Skip to main content
Log in

Designs of interactions between discrete- and continuous-variable states for generation of hybrid entanglement

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We develop theory of realizing different types of hybrid entanglement between discrete-variable (single photon) and continuous-variable states (coherent states). The key mechanism for generating such hybrid entangled states is thanks to superposing microscopic discrete-variable state with macroscopic continuous-variable Schrodinger cat state on highly transmissive beam splitter followed by measurement strategies in such a way that all the information about the amplitude of the continuous-variable state is erased. Conditions for obtaining the balanced hybrid entangled states are established and their degree of entanglement is evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Knill, E., Laflamme, L., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature 409, 46 (2001)

    Article  ADS  Google Scholar 

  2. Braunstein, S., van Loock, P.: Quantum information with continuous variables. Rev. Mod. Phys. 77, 513 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  3. O’Brien, J.L., Furusawa, A., Vučković, J.: Photonic quantum technologies. Nat. Photon. 3, 687 (2009)

    Article  ADS  Google Scholar 

  4. Gerry, C.C.: Generation of optical macroscopic quantum superposition states via state reduction with a Mach–Zehnder interferometry containin a Kerr medium. Phys. Rev. A 59, 4095 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  5. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. University Press, Cambridge (2000)

    MATH  Google Scholar 

  6. Lutkenhaus, N., Calsamiglia, J., Suominen, K.A.: Bell measurements for teleportation. Phys. Rev. A 59, 3245 (1999)

    MathSciNet  ADS  Google Scholar 

  7. Bouwmeester, D., Pan, J.W., Mattle, K., Eible, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575 (1997)

    Article  ADS  Google Scholar 

  8. Boschi, D., Branca, S., De Martini, F., Harcy, L., Popescu, S.: Experimental realization of teleporting an unknown pure quantum state via dual classical and Einsteing–Podolsky–Rosen channels. Phys. Rev. Lett. 80, 1121 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  9. Pittman, T.B., Fitch, M.J., Jacobs, B.C., Franson, J.D.: Experimental controlled-NOT logic gate for single photons in the coincidence basis. Phys. Rev. A 68, 032316 (2003)

    Article  ADS  Google Scholar 

  10. Braunstein, S.L., Kimble, H.J.: Teleportation of continuous quantum variables. Phys. Rev. Lett. 80, 869 (1998)

    Article  ADS  Google Scholar 

  11. Man, Z.X., Xia, Y.J., An, N.B.: Simultaneous observation of particle and wave behaviors of entangled photons. Sci. Rep. 7, 42539 (2017)

    Article  ADS  Google Scholar 

  12. Rab, A.S., Polino, E., Man, Z.X., An, N.B., Xia, Y.J., Spagnolo, N., Franco, R.L., Sciarrino, F.: Entanglement of photons in their dual wave-particle nature. Nat. Commun. 8, 915 (2017)

    Article  ADS  Google Scholar 

  13. Schrӧdinger, E.: Die gegenwӓrtige Situation in der Quantenmechanik. Naturwissenschaften 23, 807 (1935)

    Article  ADS  Google Scholar 

  14. van Loock, P., Munro, W.J., Nemoto, K., Spiler, T.P., Ladd, T.D., Braunstein, S.L., Milburn, G.J.: Hybrid quantum computation in quantum optics. Phys. Rev. A 78, 022303 (2008)

    Article  ADS  Google Scholar 

  15. Furusava, A., van Loock, P.: Quantum Teleportation and Experiment—A Hybrid Approach to Optical Quantum Information Processing. Wiley-VCH, Weinheim (2011)

    Book  Google Scholar 

  16. Lee, S.-W., Jeong, H.: Near-deterministic quantum teleportation and resource-efficient quantum computation using linear optics and hybrid qubit. Phys. Rev. A 87, 022326 (2013)

    Article  ADS  Google Scholar 

  17. Podoshvedov, S.A.: Quantum teleportation protocol with assistant who prepares the amplitude modulated unknown qubits. JOSA B 35, 861 (2018)

    Article  ADS  Google Scholar 

  18. de Martini, F., Sciarrino, F., Vitelli, C.: Entanglement test on a microscopic–macroscopic system. Phys. Rev. Lett. 100, 253601 (2008)

    Article  ADS  Google Scholar 

  19. Morin, O., Haung, K., Liu, J., Jeannic, H.L., Fabre, C., Laurat, J.: Remote creation of hybrid entanglement between particle-like and wave-like optical qubits. Nat. Photonics 8, 570 (2014)

    Article  ADS  Google Scholar 

  20. Jeong, H., Zavatta, A., Kang, M., Lee, S.-W., Costanzo, L.S., Grandi, S., Ralph, T.C., Bellini, M.: Generation of hybrid entanglement of light. Nat. Photonics 8, 564 (2014)

    Article  ADS  Google Scholar 

  21. Costanzo, L.S., Zavatta, A., Grandi, S., Bellini, M., Jeong, H., Kang, M., Lee, S.-W., Ralph, T.C.: Properties of hybrid entanglement between discrete- and continuous-variable states of light. Phys. Scr. 90, 074045 (2015)

