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Abstract
We provide explicit geometric description of state manifolds obtained from evolution
governed by a four-parameter family of time-independent Hamiltonians. We cover
most cases related to the real interacting two-qubit systems and discuss possible types
of evolutions in terms of the defining parameters. The relevant description of the pure
state spaces and their Riemannian geometry with the Fubini–Study metric is given. In
particular, we analyze the modification of known geometry of quantum state manifold
by the linear noncommuting perturbation of the Hamiltonian. Finally, we investigate
the behavior of the entanglement for obtained families of states resulting from the
unitary evolution.

Keywords Geometry of quantum state space · Fubini–Study metric · Quantum
evolution · Compound systems · Entanglement

1 Introduction

The precise geometric description of the full state space of quantum system is crucial
in studying its physical properties [1–18], especially for compound systems, where
characterization of this space beyond the general property of convexity for multilevel-
systems gets rather involved, even for bipartite systems. In general, such a quantum
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state space cannot be expected to form a smooth manifold. However, in the case of
two-qubit system, on which we shall focus in the present work, the quantum state
space is 15-dimensional convex set, and its pure state subset forms seven-dimensional
sphere S7, where the separable pure states are located within S7 in the product of two
Bloch spheres S2 × S2 [19].

On the other hand, there is an option to focus on distinguished subsets of states
of quantum system, namely on orbits generated by unitary evolutions defined by
physically relevant Hamiltonians which can be realized experimentally. Such a focus
has been proven fruitful from various perspectives, such as the control theory [20,21],
the quantum brachistochrone problem [22,23], the time-optimal evolution [5–8,21,24,
25], or the question of Zermelo navigation [26–28].

The geometry of the set of quantum states obtained as result of unitary evolutions
depending on a set of parameters can be naturally studied with the use of the Fubini–
Study metric [2,4,29–33], where the dimension of such Riemannian manifold is equal
to the number of parameters included in theHamiltonian.Obviously, the details of such
orbits depend on applied Hamiltonian and selected initial states. Most of the interac-
tions of a two-qubit systems can be described by the generalizedHeisenberg-type inter-
action Hamiltonian containing anisotropic terms, which is conventionally put into the
following physical form, suitable, for example, for studying quantum dot systems [10]

H = J
(�S1 · �S2 + �κDM · (�S1 × �S2) + �S1��S2

)
, (1)

where �S j are spins of j = 1, 2 of subsystems; �κDM is the Dzyaloshinskii–Moriya
vector controlling the anti-symmetric part; the � is a traceless, symmetric 3 × 3
matrix. However, for further considerations, to describe manifolds of states, we shall
use the explicit σ -matrix notation. The above interaction Hamiltonian is covered by
the general form of a nonlocal Hamiltonian for a two-qubit system

H =
3∑

i, j=1

hi jσi ⊗ σ j , (2)

hi j are real and σ j , j = 1, 2, 3 are Pauli matrices. As it is known [34], such a Hamil-
tonian can be transformed into the diagonal form

Hint =
3∑
j=1

c jσ j ⊗ σ j . (3)

The full Hamiltonian contains additionally a local term Hloc = H1 ⊗ 1 + 1 ⊗ H2,
with Ha , a = 1, 2 being one-qubit Hamiltonians. For simplicity, in the present work,
we shall fix two-qubit local Hamiltonian in the form of the coupling of both systems
to an external magnetic field along third axis, i.e.,

Hloc = H0 ≡ b (σ3 ⊗ 1 + 1 ⊗ σ3). (4)

In the following, we shall consider unitary evolutions generated by four-parameter
family of Hamiltonians
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H(b, c1, c2, c3) = H0(b) + Hint(c1, c2, c3). (5)

The description of quantum state manifold and its metric geometry is crucial for
answering many questions regarding the study of quantum evolution and in the infor-
mation geometry approach, such as the determination of the volume of particular
classes of states [18]. In [1], it was shown that the distance traveled by the system
during the quantum evolution along a given curve in the projective Hilbert space is
related to the speed of evolution. Using the symmetry properties of quantum state
spaces, one can study the brachistochrone problem [22] and the time-optimal evolu-
tions, e.g., using geometric properties of the quantum state manifolds of the spin-s
systems [4,14,32], one can obtain conditions for the time-optimal quantum evolution
of spin-s in the magnetic field [23,25]. For example, for the systems of qubits and
qutrits the optimal quantum circuit is equivalent to the shortest path between two
points on the Riemannian manifold [5–8]. Moreover, the geometry of quantum state
manifolds of the two-spin system interacting with the magnetic field, described by
Heisenberg and Dzyaloshinskii–Moriya Hamiltonians with anisotropy along the one
direction, is of great interest [16,17]. In this case, the related manifolds turn out to
be flat and depend on the initial state and anisotropy parameter. In the present paper,
we generalize this approach and consider the two-spin system with anisotropy in all
directions of the magnetic field.

