

    Article  ADS  Google Scholar 

  22. Horodecki, P.: Separability criterion and inseparable mixed states with positive partial transposition. Phys. Lett. A 232(3), 333–339 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Dür, W., Cirac, J., Lewenstein, M., Bruß, D.: Distillability and partial transposition in bipartite systems. Phys. Rev. A 61(6), 062313 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  24. Audenaert, K.M.: Subadditivity of \(q\)-entropies for q \(\ge 1\). J. Math. Phys. 48(8), 083507 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  25. Agrawal, P., Pati, A.: Perfect teleportation and superdense coding with W states. Phys. Rev. A 74(6), 062320 (2006)

    Article  ADS  Google Scholar 

  26. shui Yu, C., shan Song, H.: Measurable entanglement for tripartite quantum pure states of qubits. Phys. Rev. A 76(2), 022324 (2007)

    Article  ADS  Google Scholar 

  27. Jin, Z.X., Li, J., Li, T., Fei, S.M.: Tighter monogamy relations in multiqubit systems. Phys. Rev. A 97(3), 032336 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  28. Briegel, H.J., Raussendorf, R.: Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86(5), 910 (2001)

    Article  ADS  Google Scholar 

  29. Humphreys, P.C., Barbieri, M., Datta, A., Walmsley, I.A.: Quantum enhanced multiple phase estimation. Phys. Rev. Lett. 111(7), 070403 (2013)

    Article  ADS  Google Scholar 

  30. Liu, J., Lu, X.M., Sun, Z., Wang, X.: Quantum multiparameter metrology with generalized entangled coherent state. J. Phys. A: Math. Theor. 49(11), 115302 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIP) (No. 2016R1A2B2014462), by the Basic Science Research Program through the NRF funded by the Ministry of Education (No. 2018R1D1A1B07050584), and ICT R&D program of MSIP/IITP [R0190-15-2030, Reliable crypto-system standards and core technology development for secure quantum key distribution network].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Youngmin Jeong or Hyundong Shin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A., Farooq, A., Jeong, Y. et al. Distribution of entanglement in multipartite systems. Quantum Inf Process 18, 60 (2019). https://doi.org/10.1007/s11128-019-2178-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2178-9

Keywords

Navigation