Skip to main content
Log in

A new n-party quantum secret sharing model based on multiparty entangled states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Recently, multiparty entanglement is becoming an important physical resource to design some typical quantum cryptography protocols. In this paper, we firstly proposed two special QSS protocols with the multiparty entangled states \(|\chi _{n}\rangle \) and \(|S_{n}\rangle \). Then, their security has been proved to resist existing attacks. Furthermore, a new QSS model has been summarized by analyzing the property of the used multiparty entangled states. Moreover, compared with some other QSS protocols based on multiparty entangled states, it can be seen that our protocol is efficient in quantum communication and computation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Bennett, C., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, pp. 175–179. IEEE Press, New York (1984)

  2. Ekert, A.: Quantum cryptography based on Bell theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  3. Bennett, C.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  4. Bennett, C., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  5. Gao, F., Guo, F.-Z., Wen, Q.-Y., Zhu, F.-C.: Quantum key distribution without alternative measurements and rotations. Phys. Lett. A 349, 53 (2006)

    Article  ADS  Google Scholar 

  6. Bostrom, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)

    Article  ADS  Google Scholar 

  7. Deng, F.-G., Long, G.-L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)

    Article  ADS  Google Scholar 

  8. Deng, F.-G., Long, G.-L.: Reply to “Comment on ‘Secure direct communication with a quantum one-time-pad”’. Phys. Rev. A 72, 016302 (2005)

    Article  ADS  Google Scholar 

  9. Lin, S., Wen, Q.-Y., Zhu, F.-C.: Quantum secure direct communication with \(\chi \)-type entangled states. Phys. Rev. A 78, 064304 (2008)

    Article  ADS  Google Scholar 

  10. Jakobi, M., Simon, C., Gisin, N., et al.: Practical private database queries based on a quantum-key-distribution protocol. Phys. Rev. A 83, 022301 (2011)

    Article  ADS  Google Scholar 

  11. Gao, F., Liu, B., Huang, W., Wen, Q.-Y.: Postprocessing of the oblivious key in quantum private query. IEEE. J. Sel. Top. Quant. 21, 6600111 (2015)

    Google Scholar 

  12. Wei, C.-Y., Wang, T.-Y., Gao, F.: Practical quantum private query with better performance in resisting joint-measurement attack. Phys. Rev. A 93, 042318 (2016)

    Article  ADS  Google Scholar 

  13. Wei, C.-Y., Cai, X.-Q., Liu, B., et al.: A generic construction of quantum-oblivious-key-transfer-based private query with ideal database security and zero failure. IEEE Trans. Comput. 67, 2–8 (2018)

    Article  MathSciNet  Google Scholar 

  14. Liu, B., Gao, F., Huang, W.: QKD-based quantum private query without a failure probability. Sci. China Phys. Mech. Astron. 58, 100301 (2015)

    Article  Google Scholar 

  15. Gao, F., Liu, B., Wen, Q.-Y., Chen, H.: Flexible quantum private queries based on quantum key distribution. Opt. Express 20, 17411 (2012)

    Article  ADS  Google Scholar 

  16. Wei, C.Y., Gao, F., Wen, Q.-Y., Wang, T.-Y.: Practical quantum private query of blocks based on unbalanced-state Bennett-Brassard-1984 quantum-key-distribution protocol. Sci. Rep. 4, 7537 (2014)

    Article  Google Scholar 

  17. Zhang, J.-L., Guo, F.-Z., Gao, F., et al.: Private database queries based on counterfactual quantum key distribution. Phys. Rev. A 88, 022334 (2013)

    Article  ADS  Google Scholar 

  18. Zeng, G.-H., Keitel, C.-H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65, 042312 (2002)

    Article  ADS  Google Scholar 

  19. Li, Q., Chan, W.-H., Long, D.-Y.: Arbitrated quantum signature scheme using Bell states. Phys. Rev. A 79, 054307 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  20. Zou, X.-F., Qiu, D.-W.: Security analysis and improvements of arbitrated quantum signature schemes. Phys. Rev. A 82, 042325 (2010)

    Article  ADS  Google Scholar 

  21. Gao, F., Qin, S.-J., Guo, F.-Z., Wen, Q.-Y.: Cryptanalysis of the arbitrated quantum signature protocols. Phys. Rev. A 84, 022344 (2011)

    Article  ADS  Google Scholar 

  22. Zhang, K.-J., Zhang, W.-W., Li, D.: Improving the security of arbitrated quantum signatureagainst the forgery attack. Quant. Inf. Proc. 12, 2655–2669 (2013)

    Article  Google Scholar 

  23. Zhang, K.-J., Qin, S.-J., Sun, Y., Song, T.-T., Su, Q.: Reexamination of arbitrated quantum signature: the impossible and the possible. Quant. Inf. Proc. 12, 3127–3141 (2013)

    Article  MathSciNet  Google Scholar 

  24. Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  25. Cleve, R., Gottesman, D., Lo, H.-K.: How to share a quantum secret. Phys. Rev. Lett. 83, 648 (1999)

    Article  ADS  Google Scholar 

  26. Xiao, L., Long, G.-L., Deng, F.-G., Pan, J.-W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69, 052307 (2004)

    Article  ADS  Google Scholar 

  27. Kunar Singh, S., Srikanth, R.: Generalized quantum secret sharing. Phys. Rev. A 71, 012328 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  28. Li, Y., Zhang, K., Peng, K.: Multiparty secret sharing of quantum information based on entanglement swapping. Phys. Lett. A 324(5–6), 420–424 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  29. Wang, T.-Y., Wen, Q.-Y., Gao, F., Lin, S., Zhu, F.-C.: Cryptanalysis and improvement of multiparty quantum secret sharing schemes. Phys. Lett. A 373, 65 (2008)