The organization of the paper is as follows. In the next section, we obtain the explicit
parametrizations of sets of quantum states generated by evolution of selected initial
states and obtain relevant manifolds of the dimension depending on the initial states.
We describe the Riemannian geometry of the obtained manifolds by introducing the
relevant Fubini–Study metrics for each case. What is important, we focus on the ques-
tion of control of such systems. Therefore, assuming the final time of evolution as
a fixed tfin (for convenience we put tfin = 1), we analyze the dependence of above
manifolds and their geometry on the physical parameters entering the definition of
the Hamiltonian. In Sect. 4, we study the changes in geometry resulting from a small
perturbation in the original Hamiltonian by switching on an additional weak magnetic
field along the first axis. Furthermore, in Sect. 5 we discuss the behavior of entan-
glement of states originating from the obtained manifolds using concurrence as the
entanglementmeasure [35]. The concurrence changing from0 to 1 in all cases indicates
that it is not the intrinsic geometry of the manifold of quantum states and its dimension
that determine the behavior of entanglement, but rather it is the specific location of
such manifold relative to the torus S2 × S2 of the separable states inside the S7.

2 Unitary transformation of two-qubit state

Let a unitary evolution be defined by the Hamiltonian H given by Eq. (5) describing a
two-qubit system with the anisotropic Heisenberg-type Hamiltonian in the magnetic
field directed along the z-axis, i.e.,

H = b (σ3 ⊗ 1 + 1 ⊗ σ3) +
3∑
j=1

c j σ j ⊗ σ j , (6)
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where parameters c j , j = 1, 2, 3 are dimensionless interaction couplings between
qubits and b is a dimensionless parameter describing an external magnetic field [36].

This Hamiltonian has four eigenvalues: E (0)
1 = c3 + ω, E (0)

2 = c3 − ω, E (0)
3 =

−c3 + c+, and E (0)
4 = −c3 − c+, where ω =

√
(2b)2 + c2−, tan φ = 2b/c− and

c± = c1 ± c2. The corresponding eigenvectors have the following form

|ψ(0)
1 〉 = 1√

2

[
cosφ√
1 − sin φ

| ↑↑〉 + √
1 − sin φ| ↓↓〉

]
, (7)

|ψ(0)
2 〉 = 1√

2

[
cosφ√
1 + sin φ

| ↑↑〉 − √
1 + sin φ| ↓↓〉

]
, (8)

|ψ(0)
3 〉 = 1√

2
(| ↑↓〉 + | ↓↑〉) , (9)

|ψ(0)
4 〉 = 1√

2
(| ↑↓〉 − | ↓↑〉) . (10)

The unitary transformation U (b, c j ) = U (ω, φ, c±), generated by the Hamiltonian
(6), acts on an arbitrary quantum state of two qubits

|ψ(0)
I 〉 = η1|ψ(0)

1 〉 + η2|ψ(0)
2 〉 + η3|ψ(0)

3 〉 + η4|ψ(0)
4 〉

as follows
|ψ(0)(ω, φ, c±)〉 = U (ω, φ, c±)|ψ(0)

I 〉 (11)

|ψ(0)(ω, φ, c±)〉 = e−ic3(η1e
−iω|ψ(0)

1 〉 + η2e
iω|ψ(0)

2 〉
+ η3e

i(2c3−c+)|ψ(0)
3 〉 + η4e

i(2c3+c+)|ψ(0)
4 〉), (12)

where we ‘freeze’ evolution at t = 1 to study the shape of manifolds determined
by changes in parameters defining the Hamiltonian (6). It is worth noting that these
parameters can define at most a four-dimensional manifold. Changing them in allowed
ranges, determined by the periodic conditions of the state (12), we can cover this
manifold. The time–evolution of the system governed by the Hamiltonian (6) with
fixed values of the parameters (ω, φ, c3, c+) proceeds along a compact orbit passing
through this manifold. The particular location of this orbit depends on the system
parameters.

The normalization of an initial state means that |η1|2 + |η2|2 + |η3|2 + |η4|2 = 1.
Moreover, the state (12) depends on four parameters (ω,φ, c3, c+) satisfying someperi-
odic conditions. These conditions, in turn, depend on the initial state coordinates η j .

Let us classify the possible parametrizations as follows:

C1. For η1 = η2 = 0 and η3 	= 0, η4 	= 0, the state (12) takes the form

|ψ(0)〉 = eic3
(
η3e

−ic+|ψ(0)
3 〉 + η4e

ic+|ψ(0)
4 〉

)
. (13)
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It is easy to see that this state depends only on c+ parameter and satisfies the
following periodic condition

|ψ(0) (c+ + π)〉 = −|ψ(0) (c+)〉. (14)

C2. For η3 = η4 = 0 and η1 = 0 or η2 = 0, we obtain the states (7) or (8), which
depend only on φ parameter with periodic condition

|ψ(0) (φ + 2π)〉 = |ψ(0) (φ)〉. (15)

C3. For η3 = η4 = 0 and nonzero η1, η2, the family of states is defined by the
parameters ω and φ as follows

|ψ(0)〉 = e−ic3
(
η1e

−iω|ψ(0)
1 〉 + η2e

iω|ψ(0)
2 〉

)
, (16)

with the following periodic conditions

|ψ(0) (ω + π, φ)〉 = −|ψ(0) (ω, φ)〉,
|ψ(0) (ω, φ + 2π)〉 = |ψ(0) (ω, φ)〉. (17)

C4. For η1 = 0 or η2 = 0 and η3 = 0 or η4 = 0, the family of states is defined by
two parameters φ and c, i.e.,

|ψ(0)〉 = e−i
(
c3+(−1)l+1ω

) (
ηl |ψ(0)

l 〉 + η je
ic|ψ(0)

j 〉
)