    Article  ADS  Google Scholar 

  22. Bich, C.T., Dat, L.T., Hop, N.V., An, N.B.: Deterministic joint remote preparation of an equatorial hybrid state via high-dimensional Einstein–Podolsky–Rosen pairs: active versus passive receiver. Quantum Inf. Process. 17, 75 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  23. Podoshvedov, S.A.: Generation of displaced squeezed superpositions of coherent states. J. Exp. Theor. Phys. 114, 451 (2012)

    Article  ADS  Google Scholar 

  24. Bruno, S., Martin, A., Sekatski, P., Sangouard, N., Thew, R., Gisin, N.: Displacement of entanglement back and forth between the micro and macro domains. Nat. Phys. 9, 545 (2013)

    Article  Google Scholar 

  25. Lvovsky, A.I., Ghobadi, R., Chandra, A., Prasad, A.S., Simon, C.: Observation of micro–macro entanglement of light. Nat. Phys. 9, 541 (2013)

    Article  Google Scholar 

  26. Podoshvedov, S.A.: Elementary quantum gates in different bases. Quant. Inf. Proc. 15, 3967 (2016)

    Article  MathSciNet  Google Scholar 

  27. Podoshvedov, S.A.: Building of one-way Hadamard gate for squeezed coherent states. Phys. Rev. A 87, 012307 (2013)

    Article  ADS  Google Scholar 

  28. Podoshvedov, S.A., Kim, J., Kim, K.: Elementary quantum gates with Gaussian states. Quantum Inf. Proc. 13, 1723 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  29. Paris, M.G.A.: Displacement operator by beam splitter. Phys. Lett. A 217, 78 (1996)

    Article  ADS  Google Scholar 

  30. Reck, M., Zeilinger, A., Bernstein, H.J., Bertani, P.: Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 73, 58 (1994)

    Article  ADS  Google Scholar 

  31. Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

  32. Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  33. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  34. An, N.B.: Teleportation of coherent state superposition within a network. Phys. Rev. A 68, 022321 (2003)

    Article  ADS  Google Scholar 

  35. Shanta, P., Chaturverdi, S., Srinivasan, V., Agarwal, G.S., Mehta, C.L.: Unified approach to multiphoton coherent states. Phys. Rev. Lett. 72, 1447 (1994)

    Article  ADS  Google Scholar 

  36. Laha, P., Lakshmibala, S., Balakrishnan, V.: Estimation of nonclassical properties of multiphoton coherent states from optical tomograms. J. Mod. Optics (2018). https://doi.org/10.1080/09500340.2018.1454527

    Article  Google Scholar 

Download references

Acknowledgements

S.A.P. is supported by Act 211 Government of the Russian Federation, contract No. 02.A03.21.0011, while N.B.A. is supported by the National Foundation for Science and Technology Development (NAFOSTED) under Project No. 103.01-2017.08.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey A. Podoshvedov.

Appendices

Appendix A: Decomposition of displaced number state in terms of Fock states

The displacement operator \( D\left( \alpha \right) \) is unitary and determined by

$$ D\left( \alpha \right) = \exp \left( {\alpha a^{ + } - \alpha^{*} a} \right), $$
(A1)

with \( \alpha \) the displacement amplitude and \( a (a^{ + } ) \) the bosonic annihilation (creation) operator. Its action on an arbitrary pure state

$$ \left| \psi \right\rangle = \mathop \sum \limits_{n = 0}^{k} a_{n} \left| n \right\rangle , \;{\text{with}}\;\mathop \sum \limits_{n = 0}^{k} \left| {a_{n} } \right|^{2} = 1, $$
(A2)

reads

$$ D\left( \alpha \right)\left| \psi \right\rangle = \mathop \sum \limits_{n = 0}^{k} a_{n} \left| {n,\alpha } \right\rangle , $$
(A3)

where

$$ \left| {n,\alpha } \right\rangle = D\left( \alpha \right)\left| n \right\rangle $$
(A4)

is called a displaced number state, which is characterized by two numbers: a quantum discrete number \( n \) and a classical continuous parameter \( \alpha \) (\( \alpha \) specifies the size of the state [23]). Note that \( \left| {0,\alpha } \right\rangle = D\left( \alpha \right)\left| 0 \right\rangle = \left| \alpha \right\rangle \) is nothing else but the coherent state. For a given \( \alpha \) the states

$$ \left\{ {\left| {n,\alpha } \right\rangle ,n = 0,1,2, \ldots ,\infty } \right\}, $$
(A5)

with the inner products \( \left\langle {n,\alpha |m,\alpha } \right\rangle = \delta_{nm} \) constitute the basic set of the displaced number state. The decomposition of a displaced number state in terms of Fock states is [23]

$$ \left| {l,\alpha } \right\rangle = F\mathop \sum \limits_{n = 0}^{\infty } c_{ln} \left( \alpha \right)\left| n \right\rangle , $$
(A6)