    Article  ADS  Google Scholar 

  30. Guo, G.-P., Guo, G.-C.: Quantum secret sharing without entanglement. Phys. Lett. A 310(4), 247–251 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  31. Zhang, Z.-J., Li, Y., Man, Z.-X.: Multiparty quantum secret sharing. Phys. Lett. A 71, 044301 (2005)

    MathSciNet  MATH  Google Scholar 

  32. Deng, F.-G., Li, X.-H., Zhou, H.-Y., Zhang, Z.-J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Lett. A 72, 044302 (2005)

    Google Scholar 

  33. Deng, F.-G., Li, X.-H., Zhou, H.-Y., Zhang, Z.-J.: Erratum: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Lett. A 73, 049901 (2006)

    Google Scholar 

  34. Qin, S.-J., Gao, F., Wen, Q.-Y., Zhu, F.-C.: Improving the security of multiparty quantum secret sharing against an attack with a fake signal. Phys. Lett. A 357, 101 (2006)

    Article  ADS  Google Scholar 

  35. Han, L.-F., Liu, Y.-M., Liu, J., Zhang, Z.J.: Multiparty quantum secret sharing of secure direct communication using single photons. Opt. Commun. 281, 2690 (2008)

    Article  ADS  Google Scholar 

  36. Wang, T.-Y., Wen, Q.-Y.: Security of a kind of quantum secret sharing with single photons. Quantum Inf. Comput. 11, 434 (2011)

    MathSciNet  MATH  Google Scholar 

  37. Hsieh, C.R., Tasi, C.W., Hwang, T.: Quantum secret sharing using GHZ-like state. Commun. Theor. Phys. 54, 1019–1022 (2010)

    Article  Google Scholar 

  38. Dehkordi, M.H., Fattahi, E.: A novel and efficient multiparty quantum secret sharing scheme using entangled states. Sci. China phy. Mech. Astron. 55, 1828–1831 (2012)

    Article  Google Scholar 

  39. Rahaman, R., Parker, M.G.: Quantum scheme for secret sharing based on local distinguishabality. Phys. Rev. A 91, 022330 (2015)

    Article  ADS  Google Scholar 

  40. Yang, Y.H., et al.: Quantum secret sharing via local operations and classical communication. Sci. Rep. 5, 16967 (2015)

    Article  ADS  Google Scholar 

  41. Wang, J.-T., Li, L.-X., Peng, H.-P., Yang, Y.-X.: Quantum-secret-sharing based on local distinguishability of orthogonal multiqudit entangled states. Phys. Rev. A 95, 022330 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  42. Chen, X.-B., Dou, Z., Xu, G., He, X.-Y., Yang, Y.-X.: A kind of universal quantum secret sharing protocol. Sci. Rep. 7, 39845 (2017)

    Article  ADS  Google Scholar 

  43. Wang, Q.-L., Yu, C.-H., Gao, F., Qi, H.-Y., Wen, Q.-Y.: Self-tallying quantum anonymous voting. Phys. Rev. A 94, 022333 (2016)

    Article  ADS  Google Scholar 

  44. Ye, T.-Y., Ji, Z.-X.: Two-party quantum private comparison with five-qubit enyangled states. Int. J. Theor. Phys. 56, 1517–1529 (2017)

    Article  Google Scholar 

  45. Gao, F., Guo, F.-Z., Wen, Q.-Y., Zhu, F.-C.: Comment on “Experimental demonstration of a quantum protocol for byzantine agreement and liar detection”. Phys. Rev. Lett. 101, 208901 (2008)

    Article  ADS  Google Scholar 

  46. Zhang, Y.-S., Li, C.-F., Guo, G.-C.: Comment on “Quantum key distribution without alternative measurements”. Phys. Rev. A 63, 036301 (2001)

    Article  ADS  Google Scholar 

  47. W’ojcik, A.: Eavesdropping on the ping-pong quantum communication protocol. Phys. Rev. Lett. 90, 157901 (2003)

    Article  ADS  Google Scholar 

  48. Huang, W., Wen, Q.-Y., Liu, B., Su, Q., Qin, S.-J., Gao, F.: Quantum anonymous ranking. Phys. Rev. A 89, 032325 (2014)

    Article  ADS  Google Scholar 

  49. Cabello, A.: N-particle N-level singlet states: some properties and applications. Phys. Rev. Lett. 89, 100402 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  50. Qin, H., Tso, R.: Efficient quantum secret sharing based on special multi-dimensional GHZ state. Opt. Quant. Electron. 50, 167 (2018)

    Article  Google Scholar 

  51. Yu, K.-F., Gu, J., Hwang, T., Gope, P.: Multi-party semi-quantum key distribution-convertible multi-party semi-quantum secret sharing. Quant. Inf. Proc. 16, 194 (2017)

    Article  MathSciNet  Google Scholar 

  52. Yang, W., Huang, L., Shi, R., et al.: Secret sharing based on quantum Fourier transform. Quant. Inf. Proc. 12, 2465–2474 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China under Grant No. 61802118, Natural Science Foundation of Heilongjiang Province under Grant No.A2016007, Open Foundation of State key Laboratory of Networking and Switching Technology (BUPT) under Grant No. SKLNST-2018-1-07, University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province supported under Grant No.UNPYSCT-2018015, Heilongjiang University Innovation Fund for Graduates under Grant No.YJSCX2018-159HLJU and Hei Long Jiang Postdoctoral Foundation under Grant No.LBH-Z17048.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Kj., Zhang, X., Jia, Hy. et al. A new n-party quantum secret sharing model based on multiparty entangled states. Quantum Inf Process 18, 81 (2019). https://doi.org/10.1007/s11128-019-2201-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2201-1

Keywords

Navigation