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Abstract By implementing a quantum repeater protocol, our aim in this
paper is the production of entanglement between two two-level atoms locating
far from each other. To make our model close to experimental realizations,
the atomic and field sources of dissipations are also taken into account. We
consider eight of such atoms (1, 2, ..., 8) sequentially located in a line which
begins (ends) with atom 1 (8). We suppose that, initially the four atomic pairs
(i, i + 1), i = 1, 3, 5, 7 are mutually prepared in maximally entangled states.
Clearly, the atoms 1, 8, the furthest atoms which we want to entangle them are
never entangled, initially. To achieve the purpose of paper, at first we perform
the interaction between the atoms (2, 3) as well as (6, 7) which results in the
entanglement creation between (1, 4) and (5, 8), separately. In the mentioned
interactions we take into account spontaneous emission rate (Γ ) for atoms
and field decay rate from the cavities (κ) as two important and unavoidable
dissipation sources. In the continuation, we transfer the entanglement to the
objective pair (1, 8) by two methods: i) Bell state measurement (BSM), and
ii) cavity quantum electrodynamics (QED). The successfulness of our protocol
is shown via the evaluation of concurrence as the well-established measure
of entanglement between the two (far apart) qubits (1, 8). We also observe
that, if one chooses the cavity and the atom such that κ = Γ holds, the
effect of dissipations is effectively removed from the entanglement dynamics in
our model. In this condition, the time evolutions of concurrence and success
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probability are regularly periodic. Also, concurrence and success probability
reach to their maximum values in a large time interval by decreasing the
detuning in the presence of dissipation.

Keywords Quantum repeater · Entanglement swapping · Atom-field
interaction · Dissipation source.

1 Introduction

The idea of quantum repeater, firstly proposed by Briegel et al. [1] in 1998 and
then widely spread between the quantum information science and technologies
researches [2,3,4]. That is a method for the distribution of entanglement and
entangled states over large distances, i.e., creating entanglement between non-
entangled separated atoms, that these transferred entangled states are useful
in quantum key distribution [5], quantum cryptography [6] and quantum com-
munication [7,8]. In recent decades significant efforts have been paid to the
implementation of a practical quantum repeater. For instance, the entangle-
ment has been established between two fixed single-atom quantum memories
separated by 1 meter [9]. Also, the entanglement has been achieved between
solid-state qubits separated by 3 metres [10], and the authors in [11] reported
that the entanglement between spins of two single Rubidium-87 atoms trapped
independently 20 meters apart has been established. In quantum repeater pro-
tocols the path of process is generally divided into a number of shorter parts
and the entanglement is transferred by entanglement swapping processes [12,
13,14,15,16,17] from a pair of original particle state to a far destination par-
ticle pair state. Bell state measurement (BSM) [18] and cavity quantum elec-
trodynamics (QED) [19,20] are two well-known ways for swapping the entan-
glement. In the BSM method, the entanglement is swapped from an entangled
state to non-entangled particles. However, in the QED method, entanglement
swapping is achieved by performing an interaction between two non-entangled
separate particles [21,22,23], while these interactions are governed by (gener-
alized) Jaynes-Cummings (JCM) [24] or sometimes Tavis-Cummings (TCM)
[25] models. Whereas the distribution of entangled states which is in the heart
of quantum repeater is a main point in quantum information science and tech-
nologies, meanwhile the influences of different types of dissipations including
photon leakage from non-perfect cavity and spontaneous emission of atoms
and etc are unavoidable in these models [26]. The existence of losses in the
time evolution of entangled states generally may lead to the attenuation or
even death of entanglement, i.e., the unwanted decoherence effects can be
occurred.

