Skip to main content
Log in

Experimental observations of 1D quantum walks in a limited region

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The quantum walk (QW) is the quantum counterpart of the classical walk (CW) and is widely used in universal quantum computations. QWs provide exponential acceleration in hitting times and polynomial acceleration in searching times. Taking advantage of the integration and stability of waveguide structures, large-scale QWs can be implemented on chips. Here, we simulate both CWs and QWs in limited regions to qualitatively analyze the boundary conditions. Subsequently, we used a silicon chip to achieve 21-step QWs in a limited region and experimentally measured the photon number distributions by utilizing the fiber-coupling platform. Then we simulated the theoretical result by using the splitting ratio of the directional couplers which was experimentally obtained by measuring an individual directional coupler and the phase difference of the boundary waveguides which was fit from the experimental results. We also simulated the photon number distributions that are caused by the parameters of the waveguides, such as the splitting ratio, the phase difference, and the size of the walking region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aharonov, Y., Davidovich, L., Zagury, N.: Quantum random walks. Phys. Rev. A 48(2), 1687 (1993)

    Article  ADS  Google Scholar 

  2. Kempe, J.: Quantum random walks: an introductory overview. Contemp. Phys. 50(1), 339–359 (2009)

    Article  ADS  Google Scholar 

  3. Accardi, L., Watson, G.S.: Quantum random walks. Quantum Probab. Appl. IV 11(1), 211–227 (1989)

    MATH  Google Scholar 

  4. Watrous, J.: Quantum simulations of classical random walks and undirected graph connectivity. In: Proceedings. Fourteenth IEEE Conference on Computational Complexity, 1999, pp. 180–187 (2001)

  5. Broome, M.A., Fedrizzi, A., Lanyon, B.P., Kassal, I., Aspuruguzik, A., White, A.G.: Discrete single-photon quantum walks with tunable decoherence. Phys. Rev. Lett. 104(15), 153602 (2010)

    Article  ADS  Google Scholar 

  6. Lovett, B.N., Cooper, S., Everitt, M., Trevers, M., Kendon, : Universal quantum computation using the discrete time quantum walk. Physics 81(4), 82–82 (2009)

    MathSciNet  Google Scholar 

  7. Farhi, E., Gutmann, S.: Quantum computation and decision trees. Phys. Rev. A 58(2), 915–928 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  8. Konno, N.: Continuous-time quantum walk on the line. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 72(2), 986–1023 (2004)

    MathSciNet  Google Scholar 

  9. Jafarizadeh, M.A., Salimi, S.: Investigation of continuous-time quantum walk via spectral distribution associated with adjacency matrix. Ann. Phys. 322(5), 1005–1033 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Brun, T.A., Carteret, H.A., Ambainis, A.: Quantum random walks with decoherent coins. Phys. Rev. A 67(3), 535–542 (2003)

    Article  MathSciNet  Google Scholar 

  11. Kempe, J.: Quantum random walks hit exponentially faster. Prob. Theory Relat. Fields 133(2), 215–235 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Shenvi, N., Kempe, J., Whaley, K.B.: Quantum random-walk search algorithm. Phys. Rev. A 67(5), 125–128 (2002)

    Google Scholar 

  13. Childs, A.M., Cleve, R., Deotto, E., Farhi, E., Gutmann, S., Spielman, D.A.: Exponential algorithmic speedup by a quantum walk. In: ACM Symposium on Theory of Computing, pp. 59–68 (2003)

  14. Grover, L.K., Patel, A.D.: Quantum search. In: Encyclopedia of Algorithms, pp. 1–99 (2008)

  15. Childs, A.M.: Universal computation by quantum walk. Phys. Rev. Lett. 102(18), 180501 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  16. Childs, A.M., Webb, Z.: Universal computation by multiparticle quantum walk. Science 339(6121), 791 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Kitagawa, T., Rudner, M.S., Berg, E., Demler, E.: Exploring topological phases with quantum walks. Phys. Rev. A 82(3), 21504–21510 (2010)

    Article  Google Scholar 

  18. Kitagawa, T., Broome, M.A., Fedrizzi, A., Rudner, M.S., Berg, E., Kassal, I., Aspuruguzik, A., Demler, E., White, A.G.: Observation of topologically protected bound states in photonic quantum walks. Nature Commun. 3(251), 882 (2012)

