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Abstract
We study the functional relationship between quantum control pulses in the idealized
case and thepulses in the presenceof anunwanteddrift.We show that a class of artificial
neural networks called LSTM is able to model this functional relationship with high
efficiency, and hence the correction scheme required to counterbalance the effect of
the drift. Our solution allows studying the mapping from quantum control pulses to
system dynamics and analysing its behaviour with respect to the local variations in
the control profile.

Keywords Quantum dynamics · Quantum control · Deep learning · Recurrent neural
network

1 Introduction

The main objective and motivation of quantum information processing is the devel-
opment of new technologies based on principles of quantum mechanics such as
superposition and entanglement [1]. Quantum technologies require the development
of methods and principles of quantum control, the control theory of the quantum
mechanical system [2]. Such methods have to be developed by taking into account
the behaviour of quantum systems [3,4]. In particular, as quantum systems are very
susceptible to noise, which may influence the results of the computation, the methods
of quantum control have to include the means for counteracting the decoherence [5].

The presentedwork is focused on the development of tools suitable for analysing the
relation between the control pulses used for idealized quantum systems, and the control
pulses required to execute the quantum computation in the presence of undesirable
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dynamics. Modelling this relation is important to better understand the manifold of
control pulses in the presence of noise, a case which is still poorly understood. We
focus on quantum dynamics described by a quantum spin chain. We are interested in
a method of approximating the correction function of normal control pulses (NCP),
i.e. the function accepting control pulses corresponding to the system without the drift
Hamiltonian and generating the de-noising control pulses (DCP) for the system with
the drift Hamiltonian. The existence of this function is non-trivial, since there are
infinitely many pulses that produce the same evolution. We propose an approximation
that not only incorporates the global features of the function but also describes its local
properties. This feature is in contrast to the available methods based on optimization
which do not take into account the continuous behaviour of the map from NCP to the
de-noising control pulses. Indeed, without further assumptions, in view of the non-
injectivity of quantum control, we may expect no relation at all between control pulses
obtained from the optimization of different problems. On the other hand, we show that
machine learning methods can be used for this purpose.

Recently, significant research effort has been invested in the application of machine
learningmethods in quantum information processing [6–8]. In particular, optimization
techniques borrowed frommachine learning have been used to optimize the dynamics
of quantum systems [9], either for quantum control [10,11] and simulation [12], or
for implementing quantum gates with suitable time-independent Hamiltonians [13].
These techniques include also quantum control techniques from dynamic optimization
[14] and reinforcement learning [15,16]. In the presence of noise, neural networks
give tools for optimizing dynamical decoupling, which can be seen as a quantum
control correction scheme as considered by us, in a special case of the target operation
being identity [17]. On the level of gate decomposition, neural networks have also
been applied to the problem of decomposing arbitrary operations as a sequence of
elementary gate sets [18,19].

In this paper, we propose a method, based on an artificial neural network (ANN),
to study the correction scheme between control pulses obtained in the ideal case,
and those obtained when the system is subject to undesired dynamics. Moreover, we
demonstrate that the utilized network has high efficiency and can be used to analysis
of the properties of the model.

This paper is organized as follows. In Sect. 2, we introduce the model and describe
the architecture of a deep neural network which will be used as an approximation
function. In Sect. 3, we demonstrate that the proposed methods can be used for gen-
erating control pulses without the explicit information about the model of a quantum
system. We also utilize it for the purpose of analysing the properties of the correction
scheme. Section 5 contains summary of the presented results.

2 Methods: model and solution

In this section, we provide necessary notation and background information. We start
by introducing a spin chain model and describe the problem of generating quantum
control pulses that counteract the undesired dynamics present in the system. We also
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introduce the architecture of the artificial neural network used to approximate the
correction scheme.

2.1 Model of quantum system

Let us consider a system of two interacting qubits. The evolution of the system is
described by GKSL master equation

dρ

dt
= −i[H(t), ρ] +

∑

j

γ j

(
L jρL

†
j − 1

2
{L†

j L j , ρ}
)

. (1)

where the Hamiltonian has three components

H(t) = Hc(t) + H0 + Hγ . (2)

We consider the control Hamiltonian of the form

Hc(t) = hx (t)σx ⊗ 1l + hz(t)σz ⊗ 1l, (3)

and the base Hamiltonian

H0 = σx ⊗ σx + σy ⊗ σy + σz ⊗ σz . (4)

The last element in Eq. (2) is the drift Hamiltonian, which can be an arbitrary two-
qubit Hamiltonianmultiplied by real parameter γ > 0. Incoherent part of Eq. 1models
interaction with an environment with strengths y j . It should be noted that in this paper,
we will never consider the case when γ and γ j both are different form zero.