with \( F = \exp \left( { - \left| \alpha \right|^{2} /2} \right) \) and \( c_{ln} \left( \alpha \right) \) are determined in [26] by

$$ c_{ln} \left( \alpha \right) = \frac{{\alpha^{n - l} }}{{\sqrt {l!n!} }}\mathop \sum \limits_{k = 0}^{l} \left( { - 1} \right)^{k} C_{l}^{k} \left| \alpha \right|^{2k} \mathop \prod \limits_{k = 0}^{l - 1} \left( {n - l + k + 1} \right), $$
(A7)

or the same

$$ c_{ln} \left( \alpha \right) = \frac{{\alpha^{n - l} }}{{\sqrt {l!n!} }}\left( \begin{aligned} n\left( {n - 1} \right) \ldots \left( {n - l + 1} \right) - C_{l}^{1} \left| \alpha \right|^{2} n\left( {n - 1} \right) \ldots \left( {n - l + 2} \right) \hfill \\ + C_{l}^{2} \left| \alpha \right|^{4} n\left( {n - 1} \right) \ldots \left( {n - l + 3} \right) + \cdots \hfill \\ + \left( { - 1} \right)^{k} C_{l}^{k} \left| \alpha \right|^{2k} \mathop \prod \limits_{k}^{l - 1} \left( {n - l + k + 1} \right) + \left( { - 1} \right)^{l} \left| \alpha \right|^{2l} \hfill \\ \end{aligned} \right), $$
(A8)

where \( C_{l}^{k} = l!/\left( {k!\left( {l - k} \right)!} \right) \) and

$$ \mathop \prod \limits_{k}^{l - 1} \left( {n - l + k + 1} \right) = n\left( {n - 1} \right) \ldots \left( {n - l + k + 1} \right). $$
(A9)

The matrix elements \( c_{mn} \left( \alpha \right) \) in (A7) satisfy the normalization condition [26]

$$ F^{2} \mathop \sum \limits_{n = 0}^{\infty } \left| {c_{ln} \left( \alpha \right)} \right|^{2} = 1. $$
(A10)

From the explicit expressions (A7) or (A8) of \( c_{ln} \left( \alpha \right) \), it is possible to check the following relation

$$ c_{ln} \left( { - \alpha } \right) = \left( { - 1} \right)^{n - l} c_{ln} \left( \alpha \right). $$
(A11)

Obviously, for even \( l \) \( ({\text{i}} . {\text{e}}., l = 2m \))

$$ c_{2m,n} \left( { - \alpha } \right) = \left( { - 1} \right)^{n} c_{2m,n} \left( \alpha \right), $$
(A12)

and for odd \( l \) \( \left( {{\text{i}} . {\text{e}}., l = 2m + 1} \right) \)

$$ c_{2m + 1,n} \left( { - \alpha } \right) = \left( { - 1} \right)^{n - 1} c_{2m + 1,n} . $$
(A13)

In particular, for \( l = 0 \) and \( l = 1 \) one has [26]

$$ c_{0n} \left( \alpha \right) = \frac{{\alpha^{n} }}{{\sqrt {n!} }}, $$
(A14)
$$ c_{1n} \left( \alpha \right) = \frac{{\alpha^{n - 1} }}{{\sqrt {n!} }}\left( {n - \left| \alpha \right|^{2} } \right), $$
(A15)

satisfying the normalization conditions

$$ F^{2} \mathop \sum \limits_{n = 0}^{\infty } \left| {c_{0n} \left( \alpha \right)} \right|^{2} = 1, $$
(A16)
$$ F^{2} \mathop \sum \limits_{n = 0}^{\infty } \left| {c_{1n} \left( \alpha \right)} \right|^{2} = 1. $$
(A17)

One also has

$$ c_{0n} \left( { - \alpha } \right) = \left( { - 1} \right)^{n} c_{0n} \left( \alpha \right), $$
(A18)
$$ c_{1n} \left( { - \alpha } \right) = \left( { - 1} \right)^{n - 1} c_{1n} \left( \alpha \right). $$
(A19)

Appendix B: DV–CV interaction for generation of hybrid entangled states (9)

The action of HTBS on an even cat (6a) and a dual-rail one-photon state (7),

$$ BS_{13} \left( {\left| {\beta_{ + } } \right\rangle_{1} \left| \varphi \right\rangle_{23} } \right) = N_{ + } \left( {BS_{13} \left( {\left| { - \beta } \right\rangle_{1} \left| \varphi \right\rangle_{23} } \right) + BS_{13} \left( {\left| \beta \right\rangle_{1} \left| \varphi \right\rangle_{23} } \right)} \right), $$
(B1)

can be calculated term by term as follows. For the first term in the RHS of (B1), we have