    Article  ADS  Google Scholar 

  19. Schreiber, A., Cassemiro, K.N., Potocek, V., Gábris, A., Mosley, P.J., Andersson, E., Jex, I., Silberhorn, C.: Photons walking the line: a quantum walk with adjustable coin operations. Phys. Rev. Lett. 104(5), 050502 (2010)

    Article  ADS  Google Scholar 

  20. Schreiber, A., Gábris, A., Rohde, P.P., Laiho, K., Štefaňák, M., Potoček, V., Hamilton, C., Jex, I., Silberhorn, C.: A 2D quantum walksimulation of two-particle dynamics. Science 336(6077), 55–58 (2012)

    Article  ADS  Google Scholar 

  21. Du, J.-F., Li, H., Xu, X.-D., Shi, M.-J., Wu, J.-H., Zhou, X.-Y., Han, R.-D.: Experimental implementation of the quantum random-walk algorithm. Phys. Rev. A 67(4), 645–648 (2002)

    Google Scholar 

  22. Chandrashekar, C.M.: Implementing the one-dimensional quantum (hadamard) walk using a Bose–Einstein condensate. Phys. Rev. A 74(3), 152–152 (2006)

    Article  Google Scholar 

  23. Grossman, J.M., Ciampini, D., D’Arcy, K., Helmerson, M., Lett, P.D., Phillips, W.D., Vaziri, A., Rolston, S.L.: Implementation of a quantum random walk with a sodium Bose–Einstein condensate. In: APS Division of Atomic, Molecular and Optical Physics Meeting (2004)

  24. Dür, W., Raussendorf, R., Kendon, V.M., Briegel, H.J.: Quantum walks in optical lattices. Phys. Rev. A 66(5), 052319 (2002)

    Article  ADS  Google Scholar 

  25. Eckert, K., Mompart, J., Birkl, G., Lewenstein, M.: One- and two-dimensional quantum walks in arrays of optical traps. Phys. Rev. A 72(1), 573–573 (2005)

    Article  Google Scholar 

  26. Sansoni, L., Sciarrino, F., Vallone, G., Mataloni, P., Crespi, A., Ramponi, R., Osellame, R.: Two-particle bosonic–fermionic quantum walk via integrated photonics. Phys. Rev. Lett. 108(1), 010502 (2012)

    Article  ADS  Google Scholar 

  27. Preiss, P.M., Ma, R., Tai, M.E., Lukin, A., Rispoli, M., Zupancic, P., Lahini, Y., Islam, R., Greiner, M.: Strongly correlated quantum walks in optical lattices. Science 347(6227), 1229–33 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Schmitz, H., Matjeschk, R., Schneider, C., Glueckert, J., Enderlein, M., Huber, T., Schaetz, T.: Quantum walk of a trapped ion in phase space. Phys. Rev. Lett. 103(9), 090504 (2009)

    Article  ADS  Google Scholar 

  29. Travaglione, B.C., Milburn, G.J.: Implementing the quantum random walk. Phys. Rev. A 65(3), 032310 (2001)

    Article  ADS  Google Scholar 

  30. Miller, S.E.: Integrated optics: an introduction. Bell Labs Tech. J. 48(7), 2059–2069 (2014)

    Article  Google Scholar 

  31. Farina, J.: Integrated optics: theory and technology. Opt. Acta Int. J. Opt. 30(4), 415–415 (2003)

    MathSciNet  Google Scholar 

  32. Wang, R., Sprengel, S., Boehm, G., Muneeb, M., Baets, R., Amann, M.C., Roelkens, G.: 2.3 \(\mu \)m range inp-based type-II quantum well fabry-perot lasers heterogeneously integrated on a silicon photonic integrated circuit. Opt. Express 24(18), 21081 (2016)

    Article  ADS  Google Scholar 

  33. Perets, H.B., Lahini, Y., Pozzi, F., Sorel, M., Morandotti, R., Silberberg, Y.: Realization of quantum walks with negligible decoherence in waveguide lattices. Phys. Rev. Lett. 100(17), 170506 (2008)

    Article  ADS  Google Scholar 

  34. Bromberg, Y., Lahini, Y., Morandotti, R., Silberberg, Y.: Quantum and classical correlations in waveguide lattices. Phys. Rev. Lett. 102(25), 253904 (2009)