In [27] the authors have proposed a scheme for overcoming losses by us-
ing quantum repeater. In [28] the quantum repeater with continuous variable
encoding is discussed. Quantum repeater based on spatial entanglement of
photons and quantum-dot spins in optical microcavities has been studied in
[29]. A model has been proposed in [30] for a long-line quantum repeater. Ex-
perimental demonstration of a quantum repeater node has been proposed in
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[31], in which two photons from two entangled atom-photon pairs overlap at
BSM and the entanglement is generated between the two atomic ensembles.
Recently, experimental schemes for quantum repeater have been reported [32,
33] wherein the authors have considered four entangled photon pairs (1, 2),
(3, 4), (5, 6) and (7, 8), and studied the entanglement generation between pho-
ton pairs (1, 4) and (5, 8) by performing BSM on photons (2, 3) and (6, 7).
Finally, the entangled photons (1, 8) has been achieved by a further BSM
on photons (4, 5). Now, in this paper a quantum repeater protocol is imple-
mented via considering a system including of eight aligned two-level atoms
with ground state (excited state) |g〉 (|e〉) (see Fig. 1). Four pairs of the qubits
(1, 2), (3, 4), (5, 6), (7, 8) are initially prepared in some atomic Bell states. Our
aim is to distribute entanglement between the two end atoms (1, 8) which are
far from each other and possess a separable state. In particular, we want to
consider the same system, however, to make the model much more close to
experimental realization, we consider the dissipation sources namely atomic
and field decay rates in the dynamical Hamiltonian and investigate their influ-
ences on the transferred entanglement to the atoms (1, 8). Interestingly, as an
important result of the present paper, we illustrate that in special conditions
in which the two mentioned decay rates become equal, the dissipation effects
automatically disappear from the entanglement dynamics of the system. Con-
sequently, in this situation our considered dissipative quantum repeater is then
free from the decoherence effects arisen from the two considered dissipation
sources.
This paper is organized as follows: We explain that how our quantum repeater
protocol works in Sec. 2. The results of our investigations on the proposed
protocol are analysed in Sec. 3. Finally, the paper ends with summary and
conclusions in Sec. 4.
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2 Quantum repeater protocol

(a) The BSM method (b) The QED method

Fig. 1: The scheme of quantum repeater protocol in the presence of eight atoms (1, 2, ...,8),
where Γ (κ) is the spontaneous emission of atoms (photon leakage from the non-perfect
cavities). The entangled atoms (1,8) are obtained by use of (a) BSM method (b) QED
method.

Our purpose in this paper is to distribute entanglement between two two-level
atoms (1,8) among eight aligned atoms (1, 2, ..., 8) shown in Fig. 1. At first,
our linearized system includes four entangled pairs of atoms (i,i + 1) where
i = 1, 3, 5, 7. Performing a dissipative interaction between the atoms (2, 3)
and (6, 7) respectively results in the entanglement between atoms (1, 4) and
(5, 8) [20]. In the following, we demonstrate the mentioned procedure for the
produced entangled atomic states (1, 4). The initial state of the atomic pairs
(1, 2) and (3, 4) reads as |Ψ〉1,2 ⊗ |Ψ〉3,4, where

|Ψ〉i,i+1 =
1√
2
(|e, g〉 − |g, e〉)i,i+1, i = 1, 3. (1)

Now, we perform the interaction between the two non-entangled qubits (2,3)
possessing spontaneous emission rates (Γ2, Γ3) with a single-mode field in a
non-perfect cavity with photon leakage rate (κ). The dynamics is governed by
the following Hamiltonian1 (~ = 1), Ĥ = Ĥ0 + Ĥ1,

Ĥ0 = ωâ†â+
∑

i=2,3

ωi

2
σ̂iz −

i

2

∑

i=2,3

Γiσ̂
+
i σ̂

−
i − i

κ

2
â†â, (2)

Ĥ1 = g
∑

i=2,3

(

âσ̂+
i + â†σ̂−

i

)

,

1 The dissipative terms with κ (rate of photon loss) and Γi (rate of spontaneous emission)
in Hamiltonian (2) have been considered in Refs. [15,26,34,35,36] simultaneously using
phenomenological method. Also, there are many references about this consideration such
as Refs. [37,38,39] for spontaneous emission and Ref. [40] for photon loss. Recall that, the
rates of photon loss and spontaneous emission depend on the quality factor of cavity and
the characteristics of atom, respectively.
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where Ĥ0 (Ĥ1) is free (interacting) part of Hamiltonian in which â†(â) is cre-

ation (annihilation) operator, σ̂+
i = |e〉i 〈g| (σ̂−

i = σ̂
+†
i ) and σ̂iz are respectively

the raising (lowering) and population inversion operators of the ith atom. Also,
ωi and ω are the ith atom transition and field frequencies, respectively.
The interaction Hamiltonian in the interaction picture can be obtained via
Baker-Hausdorff formula

Ĥint = eiĤ0tĤ1e
−iĤ0t (3)

= Ĥ1 + it
[

Ĥ0, Ĥ1

]

+
(it)2

2!