Quantum optimal control refers to the task of executing a given unitary operation
via the evolution of the system, in our case described by Eq. (2). To achieve this, one
has to properly choose the coefficients h(t) = (hx (t), hz(t)) in Eq. (3). The set of
reachable unitaries can be characterized [2] by studying the Lie algebra generated by
the terms in Eq. (2). For Hγ = 0, our system is fully controllable, so any target can
be obtained with suitable choice of h(t), with no restriction on the control pulses. We
assume that function h(t) is piecewise constant in time slots �ti = [ti , ti+1], which
are the equal partition of evolution time interval T = ⋃n−1

i=0 �ti . We also assume that
hx (t) and hz(t) have values from interval [−1, 1].

Function h(t)will be represented as vectors of values of hx (t) and hz(t). For the case
γ = 0,we say that it representsNCP—normal control pulses. Alternatively, for γ �= 0,
we say that h(t) represents DCP—de-noising control pulses. Since h(t) is piecewise
constant, both NCP and DCP have two indices, with first index corresponding to time
slots {0, . . . , n−1}, and the second index corresponding to the direction {x, z}, namely

NCPi, j = h j (t), γ = 0,

DCPi, j = h j (t), γ �= 0,
(5)
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where

t ∈ [ti , ti+1] i ∈ {0, . . . , n − 1}, j ∈ {x, z}. (6)

It is worth noting that the mapping from the set of control operations to the unitary
operator is not injective. Namely, the same unitary can be obtained using different
choices of h(t). To study the relationship between NCP and DCP, we need to select
the DCP which is more closely related to the NCP. Because of continuity, we do that
numerically by using the NCP as starting guess of the DCP. The final optimal DCP is
then found using a local optimization around the initial NCP.

The figure of merit in our problem is the fidelity distance between superoperators,
defined as [20]

F = 1 − Ferr, (7)

with

Ferr = 1

2N 2 (Tr(Y − X(T ))†(Y − X(T ))), (8)

where N is the dimension of the system in question, Y is superoperator of the fixed
target operator, and X(T ) is evolution superoperator of operator resulting from the
numerical integration of Eq. (1) with given controls. In particular, for a target unitary
operator U , its superoperator Y is given by the formula

Y = U ⊗ Ū . (9)

Superoperator X(T ) is obtained from the unitary operator resulting from the integra-
tion of Eq. (1).

2.2 Architecture of artificial neural network

The control pulses used to drive the quantum system with Hamiltonian from Eq. 3 are
formally a time series. This aspect suggests that one may study their properties using
methods from pattern recognition and machine learning [21,22] that have been suc-
cessfully applied to process data with similar characteristics. The mapping from NCP
to DCP shares similar mathematical properties with that of statistical machine trans-
lation [23], a problem which is successfully modelled with artificial neural networks
(ANN) [24]. Because of this analogy, we use ANN as the approximation function to
learn the correction scheme for control pulses. A trained artificial neural network will
be used as a map from NCP to DCP

ANN(NCP) = nnDCP, (10)

where nnDCP, neural network DCP, is an approximation of DCP obtained by using
the neural network.
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Fig. 1 Structure of LSTM network used in the experiments

Because of time series character of control sequences, we utilize bidirectional long
short-term memory (LSTM) networks [25]. The long short-term memory block is a
special kind of recurrent neural network (RNN), a type of neural network with directed
cycles between units. These cycles allow the RNN to keep track of the inputs received
during the former times. In other words, the output at given time depends not only
on current input, but also on the history of earlier inputs. This kind of neural network
is applicable in situations with time series with long-range correlations, such as in
natural language processing where the next word depends on the previous sentence
but also on the context (Fig. 1).