, (18)

where c = 2c3 + (−1) j c+ + (−1)l+1ω. Here, l = 1, 2, j = 3, 4. The states
satisfy the following periodic conditions

|ψ(0) (φ + 2π, c)〉 = |ψ(0) (φ, c)〉,
|ψ(0) (φ, c + 2π)〉 = |ψ(0) (φ, c)〉. (19)

C5. If η1, η2 are nonzero, and η3 = 0 or η4 = 0, then the family of states is defined
by three parameters: ω, φ and c. Namely,

|ψ(0)〉 = e−ic3
(
η1e

−iω|ψ(0)
1 〉 + η2e

iω|ψ(0)
2 〉 + η je

ic|ψ(0)
j 〉

)
. (20)

Here, c = 2c3 + (−1) j c+. In this case, the states satisfy the following periodic
conditions

|ψ(0) (ω + π, φ, c + π)〉 = −|ψ(0) (ω, φ, c)〉,
|ψ(0) (ω, φ + 2π, c)〉 = |ψ(0) (ω, φ, c)〉,
|ψ(0) (ω, φ, c + 2π)〉 = |ψ(0) (ω, φ, c)〉. (21)
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C6. For η1 = 0 or η2 = 0, and nonvanishing η3, η4, the family of states is defined by
three parameters

|ψ(0)〉 = e−i
(
c3+(−1)l+1ω

) (
ηl |ψ(0)

l 〉 + η3e
i(c−c+)|ψ(0)

3 〉 + η4e
i(c+c+)|ψ(0)

4 〉
)

.

(22)

Here, c = 2c3+(−1)l+1ω. In this case,we have the following periodic conditions

|ψ(0) (φ + 2π, c, c+)〉 = |ψ(0) (φ, c, c+)〉,
|ψ(0) (φ, c + 2π, c+)〉 = |ψ(0) (φ, c, c+)〉,
|ψ(0) (φ, c + π, c+ + π)〉 = |ψ(0) (φ, c, c+)〉. (23)

C7. In the general case, when all parameters η1, η2, η3 and η4 are nonzero, we have
the state defined by expression (12) with the following periodic conditions

|ψ(0) (ω + π, φ, c3 + π/2, c+)〉 = i |ψ(0) (ω, φ, c3, c+)〉,
|ψ(0) (ω + π, φ, c3, c+ + π)〉 = −|ψ(0) (ω, φ, c3, c+)〉,
|ψ(0) (ω, φ + 2π, c3, c+)〉 = |ψ(0) (ω, φ, c3, c+)〉,
|ψ(0) (ω, φ, c3 + π, c+)〉 = −|ψ(0) (ω, φ, c3, c+)〉,
|ψ(0) (ω, φ, c3 + π/2, c+ + π)〉 = −i |ψ(0) (ω, φ, c3, c+)〉. (24)

The above quantum state manifolds related to the unitary evolutions generated by the
time-independent family of Hamiltonians are obviously closed. In the first two cases,
quantum state manifold is one parameter, in cases three and four it is two-parameter
manifold, in the fifth and sixth cases the manifold is defined by three parameters, and
in the last case we have the four-parameter manifold.

Let us study the Fubini–Study metric of these manifolds,Mψ(0)

3 The Fubini–Studymetric of quantum state manifolds

The Fubini–Study metric is defined by the infinitesimal distance ds between two
neighboring pure quantum states |ψ(ξμ)〉 and |ψ(ξμ + dξμ)〉 [4]

ds2 = gμνdξμdξν, (25)

where ξμ is a set of real parameters which define the state |ψ(ξμ)〉. The components
of the metric tensor gμν have the form

gμν = γ 2
 (〈ψμ|ψν〉 − 〈ψμ|ψ〉〈ψ |ψν〉
)
, (26)

where γ is an arbitrary factor which is often chosen to have value of 1,
√
2 or 2 and

|ψμ〉 = ∂

∂ξμ
|ψ〉. (27)
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As we have previously noted, the states (12) are defined by four real parameters.
Using definition (26), we obtain the components of the metric tensor with respect to
parameters (ω, φ, c3, c+)

g(0)
ωω = γ 2

(
η+
12 − (

η−
12

)2)
, g(0)

ωφ = γ 2η−
12 J , g(0)

ωc3 = 2γ 2η−
12η

+
34,

g(0)
ωc+ = −γ 2η−

12η
−
34, g(0)

φφ = γ 2
(
1

4
η+
12 − J 2

)
, g(0)

φc3
= −2γ 2 Jη+

34

g(0)
φc+ = γ 2 Jη−

34, g(0)
c3c3 = 4γ 2η+

12η
+
34,

g(0)
c3c+ = −2γ 2η+

12η
−
34, g(0)

c+c+ = γ 2
(
η+
34 − (

η−
34

)2)
, (28)

where η±
i j = |ηi |2 ± |η j |2, J = � (

η1η
∗
2e

−2iω
)
. From the explicit form of the metric

tensor, we see that in the case of the magnetic field switched off, one of the parameters
disappears (φ = 0) and the manifold becomes flat. It is the result of the reciprocal
commutativity of the interaction terms in the Hamiltonian (6). It is worth noting that if
c1 = c2 and c3 = αc+/2 then φ = π/2 and we obtain the metric of the two-parameter
manifold as in [17]

g(0)
ωω = γ 2

(
η+
12 − (

η−
12

)2)
, g(0)