[

Ĥ0,
[

Ĥ0, Ĥ1

]]

+ · · ·

where Ĥ0 and Ĥ1 have been introduced in Eq. (2). Now, we have:

[

Ĥ0, Ĥ1

]

= g

[

ω2 − ω +
i

2
(κ− Γ2)

]

âσ̂+
2 − g

[

ω2 − ω +
i

2
(κ− Γ2)

]

â†σ̂−
2

+ g

[

ω3 − ω +
i

2
(κ− Γ3)

]

âσ̂+
3 − g

[

ω3 − ω +
i

2
(κ− Γ3)

]

â†σ̂−
3 ,(4)

and

[

Ĥ0, [Ĥ0, Ĥ1]
]

= g

[

ω2 − ω +
i

2
(κ− Γ2)

]2

âσ̂+
2 + g

[

ω2 − ω +
i

2
(κ− Γ2)

]2

â†σ̂−
2

+ g

[

ω3 − ω +
i

2
(κ− Γ3)

]2

âσ̂+
3 + g

[

ω3 − ω +
i

2
(κ− Γ3)

]2

â†σ̂−
3 .(5)

By substituting Eqs. (4), (5) into the formula (3), one can obtain the inter-
action Hamiltonian in the interaction picture as (for ∆2 = ∆3 = ∆ where
∆i = ωi − ω and Γ2 = Γ3 = Γ ):

Ĥint = g
∑

i=2,3

(

âσ̂+
i e

iδt + â†σ̂−
i e−iδt

)

, (6)

δ = ∆+
i

2
(κ− Γ ).

Following the path of Ref. [41], we assume that the cavity is in vacuum state,
so the effective Hamiltonian under the limit of large detuning, i.e., |δ|≫ |g|, is
achieved as below (in the case |δ|≫ |g|, there is no energy exchange between
the atomic system and the cavity [41]):

Ĥeff = λ
∑

i=2,3

σ̂+
i σ̂

−
i + λ

(

σ̂+
2 σ̂

−
3 +H.C.

)

, (7)

with λ = g2

δ
. It is readily found that, in the above Hamiltonians (6), (7) if

the cavity and atomic decay rates are chosen such that κ = Γ , the influence
of dissipation is then removed. Finally, by using the effective Hamiltonian (7)
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and initial state |Ψ〉1,2 ⊗ |Ψ〉3,4 (see Eq. (1)) the entangled state for atoms
(1− 4) is achieved as follows:

|Ψ(t)〉1,2,3,4 =
1

N(t)
(L1(t) |eegg〉+ L2(t) |egeg〉+ L3(t) |egge〉 (8)

+ L4(t) |geeg〉+ L5(t) |gege〉+ L6(t) |ggee〉)1,2,3,4,

where

L1(t) = L6(t) = −i
e−iλt

2
sinλt, (9)

L2(t) = L5(t) =
e−iλt

2
cosλt,

L3(t) = −1

2
, L4(t) = −e−i2λt

2
,

N(t) =

√

√

√

√

6
∑

i=1

|Li(t)|2.

Now, if one applies a measurement on the atomic state (2, 3) and obtains |eg〉2,3
or |ge〉2,3, the outcome results for atoms (1, 4) are respectively as follow:

|Ψ(t)〉1,4 =
1

√

|L1(t)|2 + |L5(t)|2
(L1(t) |eg〉+ L5(t) |ge〉)1,4,

|Ψ ′(t)〉1,4 =
1

√

|L2(t)|2 + |L6(t)|2
(L2(t) |eg〉+ L6(t) |ge〉)1,4. (10)

It is clearly observed that the qubit pair (1, 4) is now entangled.
In a similar manner, the above procedure can be repeated for atoms (5 − 8),
so that the following states can readily be achieved for the previously non-
entangled pair (5,8) as below:

|Ψ(t)〉5,8 =
1

√

|L1(t)|2 + |L5(t)|2
(L1(t) |eg〉+ L5(t) |ge〉)5,8,

|Ψ ′(t)〉5,8 =
1

√

|L2(t)|2 + |L6(t)|2
(L2(t) |eg〉+ L6(t) |ge〉)5,8. (11)

Now, there exist four possible states in our hand, which constitute from atoms
(1, 4, 5, 8), i.e., |Ψ(t)〉1,4 ⊗ |Ψ(t)〉5,8, |Ψ(t)〉1,4 ⊗ |Ψ ′(t)〉5,8, |Ψ ′(t)〉1,4 ⊗ |Ψ(t)〉5,8
and |Ψ ′(t)〉1,4⊗|Ψ ′(t)〉5,8. The entanglement is now can be swapped from atoms
(1,4) and (5,8) into the atoms (1,8) by the BSM method (Fig. 1(a)) or again
performing dissipative interaction between atoms (4,5) with the interaction
time from t to τ (QED method) (Fig. 1(b)). In the following subsections we
consider all possible cases in detail.
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2.1 The state |Ψ(t)〉1,4 ⊗ |Ψ(t)〉5,8

