Skip to main content
Log in

Quantum secret sharing affected by vacuum fluctuation

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum secret sharing (QSS) as an important protocol of secure multiparty quantum computation plays a vital role in quantum cryptography. In the real world, any quantum communication protocols are inevitably affected by external noisy environment. In this paper, we investigate the influence of vacuum fluctuation of a massless scalar field on QSS. We firstly construct the noisy model of QSS via two uniformly accelerated atoms coupled with a fluctuating massless scalar field with a perfectly reflecting plane boundary and then derive the master equation that governs the QSS evolution. It is shown that fluctuation of scalar field would lower the performance of QSS. Furthermore, we analyze the impacts of acceleration, two-atom separation and distance from the boundary on the QSS. It is found that increasing acceleration weakens the QSS performance, but in the presence of the reflecting boundary, QSS performance can be improved effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hillery, M., Buzek, V., Berthiaunie, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  2. Xiao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69, 052307 (2004)

    Article  ADS  Google Scholar 

  3. Lu, H., et al.: Secret sharing of a quantum state. Phys. Rev. Lett. 117, 030501 (2016)

    Article  ADS  Google Scholar 

  4. Matsumoto, R.: Unitary reconstruction of secret for stabilizer-based quantum secret sharing. Quantum Inf. Process. 16, 202 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  5. Bai, C.M., et al.: Quantum secret sharing using the d-dimensional GHZ state. Quantum Inf. Process. 16, 59 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  6. Fiedler, L., Naaijkens, P., Osborne, T.J.: Jones index, secret sharing and total quantum dimension. New J. Phys. 19, 023039 (2017)

    Article  ADS  Google Scholar 

  7. Wang, J., et al.: Quantum-secret-sharing scheme based on local distinguishability of orthogonal multiqudit entangled states. Phys. Rev. A 95, 022320 (2017)

    Article  ADS  Google Scholar 

  8. Jia, H.Y., et al.: Dynamic quantum secret sharing. Phys. Lett. A 376, 1035 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  9. Hsu, J.L., Chong, S.K., Hwang, T., Tsai, C.W.: Dynamic quantum secret sharing. Quantum Inf. Process. 12, 331 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  10. Wang, T.Y., Li, Y.P.: Cryptanalysis of dynamic quantum secret sharing. Quantum Inf. Process. 12, 1991 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  11. Liao, C.H., Yang, C.W., Hwang, T.: Dynamic quantum secret sharing protocol based on GHZ state. Quantum Inf. Process. 13, 1907 (2014)

    Article  ADS  Google Scholar 

  12. Qin, H., Dai, Y.: Dynamic quantum secret sharing by using \(d\)-dimensional GHZ state. Quantum Inf. Process. 16, 64 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  13. Song, Y., Li, Z., Li, Y.: A dynamic multiparty quantum direct secret sharing based on generalized GHZ states. Quantum Inf. Process. 17, 244 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  14. Unruh, W.G.: Notes on black-hole evaporation. Phys. Rev. D 14, 870 (1976)

    Article  ADS  Google Scholar 

  15. Benatti, F., Floreanini, R.: Entanglement generation in uniformly accelerating atoms: reexamination of the Unruh effect. Phys. Rev. A 70, 012112 (2004)

    Article  ADS  Google Scholar 

  16. Zhang, J.L., Yu, H.W.: Unruh effect and entanglement generation for accelerated atoms near a reflecting boundary. Phys. Rev. D 75, 104014 (2005)

    Article  ADS  Google Scholar 

  17. Hu, J.W., Yu, H.W.: Entanglement dynamics for uniformly accelerated two-level atoms. Phys. Rev. A 91, 012327 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  18. Huang, Z.M.: Dynamics of quantum correlation of atoms immersed in a thermal quantum scalar fields with a boundary. Quantum Inf. Process. 17, 221 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  19. Huang, Z.M., Ye, Y.Y., Luo, D.R.: Simultaneous dense coding affected by fluctuating massless scalar field. Quantum Inf. Process. 17, 101 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  20. Audretsch, J., Muller, R.: Spontaneous excitation of an accelerated atom: the contributions of vacuum fluctuations and radiation reaction. Phys. Rev. A 50, 1755 (1994)

    Article  ADS  Google Scholar 

  21. Dalibard, J., Dupont-Roc, J., Cohen-Tannoudji, C.: Vacuum fluctuations and radiation reaction: identification of their respective contributions. J. Phys. 43, 1617 (1982)

    Article  Google Scholar 

  22. Dalibard, J., Dupont-Roc, J., Cohen-Tannoudji, C.: Dynamics of a small system coupled to a reservoir: reservoir fluctuations and self-reaction. J. Phys. 45, 637 (1984)