ωc+ = γ 2η−
12

(
αη+

34 − η−
34

)
,

g(0)
c+c+ = γ 2αη+

12

(
αη+

34 − 2η−
34

) + γ 2
(
η+
34 − (

η−
34

)2)
, (29)

where α is some real number that determines the anisotropy of the system. If α = 1,
then we obtain the Fubini–Study metric of the quantum state manifold of isotropic
Heisenberg model [16]. The metric (28) can be reduced to the diagonal form with the
use of the new parameters after the following transformation

ω = ω′, φ = k1ω
′ + φ′, c3 = k2ω

′ + k3φ
′ + c′

3, c+ = k4c
′
3 + c′+, (30)

where k1 = 4η−
12 J/

(
4J 2 − (η+

12)
2
)
, k2 = η+

12η
−
12/

(
8J 2 − 2(η+

12)
2
)
, k3 = J/

(
2η+

12

)
),

k4 = 2η+
12η

−
34/

(
η+
34 − (η−

34)
2
)
. Let us additionally assume that

J = η+
12

2
cos θ. (31)

Then, in these new parameters, the metric (28) takes the following form

g(0)
θθ = γ 2

4
η+
12, g(0)

φ′φ′ = γ 2

4
η+
12 sin

2 θ,

g(0)
c′
3c

′
3

= 4γ 2η+
12

(
η+
34

)2 − (
η−
34

)2

η+
34 − (

η−
34

)2 , g(0)
c′+c′+

= γ 2
(
η+
34 − (

η−
34

)2)
. (32)

It is evident that the ratio between the parameters of the initial state influences the
components of the metric tensor. For instance, if η3 = η4, then η−

34 = 0 and gc′+c′+
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takes the maximal value for the specific initial state. Let us analyze in detail the
geometry of the manifold defined by the above metric for the cases considered in the
previous section:

1. In the first case, the manifold is defined by the parameter c+ ∈ [0, π ] and metric
tensor is reduced to gc+c+ component with η+

34 = 1. This is the metric of the circle

of the radius γ

√
1 − (

η−
34

)2
/2.

2. In the second case, the manifold is defined by parameter φ ∈ [0, 2π ] and metric
tensor is reduced to g(0)

φφ with η+
12 = 1. This metric also describes the circle of the

radius γ /2.
3. In this case, the manifold is two-parametric θ ∈ [0, π ], φ′ ∈ [0, 2π ] and is

described by the metric tensor with components g(0)
θθ , g

(0)
φ′φ′ , where η+

12 = 1. This
means that it is the sphere of radius γ /2.

4. Here, we have also two-parametric manifold defined by parameters φ ∈ [0, 2π ],
c ∈ [0, 2π ] and described by the following metric tensor

g(0)
φφ = γ 2

4
|ηl |2, g(0)

φc = 0, g(0)
cc = γ 2|ηl |2|η j |2. (33)

As we can see, the components of the metric tensor do not depend on the param-
eters φ and c. This means that the manifold is flat. Taking into account periodic
conditions (17), we conclude that it is a torus.

5. In the fifth case, the manifold is three-parametric and defined by the parameters
θ ∈ [0, π ], φ′ ∈ [0, 2π ], c′ ∈ [0, 2π ]. In the diagonal form, the metric tensor
components g(0)

θθ , and g(0)
φ′φ′ are defined by expression (32) and other component

takes the form

g(0)
c′c′ = γ 2η+

12|η j |2, (34)

where c′ is related to the parameter c from (20) by the following formula

c = − η−
12

η+
12 sin

2 θ
ω′ + 1

2
cos θφ′ + c′. (35)

The manifold, which we obtain here, is a product of the sphere of radius γ

√
η+
12/2

in parameters θ , φ′ and of the circle of radius γ

√
η+
12|η j | in parameter c′.

6. In the case C6, we obtain a manifold with the metric tensor in the diagonal form

g(0)
φφ = γ 2

4
|ηl |2, g(0)

c′c′ = γ 2|ηl |2
(
η+
34

)2 − (
η−
34

)2

η+
34 − (

η−
34

)2 , (36)

and the component g(0)
c′+c′+

defined by the expression (32). Therefore, we obtain a

three-parameter manifold defined by φ ∈ [0, 2π ], c′ ∈ [0, 2π ], c′+ ∈ [0, π ]. To
diagonalize this metric, we use the following transformation
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c = c′, c+ = |ηl |2η−
34

η+
34 − (

η−
34

)2 c′ + c′+, (37)

where c is defined as for the state (22). So, this manifold can be expressed by a
circle of radius γ |ηl |/2 in parameter φ and torus in parameter c′, c′+.

7. In the general case, the metric is defined by expression (28) or (32). This manifold

consists of two submanifolds, namely a sphere of radius γ

√
η+
12/2 in parameters

θ ∈ [0, π ], φ′ ∈ [0, 2π ] and a torus in parameters c′
3 ∈ [0, π ], c′+ ∈ [0, π ].