The operation of a BSM using the Bell state |B〉4,5 = 1√
2
(|ee〉 + |gg〉)4,5 [42]

on the state |Ψ(t)〉1,4 ⊗ |Ψ(t)〉5,8, the state of atoms (1, 8) is converted to the
Bell state

|B〉1,8 =
1√
2
(|ee〉+ |gg〉)1,8, (12)

with the success probability

S|B〉
1,8

(t) =
|L1(t)L5(t)|2

(|L1(t)|2 + |L5(t)|2)2
. (13)

We continue our process via performing a BSM with the Bell state |B′〉4,5 =
1√
2
(|eg〉+ |ge〉)4,5 [42] on |Ψ(t)〉1,4⊗|Ψ(t)〉5,8. Consequently the state of atoms

(1,8) is transferred to the following state

|γ〉11,8 =
1

√

|L1(t)|4 + |L5(t)|4
(L2

1(t) |eg〉+ L2
5(t) |ge〉)1,8, (14)

whose concurrence [43] may be straightforwardly obtained as

C1(t) =
2
∣

∣L∗2
1 (t)L2

5(t)
∣

∣

|L1(t)|4 + |L5(t)|4
. (15)

In this status the entangled atoms (1,8) are produced by performing the dissi-
pative interaction under the introduced dynamics in (7) between atoms (4,5).
The unnormalized entangled state for atoms (1, 4, 5, 8) after interaction with
initial state |Ψ(t)〉1,4 ⊗ |Ψ(t)〉5,8 is achieved as

|φ〉1,4,5,8 =
1

|L1(t)|2 + |L5(t)|2
{

L2
1(t)

[

1

2
(ei2λte−i2λτ − 1) |eegg〉

+
1

2
(ei2λte−i2λτ + 1) |egeg〉

]

+ L2
5(t)

[

1

2
(ei2λte−i2λτ + 1) |gege〉

+
1

2
(ei2λte−i2λτ − 1) |ggee〉

]

+ L1(t)L5(t) (|egge〉

+ e−i2λ(τ−t) |geeg〉
)}

1,4,5,8
,

(16)
where τ is the time of interaction between atoms (4,5) from t to τ . By measur-
ing the state |eg〉4,5 on state (16), the entangled state of atoms (1,8) collapses
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to

|φ〉11,8 =
1

√

|a1(t, τ)|2 + |b1(t, τ)|2
(a1(t, τ) |eg〉+ b1(t, τ) |ge〉)1,8 , (17)

a1(t, τ) =
L2
1(t)

2
(ei2λte−i2λτ − 1),

b1(t, τ) =
L2
5(t)

2
(ei2λte−i2λτ + 1),

which possesses the concurrence as

C′
1(t, τ) =

2 |a∗1(t, τ)b1(t, τ)|
|a1(t, τ)|2 + |b1(t, τ)|2

. (18)

Moreover, by applying a measurement on the state (16) to obtain the atomic
state (4, 5) as |ge〉4,5, the following entangled state for atoms (1, 8) is obtained

|φ′〉11,8 =
1

√

|a′1(t, τ)|
2
+ |b′1(t, τ)|

2
(a′1(t, τ) |eg〉+ b′1(t, τ) |ge〉)1,8 , (19)

a′1(t, τ) =
L2
1(t)

2
(ei2λte−i2λτ + 1),

b′1(t, τ) =
L2
5(t)

2
(ei2λte−i2λτ − 1),

with the corresponding concurrence as

C′′
1 (t, τ) =

2 |a′∗1 (t, τ)b′1(t, τ)|
|a′1(t, τ)|

2 + |b′1(t, τ)|
2 . (20)

2.2 The state |Ψ(t)〉1,4 ⊗ |Ψ ′(t)〉5,8

By the operation of BSM with the state |B′〉4,5 = 1√
2
(|eg〉 + |ge〉)4,5 on the

state |Ψ(t)〉1,4 ⊗ |Ψ ′(t)〉5,8, the following Bell state

|B′〉1,8 =
1√
2
(|eg〉+ |ge〉)1,8, (21)

is achieved for atoms (1, 8) with the success probability

S|B′〉
1,8

(t) =
|L1(t)L2(t)|2 + |L5(t)L6(t)|2

2(|L1(t)|2 + |L5(t)|2)2
. (22)