$$ \begin{aligned} BS_{13} \left( {\left| { - \beta } \right\rangle_{1} \left| \varphi \right\rangle_{23} } \right) & = BS_{13} D_{1} \left( { - \beta } \right)D_{3} \left( { - \alpha } \right)BS_{13}^{ + } BS_{13} \left| 0 \right\rangle_{1} D_{3} \left( \alpha \right)\left| \varphi \right\rangle_{23} \\ & = D_{1} \left( { - \beta /t} \right)D_{3} \left( 0 \right)BS_{13} \left| 0 \right\rangle_{1} \left( {a_{0} \left| 0 \right\rangle_{2} \left| {1,\alpha } \right\rangle_{3} + a_{1} \left| 1 \right\rangle_{2} \left| \alpha \right\rangle_{3} } \right) \\ & = FD_{1} \left( { - \beta /t} \right)\mathop \sum \limits_{n = 0}^{\infty } c_{1n} \left( \alpha \right)\left( {a_{0} \left| 0 \right\rangle_{2} + a_{1} A_{n} \left| 1 \right\rangle_{2} } \right)BS_{13} \left( {\left| {0n} \right\rangle_{13} } \right), \\ \end{aligned} $$
(B2)

while the second term reads

$$ \begin{aligned} BS_{13} \left( {\left| \beta \right\rangle_{1} \left| \varphi \right\rangle_{23} } \right) & = BS_{13} D_{1} \left( \beta \right)D_{3} \left( \alpha \right)BS_{13}^{ + } BS_{13} \left| 0 \right\rangle_{1} D_{3} \left( { - \alpha } \right)\left| \varphi \right\rangle_{23} \\ & = D_{1} \left( {\beta /t} \right)D_{3} \left( 0 \right)BS_{13} \left| 0 \right\rangle_{1} \left( {a_{0} \left| 0 \right\rangle_{2} \left| {1, - \alpha } \right\rangle_{3} + a_{1} \left| 1 \right\rangle_{2} \left| { - \alpha } \right\rangle_{3} } \right) \\ & = FD_{1} \left( { - \beta /t} \right)\mathop \sum \limits_{n = 0}^{\infty } \left( { - 1} \right)^{n - 1} c_{1n} \left( \alpha \right)\left( {a_{0} \left| 0 \right\rangle_{2} - a_{1} A_{n} \left| 1 \right\rangle_{2} } \right)BS_{13} \left( {\left| {0n} \right\rangle_{13} } \right). \\ \end{aligned} $$
(B3)

In (B2) and (B3)

$$ A_{n} \left( \alpha \right) = \frac{{c_{0n} \left( \alpha \right)}}{{c_{1n} \left( \alpha \right)}} = \frac{\alpha }{{n - \left| \alpha \right|^{2} }}. $$
(B4)

Summing up (B2) and (B3) yields

$$ \begin{aligned} & BS_{13} \left( {\left| {\beta_{ + } } \right\rangle_{1} \left| \varphi \right\rangle_{23} } \right) \\ & \quad = FN_{ + } \left( \begin{aligned} \left| {\Delta_{0} \left( { - \beta } \right)} \right\rangle_{123} + \left| {\Delta_{0} \left( \beta \right)} \right\rangle_{123} + r\left( {\left| {\Delta_{1} \left( { - \beta } \right)} \right\rangle_{123} + \left| {\Delta_{1} \left( \beta \right)} \right\rangle_{123} } \right) \hfill \\ + r^{2} \left( {\left| {\Delta_{2} \left( { - \beta } \right)} \right\rangle_{123} + \left| {\Delta_{2} \left( \beta \right)} \right\rangle_{123} } \right) + \cdots \hfill \\ \end{aligned} \right), \\ \end{aligned} $$
(B5)