4 The Fubini–Studymetric of quantum state manifold with
perturbation

In this section, we study the Fubini–Study metric of quantum state manifold obtained
as a result of actions of unitary transformations generated by the Hamiltonian (6)
modified by an additional perturbation term which do not commute with the original
Hamiltonian. This perturbation switches on a weak magnetic field directed along the
x-axis with value β, where β is assumed to be small. Explicitly, the Hamiltonian of
this system takes the form

H ′ = H + β (σx ⊗ I + I ⊗ σx ) . (38)

We find the eigenvalues and eigenstates of this Hamiltonian using the perturbation
theory with respect to the first order of β. So, the eigenvalues of Hamiltonian (38) are
the same as for Hamiltonian (6), which correspond to the following eigenstates

|ψ1〉 = |ψ(0)
1 〉 + 1√

2

β

2c3 + ω − c+
cosφ − sin φ + 1√

1 − sin φ
[| ↑↓〉 + | ↓↑〉] ,

|ψ2〉 = |ψ(0)
2 〉 + 1√

2

β

2c3 − ω − c+
cosφ − sin φ − 1√

1 + sin φ
[| ↑↓〉 + | ↓↑〉] ,

|ψ3〉 = |ψ(0)
3 〉 + β

−2c3 − ω + c+
cosφ − sin φ + 1√

2

[
cosφ

1 − sin φ
| ↑↑〉 + | ↓↓〉

]

+cosφ − sin φ − 1√
2

β

−2c3 + ω + c+

[
cosφ

1 + sin φ
| ↑↑〉 − | ↓↓〉

]
,

|ψ4〉 = |ψ(0)
4 〉. (39)

Similar to the previous case, we decompose the initial state using the eigenstates (39).
Then, the evolution is described by equation (12) with the above eigenstates. The
Fubini–Study metric for evolution generated by the linearly perturbed Hamiltonian
takes the following form

gωω = g(0)
ωω + 2βγ 2

{
(1 − 2η−

12)�
(
η1η

∗
3e

−i(2c3+ω−c+)
)
Y+

+ (1 + 2η−
12)�

(
η2η

∗
3e

−i(2c3−ω−c+)
)
Y−

}
, (40)
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gc3c3 = g(0)
c3c3 − 8βγ 2(η+

12 − η+
34)

{
�

(
η1η

∗
3e

−i(2c3+ω−c+)
)
Y+

+�
(
η2η

∗
3e

−i(2c3−ω−c+)
)
Y−

}
, (41)

gc+c+ = g(0)
c+c+ − 2βγ 2(1 − 2η−

34)
{
�

(
η1η

∗
3e

−i(2c3+ω−c+)
)
Y+

+�
(
η2η

∗
3e

−i(2c3−ω−c+)
)
Y−

}
, (42)

gφφ = g(0)
φφ + βγ 2ω

{(
4J�

(
η1η

∗
3e

−i(2c3+ω−c+)
)

− 

(
η2η

∗
3e

−i(2c3−ω−c+)
))

X−

+
(
4J�

(
η2η

∗
3e

−i(2c3−ω−c+)
)

+ 

(
η1η

∗
3e

−i(2c3+ω−c+)
))

X+
}

, (43)

gφω = g(0)
φω + βγ 2

{
ω

(
1 − η−

12

)�
(
η1η

∗
3e

−i(2c3+ω−c+)
)
X−

−ω
(
1 + η−

12

)�
(
η2η

∗
3e

−i(2c3−ω−c+)
)
X+

−
(
1

2



(
η1η

∗
3e

−i(2c3+ω−c+)
)

+ 2J�
(
η2η

∗
3e

−i(2c3−ω−c+)
))

Y−

−
(
1

2



(
η2η

∗
3e

−i(2c3−ω−c+)
)

− 2J�
(
η1η

∗
3e

−i(2c3+ω−c+)
))

Y+
}

, (44)

gc3ω = g(0)
c3ω + 4βγ 2

{(
η+
34 − η−

12

) �
(
η1η

∗
3e

−i(2c3+ω−c+)
)
Y+

− (
η+
34 + η−

12

) �
(
η2η

∗
3e

−i(2c3−ω−c+)
)
Y−

}
, (45)

gc+ω = g(0)
c+ω + 2βγ 2

{(
η−
12 − η−

34

)�
(
η1η

∗
3e

−i(2c3+ω−c+)
)
Y+

+ (
η−
12 + η−

34

) �
(
η2η

∗
3e

−i(2c3−ω−c+)
)
Y−

}
, (46)

gc3φ = g(0)
c3φ

+βγ 2
{
−2ω

(
η+
12 − η+

34

) (
�

(
η1η

∗
3e

−i(2c3+ω−c+)
)
X−

+�
(
η2η

∗
3e

−i(2c3−ω−c+)
)
X+

)

+
(



(
η1η

∗
3e

−i(2c3+ω−c+)
)

+ 4J�
(
η2η

∗
3e

−i(2c3−ω−c+)
))

Y−

−
(



(
η2η

∗
3e

−i(2c3−ω−c+)
)

− 4J�
(
η1η

∗
3e

−i(2c3+ω−c+)
))

Y+
}

, (47)

gc+φ = g(0)
c+φ

+βγ 2
{
ω

(
1 − 2η−

34

) (
�

(
η1η

∗
3e

−i(2c3+ω−c+)
)
X−

+�
(
η2η

∗
3e

−i(2c3−ω−c+)
)
X+

)