Notice that S|B〉
1,8

(t) = S|B′〉
1,8

(t). Also, by the operation of a BSM using the

Bell state |B〉4,5 = 1√
2
(|ee〉 + |gg〉)4,5 on the state |Ψ(t)〉1,4 ⊗ |Ψ ′(t)〉5,8, the

state of atoms (1, 8) is transferred to the entangled state as below:

|γ〉21,8 =
1

√

|L1(t)L6(t)|2 + |L5(t)L2(t)|2
(L1(t)L6(t) |ee〉+ L2(t)L5(t) |gg〉)1,8,

(23)
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and concurrence is calculated as follows:

C2(t) =
2 |L∗

1(t)L
∗
6(t)L5(t)L2(t)|

|L1(t)L6(t)|2 + |L5(t)L2(t)|2
. (24)

Notice that C2(t) = C1(t). But, by performing the dissipative interaction using
the Hamiltonian (7) between atoms (4, 5) with initial state |Ψ(t)〉1,4⊗|Ψ ′(t)〉5,8
the unnormalized entangled state for atoms (1, 4, 5, 8) is achieved as

|φ′〉1,4,5,8 =
1

|L1(t)|2 + |L5(t)|2
{

L1(t)L2(t)

[

1

2
(ei2λte−i2λτ − 1) |eegg〉

+
1

2
(ei2λte−i2λτ + 1) |egeg〉

]

+ L5(t)L6(t)

[

1

2
(ei2λte−i2λτ + 1) |gege〉

+
1

2
(ei2λte−i2λτ − 1) |ggee〉

]

+ L1(t)L6(t) |egge〉

+ e−2iλ(τ−t)L2(t)L5(t) |geeg〉
}

1,4,5,8
.

(25)
Now, by measuring the states |eg〉4,5 and |ge〉4,5 on state (25), after normal-
ization we arrive respectively at the states of atoms (1,8) as,

|φ〉21,8 =
1

√

|a2(t, τ)|2 + |b2(t, τ)|2
(a2(t, τ) |eg〉+ b2(t, τ) |ge〉)1,8 , (26)

a2(t, τ) =
L1(t)L2(t)

2
(ei2λte−i2λτ − 1),

b2(t, τ) =
L5(t)L6(t)

2
(ei2λte−i2λτ + 1),

with concurrence

C′
2(t, τ) =

2 |a∗2(t, τ)b2(t, τ)|
|a2(t, τ)|2 + |b2(t, τ)|2

, (27)

and

|φ′〉21,8 =
1

√

|a′2(t, τ)|
2 + |b′2(t, τ)|

2
(a′2(t, τ) |eg〉+ b′2(t, τ) |ge〉)1,8 , (28)

a′2(t, τ) =
L1(t)L2(t)

2
(ei2λte−i2λτ + 1),

b′2(t, τ) =
L5(t)L6(t)

2
(ei2λte−i2λτ − 1),

with concurrence

C′′
2 (t, τ) =

2 |a′∗2 (t, τ)b′2(t, τ)|
|a′2(t, τ)|

2
+ |b′2(t, τ)|

2 . (29)

It is easy to check that C′′
2 (t, τ) = C′

2(t, τ).
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2.3 The state |Ψ ′(t)〉1,4 ⊗ |Ψ(t)〉5,8

By performing BSM with |B′〉4,5 = 1√
2
(|eg〉+ |ge〉)4,5 on |Ψ ′(t)〉1,4 ⊗ |Ψ(t)〉5,8,

the entangled state of atoms (1, 8) is transferred to Bell state |B′〉1,8 in Eq.
(21) with success probability (22). But, by performing the BSM with the help
of Bell state |B〉4,5 = 1√

2
(|ee〉+ |gg〉)4,5 on the state |Ψ ′(t)〉1,4 ⊗ |Ψ(t)〉5,8, the

state of atoms (1,8) is converted to

|γ〉31,8 =
1

√

|L2(t)L5(t)|2 + |L1(t)L6(t)|2
(L2(t)L5(t) |ee〉+ L1(t)L6(t) |gg〉)1,8,

(30)
with the concurrence as

C3(t) =
2 |L∗

2(t)L
∗
5(t)L1(t)L6(t)|

|L2(t)L5(t)|2 + |L1(t)L6(t)|2
. (31)