LSTM block consists of two cells

cell state: ct = ct−1 ◦ ft + c̃t ◦ it ,
hidden state: st = tanh(ct ) ◦ ot ,

which are constructed from following gates

input gate: it = sigma(xt V i + st−1W i),

forget gate: ft = sigma(xt V f + st−1W f),

output gate ot = sigma(xt V o + st−1W o),

candidate: c̃t = tanh(xt V o + st−1W o),

where ◦ is element-wise multiplication of two vectors, st−1 is previous hidden state,
and xt is an actual input state. Matrices V andW are the weight matrices of each gate.
As one can see, there is only one gate with hyperbolic tangent as activation function—
candidate gate. Rest of the gates have sigmoid activation function which has values
from [0, 1] interval. Using this function, neural networks decide which values are
worth to keep and which should be forgotten. These gates maintain the memory of the
network.

Basic architectures of RNN are not suitable for maintaining long-time depen-
dences, due to the so-called vanishing/exploding gradient problem—the gradient of
the cost functionmay either exponentially decay or explode as a function of the hidden
units. Thanks to the structure of LSTM, the exploding gradient problem is reduced.
The bidirectional version of LSTM is characterized by the fact that it analyses the
input sequence/time series forwards and backwards. Thanks to this, it uses not only
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information from the past but also from the future [26,27]. For this purpose, the bidi-
rectional LSTM unit consists of two LSTM units. One of them takes as an input vector
[h(t1), h(t2), . . . , h(tn)], and the second takes [h(tn), h(tn−1), . . . , h(t1)].

As in Eq. (10), the result of the network is a vector of control pulses nnDCP. To
evaluate the quality of nnDCP, we apply loss function described in Eq. 8. To achieve
this, we integrate a new superoperator X(T ) form nnDCP and measure how far it is
from the target superoperator Y .

For two-qubit systems, we found that three stacked bidirectional LSTM layers are
sufficient for obtaining the high value of fidelity. Moreover, at the end of the network
we use one dense layer which processes the output of stacked LSTM to obtain our
nnDCP. Experiments are performed using TensorFlow library [28,29].

3 Results: experiments

For the purpose of testing the proposed method, we use a sample of Haar random
unitary matrices [30,31]. Pseudo-uniform random unitaries can be obtained also in
the quantum control setting via random functions h(t), provided that the control time
T is long enough [32]. The exact implementation of sampling random Haar unitary
matrices is available at [33]. In our experiments, we use QuTIP [34–36] to generate
control pulses to training and testing data. First, we construct the target operators

Utarget = U ⊗ 1l, (11)

where U ∈ U(2) is a random matrix. Next, using QuTIP we generate NCP corre-
sponding to the target operators. In the case of our set-up, the parameters are fixed as
follows:

• time of evolution T = 6,
• number of intervals n = 32,
• control pulses in [−1, 1].
We train the network using a subset of the generated pairs {(NCP, Ytarget)}, where

Ytarget is a target superoperator obtained from Utarget. The training process network
takes NCP as input and generates the nnDCP. Next, this nnDCP is an input to the loss
function. For this purpose, we construct superoperator X(T ) resulting from integration
of Eq. (1) using nnDCP. Next, we calculate error function between X(T ) and Ytarget
as in Eq. (8). In this section, we analyse only coherent drift, i.e. in Eq. (1) γ j = 0.

Source code-implementing experiments described in this paper are available at [33].

3.1 Performance of the neural network

The first experiment is designed to analyse the efficiency of the trained network in
terms of fidelity error of generated nnDCP control pulses. Trained LSTM has mean
fidelity on the test set as presented in Table 1. It should be noted that, despite the fact
that the mean fidelity on the test set is high, the trained network sometimes has outlier
results, i.e. it returns nnDCPwhich corresponds to the operator with high fidelity error.
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Table 1 The average of the
mean fidelity scores for one
qubit drifts

Hγ γ

0.2 0.4 0.6 0.8

γ (σy ⊗ 1l) .96 .92 .95 .96

γ (0.2σx ⊗ 1l + 0.8σy ⊗ 1l) .97 .94 .97 .97

γ (0.5σx ⊗ 1l + 0.5σy ⊗ 1l) .98 .96 .98 .97

γ (0.8σx ⊗ 1l + 0.2σy ⊗ 1l) .99 .97 .98 .99

For each Hamiltonian and each parameter γ , 10 independent experi-
ments have been performed. It should be noted that first two columns
with results, i.e. columns corresponding to γ = 0.2 and 0.4, are
obtained from network which takes mini batches equal to 5 and 4000
training samples and 1000 testing samples. Next, two columns, i.e.
γ = 0.6 and 0.8, are obtained from network with mini batches 50 and
8000 training samples and 4000 testing samples