−
(
1

2



(
η1η

∗
3e

−i(2c3+ω−c+)
)

+ 2J�
(
η2η

∗
3e

−i(2c3−ω−c+)
))

Y−

+
(
1

2



(
η2η

∗
3e

−i(2c3−ω−c+)
)

− 2J�
(
η1η

∗
3e

−i(2c3+ω−c+)
))

Y+
}

, (48)
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Table 1 Dimensions and
parametrization of the state
manifolds

Case dimM|ψ(0)〉 Parameters

C1 1 c+
C2 1 φ

C3 2 ω, φ

C4 2 φ, c

C5 3 ω, φ, c

C6 3 φ, c, c+
C7 4 ω, φ, c3 c+

gc+c3 = g(0)
c+c3 + 2βγ 2(2η+

12 − η−
34)

{
�

(
η1η

∗
3e

−i(2c3+ω−c+)
)
Y+

+�
(
η2η

∗
3e

−i(2c3−ω−c+)
)
Y−

}
, (49)

where we use the following notation

Y± =
√
1 − sin(φ) ± √

1 + sin(φ)

(2c3 − c+ ± ω)2
, X± =

√
1 − sin(φ) ± √

1 + sin(φ)

(2c3 − c+)2 − ω2

and the above components give the new perturbed metric of the form

gi j = g(0)
i j + βhi j . (50)

Such perturbationmodifies geometry of some of the statemanifolds enlisted in Table 1.
For the cases C1 to C3, there is no modification at all. The cases C4 and C5 for choices
η4 	= 0 are also unperturbed. A nontrivial modification appears for C6 and C7. The
explicit formulas for the scalar curvature of perturbedmetric for these cases are hard to
obtain. To illustrate the effect of modification on the manifold, let us consider special
initial conditions for the case C7. Let us assume that |η1| = |η2| = |η3| = |η4| = 1

2 .
Then, the metric (28) takes the following form

g(0) =

⎛
⎜⎜⎜⎝

γ 2

2 0 0 0
0 1

32γ
2(cos(2(α12 + 2ω)) + 3) 1

4γ
2 sin(α12 + 2ω) 0

0 1
4γ

2 sin(α12 + 2ω) γ 2 0

0 0 0 γ 2

2

⎞
⎟⎟⎟⎠ (51)

and yields the Ricci tensor

R =

⎛
⎜⎜⎝

3 0 0 0
0 1

16 (5 cos(2(α12 + 2ω)) + 7) 1
2 sin(α12 + 2ω) 0

0 1
2 sin(α12 + 2ω) 2 0

0 0 0 0

⎞
⎟⎟⎠ , (52)

123



84 Page 12 of 18 A. M. Frydryszak et al.

where η j = |η j |eiα j , αi j = αi −α j and the scalar curvature R = 14
γ 2 . Here, parameters

φ, c+, c3, α13 and α23 do not influence the value of R, one can also put α12 = 0. Now,
for the perturbed metric (50) depending solely on ω, we get the following scalar
curvature

R = 14

γ 2

cos(2ω)

14(cos(4ω) + 1)2

(
A1

A2
+ B1

B2
+ C1

C2
+ D1

D2
+ E1

E2

)
, (53)

where functions entering the above formula have the form

A1 = 8β cos4(2ω)
(
4ω2 sin(ω) + 6

(
ω2 − 2

)
sinω cos(2ω) + 8ω cos(3ω)

)
, (54)

A2 = 6βω2(4ω sin(ω) + sin(ω) + sin(3ω) − 4ω cos(ω) + cos(ω)

− cos(5ω)) + ω4 + ω4 cos(4ω), (55)

B1 = (cos(4ω) + 1)(β(−16ω2 sin(ω) + 16ω2 sin(3ω)

− 2(8ω2 + 3ω − 12) cos(ω) − 4(4ω2 + 9ω − 1) cos(3ω)

+ 5ω sin(ω) + 5ω sin(3ω) + ω sin(5ω) + ω sin(7ω) − 4 sin(ω)

+ 24 sin(3ω) + 4 sin(7ω) − 6ω cos(7ω) + 4 cos(5ω))

+ 7ω3 cos(2ω) + ω3 cos(6ω)), (56)

B2 = 4βω(4ω sin(ω) + sin(ω) + sin(3ω) − 4ω cos(ω) + cos(ω)

− cos(5ω)) + ω3 + ω3 cos(4ω), (57)

C1 = 2 sin(4ω)(2β
(
14ω3 + 4ω2 − 7ω + 6

)
cos(ω) − 2β(14ω3 sin(ω)

+ 10ω3 sin(3ω) − 12ω2 sin(ω) + 7ω2 sin(3ω) + 7ω2 sin(7ω)

+ω2 cos(7ω) + (4ω2 − 3) cos(5ω) + (10ω3 + 5ω2 + 12ω − 3) cos(3ω)

−ω sin(ω) − ω sin(7ω) + 3 sin(ω) − 6 sin(3ω) − 3 sin(7ω)

+ 5ω cos(7ω)) + ω4 sin(2ω) + ω4 sin(6ω)), (58)

C2 = 6βω2(4ω sin(ω) + sin(ω) + sin(3ω) − 4ω cos(ω) + cos(ω)