Notice that C3(t) = C2(t) = C1(t). The entangled state of atoms (1, 4, 5, 8) is
achieved by performing the interaction (7) between atoms (4, 5) with initial
state |Ψ ′(t)〉1,4 ⊗ |Ψ(t)〉5,8 as below,

|φ′′〉1,4,5,8 =
1

|L1(t)|2 + |L5(t)|2
{

L1(t)L2(t)

[

1

2
(ei2λte−i2λτ − 1) |eegg〉

+
1

2
(ei2λte−i2λτ + 1) |egeg〉

]

+ L5(t)L6(t)

[

1

2
(ei2λte−i2λτ + 1) |gege〉

+
1

2
(ei2λte−i2λτ − 1) |ggee〉

]

+ L2(t)L5(t) |egge〉

+ e−2iλ(τ−t)L1(t)L6(t) |geeg〉
}

1,4,5,8
.

(32)
Now, by measuring the states |eg〉4,5 and |ge〉4,5 on state (32), the entangled

states of atoms (1, 8) are respectively converted to |φ〉31,8 and |φ′〉31,8, where
|φ〉31,8 = |φ〉21,8 and |φ′〉31,8 = |φ′〉21,8 in Eqs. (26) and (28), with calculated
concurrences C′

3(t, τ) = C′
2(t, τ) and C′′

3 (t, τ) = C′′
2 (t, τ) as in Eqs. (27) and

(29), respectively. It is easy to see that C′
3(t, τ) = C′

2(t, τ) = C′′
2 (t, τ) =

C′′
3 (t, τ).

2.4 The state |Ψ ′(t)〉1,4 ⊗ |Ψ ′(t)〉5,8

We apply the BSM using |B〉4,5 = 1√
2
(|ee〉 + |gg〉)4,5 on state |Ψ ′(t)〉1,4 ⊗

|Ψ ′(t)〉5,8, so the state of atoms (1,8) is converted to Bell state |B〉1,8 in Eq.
(12) with the success probability

S′
|B〉

1,8

(t) =
|L2(t)L6(t)|2

(|L1(t)|2 + |L5(t)|2)2
. (33)
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Notice that S′
|B〉

1,8

(t) = S|B′〉
1,8

(t) = S|B〉
1,8

(t). Also, by the operation of BSM

method with the Bell state |B′〉4,5 = 1√
2
(|eg〉 + |ge〉)4,5 on state |Ψ ′(t)〉1,4 ⊗

|Ψ ′(t)〉5,8, the state of atoms (1,8) reads as

|γ〉41,8 =
1

√

|L2(t)|4 + |L6(t)|4
(L2

2(t) |eg〉+ L2
6(t) |ge〉)1,8, (34)

with the concurrence

C4(t) =
2
∣

∣L∗2
2 (t)L2

6(t)
∣

∣

|L2(t)|4 + |L6(t)|4
. (35)

It can straightforwardly be checked that, C4(t) = C3(t) = C2(t) = C1(t). The
unnormalized entangled state of atoms (1, 4, 5, 8) is obtained by performing
dissipative interaction (Eq. (7)) with initial state |Ψ ′(t)〉1,4 ⊗ |Ψ ′(t)〉5,8 as,

|φ′′′〉1,4,5,8 =
1

|L2(t)|2 + |L6(t)|2
{

L2
2(t)

[

1

2
(ei2λte−i2λτ − 1) |eegg〉

+
1

2
(ei2λte−i2λτ + 1) |egeg〉

]

+ L2
6(t)

[

1

2
(ei2λte−i2λτ + 1) |gege〉

+
1

2
(ei2λte−i2λτ − 1) |ggee〉

]

+ L2(t)L6(t) (|egge〉

+ e−i2λ(τ−t) |geeg〉
)}

1,4,5,8
.

(36)
By measuring the state |eg〉4,5 on state (36), the state of atoms (1,8) collapses
to,

|φ〉41,8 =
1

√

|a4(t, τ)|2 + |b4(t, τ)|2
(a4(t, τ) |eg〉+ b4(t, τ) |ge〉)1,8 , (37)

a4(t, τ) =
L2
2(t)

2
(ei2λte−i2λτ − 1),

b4(t, τ) =
L2
6(t)

2
(ei2λte−i2λτ + 1),

with the concurrence,

C′
4(t, τ) =

2 |a∗4(t, τ)b4(t, τ)|
|a4(t, τ)|2 + |b4(t, τ)|2

. (38)
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Notice that, C′
4(t, τ) = C′′