where

$$ \left| {\Delta_{0} \left( { - \beta } \right)} \right\rangle_{123} = \left| { - \beta /t} \right\rangle_{1} \mathop \sum \limits_{n = 0}^{\infty } c_{1n} \left( \alpha \right)t^{n} \left( {a_{0} \left| 0 \right\rangle_{2} + a_{1} A_{n} \left| 1 \right\rangle_{2} } \right)\left| n \right\rangle_{3} , $$
(B6)
$$ \left| {\Delta_{0} \left( \beta \right)} \right\rangle_{123} = \left| {\beta /t} \right\rangle_{1} \mathop \sum \limits_{n = 0}^{\infty } \left( { - 1} \right)^{n - 1} c_{1n} \left( \alpha \right)t^{n} \left( {a_{0} \left| 0 \right\rangle_{2} - a_{1} A_{n} \left| 1 \right\rangle_{2} } \right)\left| n \right\rangle_{3} , $$
(B7)
$$ \left| {\Delta_{1} \left( { - \beta } \right)} \right\rangle_{123} = \left| {1, - \beta /t} \right\rangle_{1} \mathop \sum \limits_{n = 1}^{\infty } c_{1n} \left( \alpha \right)t^{n - 1} \sqrt n \left( {a_{0} \left| 0 \right\rangle_{2} + a_{1} A_{n} \left| 1 \right\rangle_{2} } \right)\left| {n - 1} \right\rangle_{3} , $$
(B8)
$$ \left| {\Delta_{1} \left( \beta \right)} \right\rangle_{123} = \left| {1,\beta /t} \right\rangle_{1} \mathop \sum \limits_{n = 1}^{\infty } \left( { - 1} \right)^{n - 1} c_{1n} \left( \alpha \right)t^{n - 1} \sqrt n \left( {a_{0} \left| 0 \right\rangle_{2} - a_{1} A_{n} \left| 1 \right\rangle_{2} } \right)\left| {n - 1} \right\rangle_{3} , $$
(B9)
$$ \left| {\Delta_{2} \left( { - \beta } \right)} \right\rangle_{123} = \left| {2, - \beta /t} \right\rangle_{1} \mathop \sum \limits_{n = 2}^{\infty } c_{1n} \left( \alpha \right)t^{n - 2} \sqrt {\frac{{n\left( {n - 1} \right)}}{2!}} \left( {a_{0} \left| 0 \right\rangle_{2} + a_{1} A_{n} \left| 1 \right\rangle_{2} } \right)\left| {n - 2} \right\rangle_{3} , $$
(B10)
$$ \left| {\Delta_{2} \left( \beta \right)} \right\rangle_{123} = \left| {2,\beta /t} \right\rangle_{1} \mathop \sum \limits_{n = 2}^{\infty } \left( { - 1} \right)^{n - 1} c_{1n} \left( \alpha \right)t^{n - 2} \sqrt {\frac{{n\left( {n - 1} \right)}}{2!}} \left( {a_{0} \left| 0 \right\rangle_{2} - a_{1} A_{n} \left| 1 \right\rangle_{2} } \right)\left| {n - 2} \right\rangle_{3} . $$
(B11)

Using the above expressions, we can obtain the formulas (8)–(12) in Sect. 2.1.

The fidelity \( {\text{Fid}}_{n} \) in (23) is derived as follows. If \( n \) photons are registered in mode 3 of Fig. 1(a), then we have, up to the first order of smallness of \( r, \)

$$ \left| {\varPsi_{r}^{\left( n \right)} } \right\rangle_{12} = N_{r}^{\left( n \right)} \left( {\left| {\varPsi_{0}^{\left( n \right)} } \right\rangle_{12} + r\sqrt {n + 1} \frac{{c_{1n + 1} }}{{c_{1n} }}\left| {\varPsi_{1}^{\left( n \right)} } \right\rangle_{12} } \right), $$
(B12)

where

$$ \left| {\varPsi_{0}^{\left( n \right)} } \right\rangle_{12} = N_{n}^{{\left( {\text{tot}} \right)}} \left( {\beta /t} \right)\left( {\left| { - \beta /t} \right\rangle_{1} \left| {\varphi_{n}^{\left( + \right)} } \right\rangle_{2} + \left( { - 1} \right)^{n - 1} \left| {\beta /t} \right\rangle_{1} \left| {\varphi_{n}^{\left( - \right)} } \right\rangle_{2} } \right), $$
(B13)
$$ \left| {\varPsi_{1}^{\left( n \right)} } \right\rangle_{12} = N_{n1}^{{\left( {\text{tot}} \right)}} \left( {\beta /t} \right)\left( {\left| {1, - \beta /t} \right\rangle_{1} \left| {\varphi_{n + 1}^{\left( + \right)} } \right\rangle_{2} + \left( { - 1} \right)^{n} \left| {1,\beta /t} \right\rangle_{1} \left| {\varphi_{n + 1}^{\left( - \right)} } \right\rangle_{2} } \right), $$
(B14)

with \( N_{n}^{{\left( {\text{tot}} \right)}} \) (Eq. (12)) and \( N_{n1}^{{\left( {\text{tot}} \right)}} \) the corresponding normalization factors. As for the normalization factor \( N_{r}^{\left( n \right)} \) in (B12), it is given by

$$ N_{r}^{\left( n \right)} = \left( \begin{aligned} 1 + r^{2} \left( {n + 1} \right)\frac{{\left| {c_{1n + 1} } \right|^{2} }}{{\left| {c_{1n} } \right|^{2} }} \hfill \\ + r\sqrt {n + 1} \left( {\frac{{c_{1n + 1} }}{{c_{1n} }}\left\langle {\varPsi_{0}^{\left( n \right)} |\varPsi_{1}^{\left( n \right)} } \right\rangle + \left( {\frac{{c_{1n + 1} }}{{c_{1n} }}} \right)^{*} \left\langle {\varPsi_{1}^{\left( n \right)} |\varPsi_{0}^{\left( n \right)} } \right\rangle } \right) \hfill \\ \end{aligned} \right)^{ - 1/2} . $$
(B15)