− cos(5ω)) + ω4 + ω4 cos(4ω), (59)

D1 = cos(2ω)(β(160ω2 sin(ω) − 152ω2 sin(3ω) + 104ω2 sin(5ω) − 104ω2 cos(5ω)

− 2
(
80ω2+9ω−32

)
cos(ω)+

(
−152ω2+62ω+40

)
cos(3ω)+ 52ω sin(ω)

− 46ω sin(3ω) + 42ω sin(5ω) + 19ω sin(7ω) + 7ω sin(9ω) + 16 sin(3ω)

+ 16 sin(5ω) − 54ω cos(5ω) − 22ω cos(9ω) + 24 cos(5ω) − 4 cos(7ω)

+ 4 cos(9ω)) + 19ω3 + 24ω3 cos(4ω) + 5ω3 cos(8ω)) (60)

D2 = 6βω(4ω sin(ω) + sin(ω) + sin(3ω) − 4ω cos(ω) + cos(ω) − cos(5ω))

+ω3 + ω3 cos(4ω) (61)

E1 = cos(2ω)(−2β
(
40ω3 + 21ω2 − 44ω + 6

)
cos(ω) + 2β(−100ω3 + 55ω2

+ 36ω − 6) cos(3ω) + β(80ω3 sin(ω) − 200ω3 sin(3ω) + 136ω3 sin(5ω)

+ 24ω2 sin(ω) − 82ω2 sin(3ω) + 54ω2 sin(5ω)
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+ 25ω2 sin(7ω) + 9ω2 sin(9ω) + (−38ω2 + 8ω + 12) cos(9ω)

− 2(68ω3 + 31ω2 − 12ω − 6) cos(5ω) − 16ω sin(ω) + 48ω sin(3ω)

+ 48ω sin(5ω) + 16ω sin(9ω) − 48 sin(ω) + 12 sin(3ω) − 36 sin(5ω)

− 6 sin(7ω) − 6 sin(9ω)) + 18ω4 + 24ω4 cos(4ω) + 6ω4 cos(8ω)) (62)

E2 = 6βω2(4ω sin(ω) + sin(ω) + sin(3ω) − 4ω cos(ω) + cos(ω) − cos(5ω))

+ω4 + ω4 cos(4ω) (63)

Let us note that switching the perturbation off (53) gives the correct unperturbed scalar
curvature.

5 Entanglement characterization of two-qubit quantum state
manifoldsM|Ã(0)〉

In the present section, using the squared concurrence as an entanglement measure, we
shall study the entanglement of states belonging to the manifolds obtained in Sect. 2.
For a pure state of bipartite two-level system, it is defined as follows [35,37,38]

C(|ψ〉) ≡ 2|ad − bc|, (64)

where a, b, c and d are defined by expression

|ψ〉 = a| ↑↑〉 + b| ↑↓〉 + c| ↓↑〉 + d| ↓↓〉. (65)

The squared concurrence for state (12) takes the form

C(|ψ0〉) =
∣∣∣
(
η21e

−2iω − η22e
2iω

)
cosφ

− 2η1η2 sin φ − e4ic3
(
η23e

−2ic+ − η24e
2ic+

) ∣∣∣. (66)

Let us calculate the squared concurrence for the families of states discussed in the
previous sections:

1. In the case C1, the concurrence takes the form

C =
√

|η3|4 + |η4|4 − 2|η3|2|η4|2 cos (4c+ + 2χ). (67)

For η3 = |η3| and η4 = |η4|eiχ , where χ ∈ [0, 2π ]. We obtain the maximally
entangled state if c+ = 1/4 [(2n + 1)π − 2χ ], where n ∈ Z.

2. The squared concurrence in the case C2 takes simple form

C = | cosφ|. (68)
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3. For the C3 family of states, the manifold is defined by two parameters. The entan-
glement of the states is described by the following expression

C =
[(

|η1|4 + |η2|4 − 2|η1|2|η2|2 cos (4ω + 2χ)
)
cos2 φ + 4|η1|2|η2|2 sin2 φ

− 4|η1||η2|
(
|η1|2 − |η2|2

)
cos (2ω + χ) sin φ cosφ

]1/2
. (69)

Similarly, as in the previous case C1, we put η1 = |η1| and η2 = |η2|eiχ . As we
can see, regardless of the initial state, the maximally entangled state is obtained
when φ = 0 and ω = 1/4 [(2n + 1)π − 2χ ].

4. Here, we also put ηl = |ηl | and η j = |η j |eiχ and obtain the expression for
concurrence

C =
√

|ηl |4 cos2 φ + |η j |4 − 2(−1)l+ j |ηl |2|η j |2 cos (2c + 2χ) cosφ. (70)

So, the conditions for maximally entangled are the following: φ = 0 and c =
1/2 [(2n + 1)π − 2χ ] for even l + j , c = 1/2 [2πn − 2χ ] for odd l + j , and,
respectively, for φ = π .