1 (t, τ). Also, by measuring the state |ge〉4,5 on state
(36), the state of atoms (1,8) is converted to the entangled state

|φ′〉41,8 =
1

√

|a′4(t, τ)|
2 + |b′4(t, τ)|

2
(a′4(t, τ) |eg〉+ b′4(t, τ) |ge〉)1,8 , (39)

a′4(t, τ) =
L2
2(t)

2
(ei2λte−i2λτ + 1),

b′4(t, τ) =
L2
6(t)

2
(ei2λte−i2λτ − 1),

whose concurrence reads as

C′′
4 (t, τ) =

2 |a′∗4 (t, τ)b′4(t, τ)|
|a′4(t, τ)|

2 + |b′4(t, τ)|
2 . (40)

It is clearly seen that C′′
4 (t, τ) = C′

1(t, τ).

3 Results and discussion

(a) C1(t) = C2(t) = C3(t) = C4(t)

(b) C1(t) = C2(t) = C3(t) = C4(t)

Fig. 2: The effect of dissipation and detuning on the evolution of concurrence: (a) C1(t) =
C2(t) = C3(t) = C4(t) for κ = Γ (dashed green line) and κ = 20g, Γ = 10g (solid red line)
with ∆ = 10g and (b) C1(t) = C2(t) = C3(t) = C4(t) for ∆ = 10g (dashed green line) and
∆ = 30g (solid red line) with κ = 20g and Γ = 10g.
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(a) S′
|B〉

1,8

(t) = S|B′〉
1,8

(t) = S|B〉
1,8

(t)

(b) S′
|B〉

1,8

(t) = S|B′〉
1,8

(t) = S|B〉
1,8

(t)

Fig. 3: The effect of dissipation and detuning on the evolution of success probability: (a)
S′
|B〉

1,8

(t) = S|B′〉
1,8

(t) = S|B〉
1,8

(t), for κ = Γ (dashed green line) and κ = 20g, Γ = 10g

(solid red line) with ∆ = 10g and (b) S′
|B〉

1,8

(t) = S|B′〉
1,8

(t) = S|B〉
1,8

(t), for ∆ = 10g

(dashed green line) and ∆ = 30g (solid red line) with κ = 20g and Γ = 10g.
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(a) C′
1
(t, τ) = C′′

4
(t, τ)

(b) C′′
1
(t, τ) = C′

4
(t, τ)

(c) C′
2
(t, τ) = C′′

2
(t, τ) = C′

3
(t, τ) = C′′

3
(t, τ)

Fig. 4: The effect of detuning on the evolution of concurrence: (a) C′
1
(t, τ) = C′′

4
(t, τ) (b)

C′′
1
(t, τ) = C′

4
(t, τ) (c) C′

2
(t, τ) = C′′

2
(t, τ) = C′

3
(t, τ) = C′′

3
(t, τ), for ∆ = 10g (dashed green

line) and ∆ = 30g (solid red line) with κ = 20g, Γ = 10g and gt = 10.
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(a) C′
1
(t, τ) = C′′

4
(t, τ)

(b) C′′
1
(t, τ) = C′

4
(t, τ)

(c) C′
2
(t, τ) = C′′

2
(t, τ) = C′

3
(t, τ) = C′′

3
(t, τ)

Fig. 5: The effect of dissipation on the evolution of concurrence: (a) C′
1
(t, τ) = C′′

4
(t, τ) (b)

C′′
1
(t, τ) = C′

4
(t, τ) (c) C′

2
(t, τ) = C′′

2
(t, τ) = C′

3
(t, τ) = C′′

3
(t, τ), for κ = Γ (dashed green

line) and κ = 20g, Γ = 10g (solid red line) with ∆ = 10g and gt = 10.
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(a) C′
1
(t, τ) = C′′

4
(t, τ)

(b) C′′
1
(t, τ) = C′

4
(t, τ)

(c) C′
2
(t, τ) = C′′

2
(t, τ) = C′

3
(t, τ) = C′′

3
(t, τ)

Fig. 6: The effect of initial state (which depends on choosing gt) on the evolution of
concurrence: (a) C′

1
(t, τ) = C′′

4
(t, τ) (b) C′′

1
(t, τ) = C′

4
(t, τ) (c) C′

2
(t, τ) = C′′

2
(t, τ) =

C′
3
(t, τ) = C′′

3
(t, τ), for gt = 3 (dashed green line) and gt = 10 (solid red line) with ∆ = 10g,

κ = 20g and Γ = 10g.