    Article  ADS  Google Scholar 

  35. Politi, A., Cryan, M.J., Rarity, J.G., Yu, S.-Y., O’Brien, J.L.: Silica-on-silicon waveguide quantum circuits. Science 320(5876), 646–9 (2008)

    Article  ADS  Google Scholar 

  36. Peruzzo, A., Lobino, M., Matthews, J.C., Matsuda, N., Politi, A., Poulios, K., Zhou, X.Q., Lahini, Y., Ismail, N., Wörhoff, K.: Quantum walks of correlated photons. Science 329(5998), 1500–1503 (2010)

    Article  ADS  Google Scholar 

  37. Crespi, A., Osellame, R., Ramponi, R., Giovannetti, V., Fazio, R., Sansoni, L., De Nicola, F., Sciarrino, F., Mataloni, P.: Anderson localization of entangled photons in an integrated quantum walk. Nat. Photon. 7(4), 322–328 (2013)

    Article  ADS  Google Scholar 

  38. Schreiber, A., Cassemiro, K.N., Potocek, V., Gábris, A., Jex, I., Silberhorn, C.: Decoherence and disorder in quantum walks: from ballistic spread to localization. Phys. Rev. Lett. 106(18), 180403 (2011)

    Article  ADS  Google Scholar 

  39. Schreiber, A., Cassemiro, K.N., Potocek, V., Gábris, A., Mosley, P., Andersson, E., Jex, I., Silberhorn, C.: Photons walking the line: a quantum walk with adjustable coin operations. Phys. Rev. Lett. 104(5), 050502 (2010)

    Article  ADS  Google Scholar 

  40. Boutari, J., Feizpour, A., Barz, S., Franco, C.D., Kim, M.S., Kolthammer, W.S., Walmsley, I.A.: Large scale quantum walks by means of optical fiber cavities. J. Opt. 18, 094007 (2016)

    Article  ADS  Google Scholar 

  41. Shenvi, N., Kempe, J., Whaley, K.B.: Quantum random-walk search algorithm. Phys. Rev. A 67(5), 052307 (2003)

    Article  ADS  Google Scholar 

  42. Potoček, V., Gábris, A., Kiss, T., Jex, I.: Optimized quantum random-walk search algorithms on the hypercube. Phys. Rev. A 79(1), 012325 (2009)

    Article  ADS  Google Scholar 

  43. Childs, A.M., Farhi, E., Gutmann, S.: An example of the difference between quantum and classical random walks. Quantum Inf. Process. 1(1–2), 35–43 (2001)

    MathSciNet  MATH  Google Scholar 

  44. Feng, L.-T., Zhang, M., Zhou, Z.-Y., Li, M., Xiong, X., Yu, L., Shi, B.-S., Guo, G.-P., Dai, D.-X., Ren, X.-F.: On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom. Nat. Commun. 7, 11985 (2016)

    Article  ADS  Google Scholar 

  45. Flamini, F., Spagnolo, N., Sciarrino, F.: Photonic quantum information processing: a review. arXiv:1803.02790

  46. Harris, N.C., Steinbrecher, G.R., Prabhu, M., Lahini, Y., Mower, J., Bunandar, D., Chen, C., Wong, F.N.C., Baehrjones, T., Hochberg, M.: Quantum transport simulations in a programmable nanophotonic processor. Nat. Photon. 11, 447–452 (2017)

    Article  ADS  Google Scholar 

  47. Han, X.-C., Zhang, D.-W., Li, Y.-X., Song, J.-F., Zhang, Y.-S.: Estimation of photon counting statistics with imperfect detectors. Chin. Phys. B 27(7), 074208 (2018)

    Article  ADS  Google Scholar 

  48. Cozzini, M., Ionicioiu, R., Zanardi, P.: Quantum fidelity and quantum phase transitions in matrix product states. Phys. Rev. B 76(10), 104420 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Grant Nos. 61627820, 11674306, 61590932, and 61377048).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Chuan Han.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, XC., Feng, LT., Li, YX. et al. Experimental observations of 1D quantum walks in a limited region. Quantum Inf Process 18, 85 (2019). https://doi.org/10.1007/s11128-019-2202-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2202-0

Keywords

Navigation