Skip to main content
Log in

A quantum eigensolver for symmetric tridiagonal matrices

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The eigenproblem of a symmetric tridiagonal matrix widely appears in physical applications and scientific computing. The classical solvers are the symmetric QR iteration, divide-and-conquer, bisection and inverse iteration, etc. For a symmetric tridiagonal matrix of dimension N, the cost of these methods scales at least as \(O(N^2)\). In this work, we present an efficient quantum algorithm for solving this problem through quantum simulation of resonant transitions. The cost of the algorithm can scale as \(poly(\log \,N)\), provided a good initial guess on the eigenstates of the system is obtained. By coupling a probe qubit to a quantum register that represents a system, resonance dynamics can be observed on the probe qubit when its frequency matches a transition frequency in the system. Energy eigenvalues of the system can be obtained by locating resonant transition frequencies between the probe qubit and transitions from a reference state to eigenstates of the system through observing dynamics of the probe qubit for different frequencies. And the system can be evolved to one of its eigenstate with known eigenvalue by inducing an appropriate resonant transition between the probe qubit and the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Demmel, J.W.: Applied Numerical Linear Algebra. SIAM, Philadephia (1997)

    Book  Google Scholar 

  2. Parlett, B.N.: The Symmetric Eigenvalue Problem. SIAM, Philadelphia (1998)

    Book  Google Scholar 

  3. Golub, G.H., Van Loan, C.F.: Matrix Computations, 4th edn. The John Hopkins University Press, Baltimore (2013)

    MATH  Google Scholar 

  4. Cullum, J.K., Willoughby, R.A.: Lanczos Algorithms for Large Symmetric Eigenvalue Computations, Vol. I Theory, Birkhauser, Boston (1985), (reprinted by SIAM, 2002)

  5. Trefethen, L.N., Bau, B.I.I.I.: Numerical Linear Algebra. SIAM, Philadephia (1997)

    Book  Google Scholar 

  6. Cuppen, J.J.M.: A divide and conquer method for the symmetric tridiagonal eigenproblem. Numer. Math. 36, 177–195 (1981)

    Article  MathSciNet  Google Scholar 

  7. Dongarra, J.J., Sorensen, D.C.: A fully parallel algorithm for the symmetric eigenvalue problem. SIAM J. Sci. Stat. Comput. 8, s139–s154 (1987)

    Article  MathSciNet  Google Scholar 

  8. Gu, M., Eisenstat, S.C.: A divide-and-conquer algorithm for the symmetric tridiagonal eigenproblem. SIAM J. Matrix Anal. Appl. 16, 172–191 (1995)

    Article  MathSciNet  Google Scholar 

  9. Kitaev, A.: Quantum measurements and the Abelian Stabilizer Problem (1995). (arXiv:quant-ph/9511026)

  10. Abrams, D.S., Lloyd, S.: Quantum algorithm providing exponential speed increase for finding eigenvalues and eigenvectors. Phys. Rev. Lett. 83, 5162–5165 (1999)

    Article  ADS  Google Scholar 

  11. Aspuru-Guzik, A., Dutoi, A.D., Love, P.J., Head-Gordon, M.: Simulated quantum computation of molecular energies. Science 309, 1704 (2005)

    Article  ADS  Google Scholar 

  12. Wang, H., Kais, S., Aspuru-Guzik, A., Hoffmann, M.R.: Quantum algorithm for obtaining the energy spectrum of molecular systems. Phys. Chem. Chem. Phys. 10, 5388–5393 (2008)

    Article  Google Scholar 

  13. Wang, H.: Quantum algorithm for obtaining the eigenstates of a physical system. Phys. Rev. A 93, 052334 (2016)

    Article  ADS  Google Scholar 

  14. Berry, D.W., Ahokas, G., Cleve, R., Sanders, B.C.: Efficient quantum algorithms for simulating sparse Hamiltonians. Commun. Math. Phys. 270, 359 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  15. Berry, D.W., Childs, A.M., Cleve, R., Kothari, R., Somma, R.D.: Exponential improvement in precision for simulating sparse Hamiltonians. Forum of Mathematics, Sigma, Vol. 5, e8 (2017). (arXiv:1312.1414v2)

  16. Berry, D.W., Childs, A.M., Cleve, R., Kothari, R., Somma, R.D.: Simulating Hamiltonian dynamics with a truncated Taylor series. Phys. Rev. Lett. 114, 090502 (2015)

    Article  ADS  Google Scholar 

  17. Zhou, S.S., Wang, J.B.: Efficient quantum circuits for dense circulant and circulant-like operators. R. Soc. Open sci. 4, 160906 (2017)

    Article  MathSciNet  Google Scholar 

  18. Cuccaro, S.A., Draper, T.G., Kutin, S.A., Moulton, D.P.: A new quantum ripple-carry addition circuit (2004). (arXiv:quant-ph/0410184)

  19. Draper, T.G., Kutin, S.A., Rains, E.M., Svore, K.M.: A logarithmic-depth quantum carry-lookahead adder (2004). (arXiv:quant-ph/0406142)

  20. Low, G.H., Chuang, I.L.: Optimal Hamiltonian simulation by quantum signal processing. Phys. Rev. Lett. 118, 010501 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  21. Aharonov, D., Ta-Shma, A.: In: Larmore L.L., Goemans M.X. (eds.) Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing, STOC ’03, pp. 20–29. ACM, New York (2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hefeng Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

H. Wang is supported by the National Natural Science Foundation of China under Grants 11275145 and the Natural Science Fundamental Research Program of Shaanxi Province of China under Grants 2018JM1015, H. Xiang is supported by the National Natural Science Foundation of China under Grants 11571265 and NSFC-RGC No. 11661161017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Xiang, H. A quantum eigensolver for symmetric tridiagonal matrices. Quantum Inf Process 18, 93 (2019). https://doi.org/10.1007/s11128-019-2211-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2211-z

Keywords

Navigation