In this section we have analysed the effects of dissipation and detuning on the
time evolution of concurrence or entanglement swapped between two atoms
(1, 8) and also success probability of maximally entangled states produced by
BSM method. Also, we have considered the effects of detuning, dissipation
and initial interaction time which is entered by using different values of gt on
the concurrence obtained in QED method. The effects of dissipation and de-
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tuning on the degree of entanglement (success probability) calculated in BSM
method have been shown in Fig. 2 (3), i.e., the regular evolution of concurrence
(success probability) in the absence of dissipation (the effect of dissipation in
Eq. (6) is removed by choosing κ = Γ ) in Fig. 2(a) (3(a)) is observed. But,
evolution of concurrence (success probability) in the presence of dissipation
after one oscillation reaches to 1 (0.25) and remains at this maximum so that
sudden death of entanglement has been removed in Fig. 2(a). In Fig. 2(b)
(3(b)) the effect of detuning on the concurrence (success probability) has been
considered in the presence of dissipation (κ 6= Γ ). We can see that the concur-
rence (success probability) has been reached to its maximum and remains at
this value after an oscillation by decreasing the detuning. Generally, in Fig. 2
the state of target atoms (1,8) is converted to a maximally entangled state in
some times with acceptable success probability shown in Fig. 3.
In Fig. 4 the effect of detuning on concurrence evaluated in QED method has
been considered in the presence of dissipation (κ 6= Γ ). In Fig. 4 solid red lines
have been plotted for increased detuning and these lines are compared with
the dashed green lines. The concurrence in Fig. 4(a) has not been reached to
its maximum even though detuning is increased. In Fig. 4(b) the maximum of
concurrence has been achieved once for increased detuning. Also, in Fig. 4(c)
the amplitude of oscillation has been decreased as time goes on by increasing
the detuning. From Fig. 4 one can see that, decreasing the detuning causes
the stability of entanglement and the maximum of concurrences is obtained in
a large time interval.
In Fig. 5 we have considered the effect of dissipation on the concurrence ob-
tained by QED method. In this figure the dashed green lines (solid red lines)
have been plotted in the absence (presence) of dissipation. We can see that
the periodic evolution of concurrence in the absence of dissipation (κ = Γ )
and this regular behaviour is destroyed in the presence of dissipation (κ 6= Γ ).
Also, in the presence of dissipation the atoms (1,8) have been converted to
atomic Bell states and remain at these states after an oscillation of concur-
rence in Figs. 5(a), 5(b) and 5(c).
The interaction time gt between atoms (2,3) and (6,7) and its importance
have been considered in Fig. 6. In Fig. 6 solid red lines have been plotted for
increased interaction time and these lines are compared with the dashed green
lines. In Figs. 6(a), 6(b) and 6(c) by increasing the initial time gt, the states
of atoms (1,8) have been converted to Bell states after one oscillation. So, the
interaction time between atoms (2,3) and (6,7) is very effective in order to
achieve the stable maximally entangled states for atoms (1,8)

4 Summary and conclusions

Our purpose in this paper was the distribution of entanglement between two
distant two-level atoms that have no interaction between each other. By using
the quantum repeater protocol we contrasted with entanglement attenuation
in our considered dissipative protocol. We supposed that eight atoms located
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in four maximally entangled atomic states (1,2), (3,4), (5,6) and (7,8). At
first, by performing interaction between atoms (2,3) and (6,7), separately, in
the presence of spontaneous emission and photon leakage, the entanglement
was produced between atoms (1,4) and (5,8). In this level, we swapped en-
tanglement from entangled atoms (1,4) and (5,8) to atoms (1,8) by BSM and
QED methods. The atoms (1,8) converted to maximally entangled states by
choosing suitable Bell states with the help of BSM method. We calculated the
entanglement and success probability for atoms (1,8) and we found that the
time evolutions of these parameters are periodic in the absence of dissipation.
But, in the presence of dissipation this regular behaviour is destroyed. Interest-
ingly for particular case κ = Γ , our system converted to ideal system with no
dissipation. This situation may be achieved by choosing a suitable cavity and
a particular two-level atom. We considered the effects of detuning, dissipation
and interaction time gt (i.e., the initial state) on entanglement dynamics. We
saw the destructive effects of increasing (decreasing) the detuning (interaction
time gt) on the concurrence. The concurrence was reached to its maximum
after an oscillation in a large time interval by decreasing (increasing) the de-
tuning (interaction time) in the presence of dissipation. Also, sudden death of
entanglement was removed in the presence of dissipation and the stability of
entanglement was achieved for concurrences.
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