    Article  MathSciNet  Google Scholar 

  23. Breuer, H.-P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  24. Gorini, V., Kossakowski, A., Surdarshan, E.C.G.: Completely positive dynamical semigroups of N-level systems. J. Math. Phys. 17, 821 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  25. Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  26. Barnett, S.M., Radmore, P.M.: Methods in Theoretical Quantum Optics. Oxford University Press, Oxford (1997)

    MATH  Google Scholar 

  27. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Press of University of Cambridge, Cambridge (2000)

    MATH  Google Scholar 

  28. Crispino, L.C.B., Higuchi, A., Matsas, G.E.A.: The Unruh effect and its applications. Rev. Mod. Phys. 80, 787 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  29. Birrell, N.D., Davies, P.C.W.: Quantum Fields Theory in Curved Space. Cambridge University Press, Cambridge (1982)

    Book  Google Scholar 

  30. Huang, Z.M., Qiu, D.W., Mateus, P.: Geometry and dynamics of one-norm geometric quantum discord. Quantum Inf. Process. 15, 301 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  31. Ali, M., Rau, A.R.P., Alber, G.: Quantum discord for two-qubit X states. Phys. Rev. A 81, 042105 (2010)

    Article  ADS  Google Scholar 

  32. Chen, Q., Zhang, C., Yu, X., Yi, X.X., Oh, C.H.: Quantum discord of two-qubit X states. Phys. Rev. A 84, 042313 (2011)

    Article  ADS  Google Scholar 

  33. Jafari, R., Kargarian, M., Langari, A., Siahatgar, M.: Phase diagram and entanglement of the Ising model with Dzyaloshinskii–Moriya interaction. Phys. Rev. B. 78, 214414 (2008)

    Article  ADS  Google Scholar 

  34. Ma, F.W., Liu, S.X., Kong, X.M.: Quantum entanglement and quantum phase transition in the XY model with staggered Dzyaloshinskii–Moriya interaction. Phys. Rev. A 84, 042302 (2011)

    Article  ADS  Google Scholar 

  35. Huang, Z.M.: Dynamics of quantum correlation and coherence in de Sitter universe. Quantum Inf. Process. 16, 207 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  36. Huang, Z.M., Tian, Z.H.: Dynamics of quantum entanglement in de Sitter spacetime and thermal Minkowski spacetime. Nucl. Phys. B 923, 458 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  37. Huang, Z.M., Tian, Z.H.: Dynamics of quantum correlation in de Sitter spacetime. J. Phys. Soc. Jpn. 86, 094003 (2017)

    Article  ADS  Google Scholar 

  38. Huang, Z.M., Zhang, C., Zhang, W., Zhao, L.H.: Equivalence of quantum resource measures for X states. Int. J. Theor. Phys. 56, 3615 (2017)

    Article  Google Scholar 

  39. Huang, Z.M., Situ, H.Z.: Dynamics of quantum correlation and coherence for two atoms coupled with a bath of fluctuating massless scalar field. Ann. Phys. 377, 484 (2017)

    Article  ADS  Google Scholar 

  40. Huang, Z.M., Situ, H.Z.: Quantum coherence behaviors of fermionic system in non-inertial frame. Quantum Inf. Process. 17, 95 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  41. Huang, Z.M.: Quantum-memory-assisted entropic uncertainty in spin models with Dzyaloshinskii–Moriya interaction. Laser Phys. Lett. 15, 025203 (2018)

    Article  ADS  Google Scholar 

  42. Huang, Z.M.: Dynamics of entropic uncertainty for atoms immersed in thermal fluctuating massless scalar field. Quantum Inf. Process. 17, 73 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  43. Huang, Z.M.: Protecting quantum Fisher information in curved space–time. Eur. Phys. J. Plus 133, 101 (2018)

    Article  Google Scholar 

  44. Huang, Z.M., Situ, H.Z.: Exploration of entropic uncertainty relation for two accelerating atoms immersed in a bath of electromagnetic field. Quantum Inf. Process. 18, 38 (2019)

    Article  ADS  Google Scholar 

  45. Huang, Z.M., Situ, H.Z.: Protection of quantum dialogue affected by quantum field. Quantum Inf. Process. 18, 37 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (61871205), the Innovation Project of Department of Education of Guangdong Province (2017KTSCX180), the Doctoral Program of Guangdong Natural Science Foundation (2016A030310001) and the Jiangmen Science and Technology Plan Project for Basic and Theoretical Research (2018JC01010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiming Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Z. Quantum secret sharing affected by vacuum fluctuation. Quantum Inf Process 18, 88 (2019). https://doi.org/10.1007/s11128-019-2209-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2209-6

Keywords

Navigation