Thus, the analytical expression for the fidelity \( Fid_{n} \) in (23) is

$$ {\text{Fid}}_{n} = \left| {\left\langle {\varPsi_{n} |\varPsi_{r}^{\left( n \right)} } \right\rangle } \right|^{2} = N_{r}^{\left( n \right)2} \left( \begin{aligned} \left| {\left\langle {\varPsi_{n} |\varPsi_{0}^{\left( n \right)} } \right\rangle } \right|^{2} + r\sqrt {n + 1} \hfill \\ \times \left( {\left( {\frac{{c_{1n + 1} }}{{c_{1n} }}} \right)^{*} \left\langle {\varPsi_{n} |\varPsi_{0}^{\left( n \right)} } \right\rangle \left\langle {\varPsi_{n} |\varPsi_{1}^{\left( n \right)} } \right\rangle^{*} + \frac{{c_{1n + 1} }}{{c_{1n} }}\left\langle {\varPsi_{n} |\varPsi_{0}^{\left( n \right)} } \right\rangle^{*} \left\langle {\varPsi_{n} |\varPsi_{1}^{\left( n \right)} } \right\rangle } \right) \hfill \\ \end{aligned} \right), $$
(B16)

up to the first order in \( r \).

Appendix C: DV–CV interaction for generation of hybrid entangled states (16)

Consider the following action of two HTBSs

$$ BS_{15} BS_{26} \left( {\left| {\beta_{ + } } \right\rangle_{1} \left| { - \beta_{1} } \right\rangle_{2} \left| \phi \right\rangle_{3456} } \right) = N_{ + } \left( {BS_{15} BS_{26} \left( {\left| { - \beta } \right\rangle_{1} \left| { - \beta_{1} } \right\rangle_{2} \left| \phi \right\rangle_{3456} } \right) + BS_{15} BS_{26} \left( {\left| \beta \right\rangle_{1} \left| { - \beta_{1} } \right\rangle_{2} \left| \phi \right\rangle_{3456} } \right)} \right). $$
(C1)

Following the steps of calculation as in “Appendix B”, we have

$$ \begin{aligned} & BS_{15} BS_{26} \left( {\left| { - \beta } \right\rangle_{1} \left| { - \beta_{1} } \right\rangle_{2} \left| \phi \right\rangle_{3456} } \right) \\ & \quad = BS_{15} D_{1} \left( { - \beta } \right)D_{5} \left( { - \alpha } \right)BS_{15}^{ + } BS_{26} D_{2} \left( { - \beta_{1} } \right)D_{6} \left( { - \alpha_{1} } \right)BS_{26}^{ + } BS_{15} BS_{26} \left| {00} \right\rangle_{12} D_{5} \left( \alpha \right)D_{6} \left( {\alpha_{1} } \right)\left| \phi \right\rangle_{3456} \\ & \quad = D_{1} \left( { - \beta /t} \right)D_{5} \left( 0 \right)D_{2} \left( { - \beta_{1} /t} \right)D_{6} \left( 0 \right)BS_{15} BS_{26} \left| {00} \right\rangle_{12} \left( {a_{0} \left| {01} \right\rangle_{34} \left| {0,\alpha } \right\rangle_{5} \left| {1,\alpha_{1} } \right\rangle_{6} + a_{1} \left| {10} \right\rangle_{34} \left| {1,\alpha } \right\rangle_{5} \left| {0,\alpha_{1} } \right\rangle_{6} } \right) \\ \end{aligned} $$
(C2)

and

$$ \begin{aligned} & BS_{15} BS_{26} \left( {\left| \beta \right\rangle_{1} \left| { - \beta_{1} } \right\rangle_{2} \left| \phi \right\rangle_{3456} } \right) \\ & \quad = BS_{15} D_{1} \left( \beta \right)D_{5} \left( \alpha \right)BS_{15}^{ + } BS_{26} D_{2} \left( { - \beta_{1} } \right)D_{6} \left( { - \alpha_{1} } \right)BS_{26}^{ + } BS_{15} BS_{26} \left| {00} \right\rangle_{12} D_{5} \left( { - \alpha } \right)D_{6} \left( {\alpha_{1} } \right)\left| \phi \right\rangle_{3456} \\ & \quad = D_{1} \left( {\beta /t} \right)D_{5} \left( 0 \right)D_{2} \left( { - \beta_{1} /t} \right)D_{6} \left( 0 \right)BS_{15} BS_{26} \left| {00} \right\rangle_{12} \left( {a_{0} \left| {01} \right\rangle_{34} \left| {0, - \alpha } \right\rangle_{5} \left| {1,\alpha_{1} } \right\rangle_{6} + a_{1} \left| {10} \right\rangle_{34} \left| {1, - \alpha } \right\rangle_{5} \left| {0,\alpha_{1} } \right\rangle_{6} } \right). \\ \end{aligned} $$
(C3)