5. For the C5 family of states, to simplify calculations, we analyze the case when
η1 = η2 and we put η1 = |η1|, η j = |η j |eiχ . The squared concurrence takes
finally the form

C =
[(

−2|η1|2 sin φ + (−1) j |η j |2 cos (2c + 2χ)
)2

+
(
−2|η1|2 sin 2ω cosφ + (−1) j |η j |2 sin (2c + 2χ)

)2]1/2
. (71)

We collect the conditions for preparation of maximally entangled states in Table 2.
6. We shall use similar simplifications in the case C6. Here, we also put η3 = η4 and

ηl = |ηl |, η3 = |η3|eiχ . Then, the squared concurrence takes the form

C =
[(

(−1)l+1|ηl |2 cosφ − 2|η3|2 sin (2c + 2χ) sin 2c+
)2

+ 4|η3|4 cos2 (2c + 2χ) sin2 2c+
]1/2

. (72)

The conditions for preparation of maximally entangled states for the C6-family
are presented in Table 3.

7. In the C7 case, we assume that η1 = η2 = |η1|, η3 = η4 = |η3|eiχ what yields
the squared concurrence in the form

C =
[(

2|η1|2 sin φ + 2|η3|2 sin 2c+ sin (4c3 + 2χ)
)2

+
(
−2|η1|2 sin 2ω cosφ + 2|η3|2 sin 2c+ cos (4c3 + 2χ)

)2]1/2
. (73)
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Table 2 Conditions for
maximally entangled states in
case C5

φ ω j c

0 π/4 Even 3π/4 + πn − χ

Odd π/4 + πn − χ

3π/4 Even π/4 + πn − χ

Odd 3π/4 + πn − χ

π/2 – Even 1/2 [(2n + 1)π − 2χ ]

Odd πn − χ

π π/4 Even π/4 + πn − χ

Odd 3π/4 + πn − χ

3π/4 Even 3π/4 + πn − χ

Odd π/4 + πn − χ

3π/2 – Even πn − χ

Odd 1/2 [(2n + 1)π − 2χ ]

Table 3 Conditions for
maximally entangled states in
the case C6

φ l c c+

0 Even π/4 + πn − χ π/4 + πn

3π/4 + πn − χ 3π/4 + πn

Odd π/4 + πn − χ 3π/4 + πn

3π/4 + πn − χ π/4 + πn

π Even π/4 + πn − χ 3π/4 + πn

3π/4 + πn − χ π/4 + πn

π/4 + πn − χ π/4 + πn

3π/4 + πn − χ 3π/4 + πn

The conditions defining maximally entangled states are collected in Table 4.

It is worth noting that in all above cases, one can achieve full range of values of the
concurrence. This effect indicates that it is not the geometry and dimensionality of the
particular statemanifold that is decisive, rather it is the location of suchmanifoldwithin
the S7 and its common points with the torus S2 × S2 of separable pure state manifold.
For states with vanishing concurrence for special choices of the relevant parameters,
we can talk about a ’parametric death’ of entanglement—paraphrasing the ’sudden
death’ of entanglement discussed in the literature for specific evolutions. However,
having in mind the entangling power of the considered families of Hamiltonians we
have collected conditions for preparation of maximally entangled states for all cases
under consideration.

6 Conclusions

The geometric characterization of the state manifold of quantum system is of great
value, but for compound systems such task becomes very complex when addressed in
the general setting.
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Table 4 Conditions for
maximally entangled states in
case C7

φ ω c+ c3

0 π/4 π/4 + πn 1/4 [(2n + 1)π − 2χ ]

3π/4 + πn 1/2 [πn − χ ]

3π/4 π/4 + πn 1/2 [πn − χ ]

3π/4 + πn 1/4 [(2n + 1)π − 2χ ]

π/2 – π/4 + πn 1/4 [π/2 + 2πn − 2χ ]

3π/4 + πn 1/4 [3π/2 + 2πn − 2χ ]

π π/4 π/4 + πn 1/2 [πn − χ ]

3π/4 + πn 1/4 [(2n + 1)π − 2χ ]

3π/4 π/4 + πn 1/4 [(2n + 1)π − 2χ ]

3π/4 + πn 1/2 [πn − χ ]

3π/2 – π/4 + πn 1/4 [3π/2 + 2πn − 2χ ]

3π/4 + πn 1/4 [π/2 + 2πn − 2χ ]

In the present work, we have studied quantum state manifolds for two-qubit system
obtained by means of the unitary evolution defined by large family of physically
interesting Hamiltonians. Despite the knowledge of the whole set of the two-qubit
quantum states, it is important to know what manifolds lying inside this set can be
reached using the evolution governed by the realistic Hamiltonians. The geometry
of such obtained compact quantum state spaces is of Riemannian type defined by
the Fubini–Study metrics depending on initial conditions and parameters entering
the definition of the families of Hamiltonians. We have given the classification of
possible statemanifolds and thoroughly discussed the explicit description of two-qubit
unitary orbits generated by physically relevant Hamiltonians. The relevant Fubini–
Study metrics were obtained with the use of the explicit parametrizations.

It is worth noting that we have also studied the question of how obtained geometries
aremodified by the noncommutative linear perturbation term included into the original
Hamiltonian. We describe its influence on the scalar curvature of the relevant state
spaces. In some cases, the answer turns out to be nontrivial.

As an important physical characterization of the considered systems, we have stud-
ied the degree of entanglement of states for all obtained quantum state spaces and we
have provided conditions for producingmaximally entangled states in each case,where
the concurrence was used as an entanglement monotone. Such knowledge seems to
be of great importance for the quantum information and quantum computation appli-
cations.
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