Table 2 The average of the
mean fidelity scores for spin
chain drifts

Hγ γ

0.6 0.8

γ (σy ⊗ σy) .98 .90

γ (0.1σx ⊗ σx + 0.8σy ⊗ σy + 0.1σz ⊗ σz) .98 .98

γ (0.1σx ⊗ σx + 0.6σy ⊗ σy + 0.3σz ⊗ σz) .98 .98

γ (0.2σx ⊗ σx + 0.6σy ⊗ σy + 0.2σz ⊗ σz) .96 .97

γ (0.3σx ⊗ σx + 0.6σy ⊗ σy + 0.1σz ⊗ σz) .98 .98

These results are obtained for network with mini batch equal to 10 and
8000 training samples and 4000 testing samples

The performed experiments show that it is possible to train LSTM networks for
a given system with high efficiency. Results from Table 1 are obtained by trained
artificial neural networks on different kinds of drifts, i.e. ασx ⊗ 1l + (1 − α)σy ⊗ 1l
for α ∈ {0, 0.2, 0.5, 0.8}, with different values of γ . The experiment with this kind of
drift is representative because σy is orthogonal to the controls σx , σz . The performed
experiment shows that it is possible to train LSTM to have the efficiency on the test
set above 90% for chosen gammas. Some of the results from Table 1 have average
score lower than 90%. This is caused by the outlier cases, when network performs
with very low efficiency. Such efficiency for chosen gammas is sufficient to our goal,
which is to study the relations between the system and control pulses for relatively
small disturbances.

In Table 2, we present average score for model with spin chain drift. As one can
see, these results are much better than in Table1. This can be explained by the fact
that this type of drift is similar to the base Hamiltonian H0 which is also a spin chain.

Results from above tables may suggest the answer for non-trivial questions: For
what kind of drift, map betweenNCP andDCP is easier to learn? In particular, consider
two cases: one qubit drift operating on the same qubit as the control Hamiltonian
or a drift similar to the base Hamiltonian. In which case the mapping is easier to
approximate with the LSTM network? Obtained results suggest that, when the drift is
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asymmetric with respect to the base Hamiltonian, the neural network requires larger
mini batch sizes to achieve similar efficiency.

As one can see, the efficiency of the artificial neural networks depends on the
choice of the hyperparameters. In our case, for some values of parameter γ one needs
to use bigger batch size and the larger training set to obtain satisfactory results. This
behaviour is incomprehensible because, for γ = 0.6 and batch size equal to 5, RNN
has problems with convergence. However, by increasing the batch size we were able
to improve the performance. We would like to stress that our aim was to show that it is
possible to obtain mean efficiency greater than 90%, not to examine what is the best
possible efficiency of the network.

3.2 Utilization of the approximation

In this section, we show the results of an experiment, which allows checking what is
the behaviour of the ANN() function when we perform local disturbances on a set of
random NCP, and we check what is the deviation of the new nnDCP from the original
DCP. The original DCP is obtained from GRAPE algorithm initialized by NCP.

Let us suppose that we have a trained LSTM. The procedure of checking its sensi-
tivity on variations of h j (t), for j ∈ {x, z} and t in the i th time slot, is as follows.

Step 1 Select a NCP vector from the testing set and generate the corresponding
nnDCP.
Step 2 If the fidelity between target operator and operator resulting from nnDCP
is lower than 90%, return to Step 1.
Step 3 Select i ∈ {0, . . . , n − 1}, j ∈ {x, z}, change (i, j) coordinate of NCP by
fixed ε

• if NCPi, j < 1 − ε, then NCPi, j + ε,
• if NCPi, j > 1− ε, then NCPi, j − ε, and calculate new collection of nnDCP

vectors with elements nnDCPi, j , denoting that the element was obtained by per-
turbing j th component at the i th time slot.
Step 4 If the fidelity between target operator and operator resulting from nnDCPi, j

is lower than 90%, return to Step 3.
Step 5 Calculate norm l2 (Euclidean norm) of difference between nnDCP and
nnDCPi, j .

Because of outlier results of the network, there are additional conditions on gener-
ated DCP in the above algorithm. Applying the above algorithm for each NCP from
the testing set, we can obtain a sample of variations. Next, we can analyse empirical
distributions of these variations.