Combining the decomposition (A6) with Eqs. (A18) and (A19), we obtain

$$ BS_{15} BS_{26} \left( {\left| {\beta_{ + } } \right\rangle_{1} \left| { - \beta_{1} } \right\rangle_{2} \left| \phi \right\rangle_{3456} } \right) = N_{ + } F^{2} \times \left( \begin{aligned} \left| {\Delta_{0} \left( { - \beta , - \beta_{1} } \right)} \right\rangle_{123456} + \left| {\Delta_{0} \left( {\beta , - \beta_{1} } \right)} \right\rangle_{123456} \hfill \\ + r\left( {\left| {\Delta_{1} \left( { - \beta , - \beta_{1} } \right)} \right\rangle_{123456} + \left| {\Delta_{1} \left( {\beta , - \beta_{1} } \right)} \right\rangle_{123456} } \right) \hfill \\ + r^{2} \left( {\left| {\Delta_{2} \left( { - \beta } \right)} \right\rangle_{123} + \left| {\Delta_{2} \left( \beta \right)} \right\rangle_{123} } \right) + \cdots \hfill \\ \end{aligned} \right), $$
(C4)

where

$$ \left| {\Delta_{0} \left( { - \beta , - \beta_{1} } \right)} \right\rangle_{123456} = \left| { - \beta /t} \right\rangle_{1} \left| { - \beta_{1} /t} \right\rangle_{2} \mathop \sum \limits_{n = 0}^{\infty } \mathop \sum \limits_{m = 0}^{\infty } c_{0n} \left( \alpha \right)c_{1m} \left( {\alpha_{1} } \right)\left( {a_{0} \left| {01} \right\rangle_{34} + a_{1} A_{nm} \left| {10} \right\rangle_{34} } \right)\left| {nm} \right\rangle_{56} , $$
(C5)
$$ \left| {\Delta_{0} \left( {\beta , - \beta_{1} } \right)} \right\rangle_{123456} = \left| {\beta /t} \right\rangle_{1} \left| { - \beta_{1} /t} \right\rangle_{2} \mathop \sum \limits_{n = 0}^{\infty } \mathop \sum \limits_{m = 0}^{\infty } \left( { - 1} \right)^{n} c_{0n} \left( \alpha \right)c_{1m} \left( {\alpha_{1} } \right)\left( {a_{0} \left| {01} \right\rangle_{34} - a_{1} A_{nm} \left| {10} \right\rangle_{34} } \right)\left| {nm} \right\rangle_{56} , $$
(C6)
$$ \begin{aligned} &\left| {\Delta_{1} \left( { - \beta , - \beta_{1} } \right)} \right\rangle_{123456} = \left| {1, - \beta /t} \right\rangle_{1} \left| { - \beta_{1} /t} \right\rangle_{2} \mathop \sum \limits_{n = 1}^{\infty } \mathop \sum \limits_{m = 0}^{\infty } c_{0n} \left( \alpha \right)c_{1m} \left( {\alpha_{1} } \right)\sqrt n t^{n + m - 1} \left( {a_{0} \left| {01} \right\rangle_{34} + a_{1} A_{nm} \left| {10} \right\rangle_{34} } \right)\left| {n - 1m} \right\rangle_{56} \\ & \quad + \left| { - \beta /t} \right\rangle_{1} \left| {1, - \beta_{1} /t} \right\rangle_{2} \mathop \sum \limits_{n = 0}^{\infty } \mathop \sum \limits_{m = 1}^{\infty } c_{0n} \left( \alpha \right)c_{1m} \left( {\alpha_{1} } \right)\sqrt m t^{n + m - 1} \left( {a_{0} \left| {01} \right\rangle_{34} + a_{1} A_{nm} \left| {10} \right\rangle_{34} } \right)\left| {nm - 1} \right\rangle_{56} \\ \end{aligned} $$
(C7)
$$ \begin{aligned} &\left| {\Delta_{1} \left( {\beta , - \beta_{1} } \right)} \right\rangle_{123456} = \left| {1,\beta /t} \right\rangle_{1} \left| { - \beta_{1} /t} \right\rangle_{2} \mathop \sum \limits_{n = 1}^{\infty } \mathop \sum \limits_{m = 0}^{\infty } \left( { - 1} \right)^{n} c_{0n} \left( \alpha \right)c_{1m} \left( {\alpha_{1} } \right)\sqrt n t^{n + m - 1} \left( {a_{0} \left| {01} \right\rangle_{34} - a_{1} A_{nm} \left| {10} \right\rangle_{34} } \right)\left| {n - 1m} \right\rangle_{56} \\ & \quad + \left| {\beta /t} \right\rangle_{1} \left| {1, - \beta_{1} /t} \right\rangle_{2} \mathop \sum \limits_{n = 0}^{\infty } \mathop \sum \limits_{m = 1}^{\infty } \left( { - 1} \right)^{n} c_{0n} \left( \alpha \right)c_{1m} \left( {\alpha_{1} } \right)\sqrt m t^{n + m - 1} \left( {a_{0} \left| {01} \right\rangle_{34} - a_{1} A_{nm} \left| {10} \right\rangle_{34} } \right)\left| {nm - 1} \right\rangle_{56} , \\ \end{aligned} $$
(C8)
$$ \begin{aligned} \left| {\Delta_{2} \left( { - \beta , - \beta_{1} } \right)} \right\rangle_{123456} & = \left| {2, - \beta /t} \right\rangle_{1} \left| { - \beta_{1} /t} \right\rangle_{2} \mathop \sum \limits_{n = 2}^{\infty } \mathop \sum \limits_{m = 0}^{\infty } c_{0n} \left( \alpha \right)c_{1m} \left( {\alpha_{1} } \right)\sqrt {\frac{{n\left( {n - 1} \right)}}{2!}} t^{n + m - 2} \\ & \quad \quad \left( {a_{0} \left| {01} \right\rangle_{34} + a_{1} A_{nm} \left| {10} \right\rangle_{34} } \right)\left| {n - 2m} \right\rangle_{56} \\ & \quad + \left| {0, - \beta /t} \right\rangle_{1} \left| {2, - \beta_{1} /t} \right\rangle_{2} \mathop \sum \limits_{n = 0}^{\infty } \mathop \sum \limits_{m = 1}^{\infty } c_{0n} \left( \alpha \right)c_{1m} \left( {\alpha_{1} } \right)\sqrt {\frac{{m\left( {m - 1} \right)}}{2!}} t^{n + m - 2} \\ & \quad \quad \left( {a_{0} \left| {01} \right\rangle_{34} + a_{1} A_{nm} \left| {10} \right\rangle_{34} } \right)\left| {nm - 1} \right\rangle_{56} \\ & \quad + \left| {1, - \beta /t} \right\rangle_{1} \left| {1, - \beta_{1} /t} \right\rangle_{2} \mathop \sum \limits_{n = 1}^{\infty } \mathop \sum \limits_{m = 1}^{\infty } c_{0n} \left( \alpha \right)c_{1m} \left( {\alpha_{1} } \right)\sqrt {nm} t^{n + m - 2} \\ & \quad \quad \left( {a_{0} \left| {01} \right\rangle_{34} + a_{1} A_{nm} \left| {10} \right\rangle_{34} } \right)\left| {n - 1m - 1} \right\rangle_{56} , \\ \end{aligned} $$
(C9)
$$ \begin{aligned} \left| {\Delta_{2} \left( {\beta , - \beta_{1} } \right)} \right\rangle_{123456} & = \left| {2, - \beta /t} \right\rangle_{1} \left| { - \beta_{1} /t} \right\rangle_{2} \mathop \sum \limits_{n = 2}^{\infty } \mathop \sum \limits_{m = 0}^{\infty } \left( { - 1} \right)^{n} c_{0n} \left( \alpha \right)c_{1m} \left( {\alpha_{1} } \right)\sqrt {\frac{{n\left( {n - 1} \right)}}{2!}} t^{n + m - 2} \\ & \quad \quad \left( {a_{0} \left| {01} \right\rangle_{34} - a_{1} A_{nm} \left| {10} \right\rangle_{34} } \right)|n - 2m_{56} \\ & \quad + \left| {0, - \beta /t} \right\rangle_{{1_{1} }} \left| {2, - \beta_{1} /t} \right\rangle_{2} \mathop \sum \limits_{n = 0}^{\infty } \mathop \sum \limits_{m = 1}^{\infty } \left( { - 1} \right)^{n} c_{0n} \left( \alpha \right)c_{1m} \left( {\alpha_{1} } \right)\sqrt {\frac{{m\left( {m - 1} \right)}}{2!}} t^{n + m - 2} \\ & \quad \quad \left( {a_{0} \left| {01} \right\rangle_{34} - a_{1} A_{nm} \left| {10} \right\rangle_{34} } \right)\left| {nm - 1} \right\rangle_{56} \\ & \quad + \left| {1, - \beta /t} \right\rangle_{1} \left| {1, - \beta_{1} /t} \right\rangle_{2} \mathop \sum \limits_{n = 1}^{\infty } \mathop \sum \limits_{m = 1}^{\infty } \left( { - 1} \right)^{n} c_{0n} \left( \alpha \right)c_{1m} \left( {\alpha_{1} } \right)\sqrt {nm} t^{n + m - 2} \\ & \quad \quad \left( {a_{0} \left| {01} \right\rangle_{34} - a_{1} A_{nm} \left| {10} \right\rangle_{34} } \right)\left| {n - 1m - 1} \right\rangle_{56} , \\ \end{aligned} $$
(C10)

with

$$ A_{nm} \left( {\alpha ,\alpha_{1} } \right) = \frac{{c_{1n} \left( \alpha \right)c_{0m} \left( {\alpha_{1} } \right)}}{{c_{0n} \left( \alpha \right)c_{1m} \left( {\alpha_{1} } \right)}} = \frac{{\alpha_{1} \left( {n - \left| \alpha \right|^{2} } \right)}}{{\alpha \left( {m - \left| {\alpha_{1} } \right|^{2} } \right)}}. $$
(C11)

In the limit \( t \to 1 \) one obtains formula (15) in Sect. 2.2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podoshvedov, S.A., An, N.B. Designs of interactions between discrete- and continuous-variable states for generation of hybrid entanglement. Quantum Inf Process 18, 68 (2019). https://doi.org/10.1007/s11128-019-2183-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2183-z

Keywords

Navigation