As an example of using the above method, we consider the following example. Let
us suppose that the drift operator is of the form

Hγ = γ σy ⊗ 1l. (12)

Then, for ε = 0.1 and γ = 0.2, the exemplary variation histograms are presented in
Fig. 2. Thanks to trained network, we are able to analyse the impact of small changes
in the input on the output (Step 5).

123



Approximation of quantum control correction scheme… Page 9 of 13 126

0.05 0.10
l2(nnDCP− nnDCP0,x)

0

20

40

60

80

100

120

0.050 0.075 0.100 0.125 0.150
l2(nnDCP− nnDCP0,z)

0

20

40

60

80

100

0.5 1.0 1.5
l2(nnDCP− nnDCP31,x)

0

20

40

60

80

100

0.5 1.0 1.5
l2(nnDCP− nnDCP31,z)

0

20

40

60

80

100

Fig. 2 Exemplary histograms performing variation of ANN approximation. Histograms are generated from
disturbances on set of 1000 NCP corresponding to random matrices, for fixed system Hγ = γ σy ⊗ 1l.

One can consider the median of the distribution of variations as the quantitative
measure of the influence of the changes in the input signal on the resulting DCP. To
check whether medians of distributions of changes are similar, we perform Kruskal–
Wallis statistical test for each pair of the changed coordinates (see Fig. 3a). Results
presented in Fig. 3a show that most of the distributions received are statistically differ-
ent regarding the median, i.e. most of the p values is less than 0.05. The values on the
main diagonals, where we compared disturbances on the same controls in the same
time slots, are equal to 1. This observation confirms that the test behaves appropri-
ately in this case. On the other hand, one can observe that for time slots 10 ≤ i ≤ 30
Kruskal–Wallis test for distributions obtained for NCPi+1,x ±ε and NCPi,z ±ε gives
p values greater than 0.05. Thus, the disturbances introduced in this time slots on hx
and hz coordinates of NCP results in similar variations of the resulting DCP. The
situation is different for time slots i ≤ 10, where one can see that the variation in DCP
signal depends on which coordinate of the NCP signal is disturbed.

123



126 Page 10 of 13 M. Ostaszewski et al.

0

10

20

30

nn
D
C
P
i,
x

0 10 20 30
nnDCPi,x

0

10

20

30

nn
D
C
P
i,
z

0 10 20 30
nnDCPi,z

0.0

0.2

0.4

0.6

0.8

1.0

(a)Hγ = γσy ⊗ 1l
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(b)Hγ = γ1l ⊗ σy .

Fig. 3 Plots of p values of Kruskal–Wallis test for tested drift Hamiltonians. Each element (l, k) of above
matrix plots represents a p value of the test between empirical distributions of changes implied by distur-
bances on lth time slot and kth time slot. The horizontal axis of the left column and the vertical axis of
top row plots correspond to disturbances on σx control, while horizontal axis of the right column and the
vertical axis of the bottom plots correspond to disturbances on σx control

The similar effect can be observed if the drift Hamiltonian acts on the second qubit
only. In this case, we can consider experiment where the drift Hamiltonian is of the
form

Hγ = γ 1l ⊗ σy, (13)

with ε = 0.1 and γ = 0.2.
The results of Kruskal–Wallis test for this situation are presented in Fig. 3b. One can

see that our approach suggests that there are similarities in distributions of variations
implied by disturbances on different controls and near time slots. This suggests that
local disturbances in control signals have a similar effect in the case of drift on the
target system and drift on the auxiliary system.

Moreover, one can see that the constructed approximation exhibits symmetry of
the model. This effect can be observed by analysing the disturbances of hx and hz
controls in the same time slot. From the performed experiments, one can see they give
similar variations quantified by the distribution of DCP changes.

One should note that on plots in Fig. 3, where we compare variations of nnDCPi,x

and nnDCPi,z , p values greater than 0.05 are focused along the diagonal. This sym-
metry is not perfect, but one should note that training data are generated from random
unitary matrices. Moreover, we do not impose any restrictions on the training set to
ensure the uniqueness of the correction scheme.

4 Discussions

In a case where Hamiltonian drift is absent γ �= 0 and we want to find proper DCP
for system with incoherent noise, things get more complicated. In our experiments,
we tested three kinds of Lindblad noise, namely
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1. with one Lindblad operator L = |0〉〈1| ⊗ 1l,
2. with two Lindblad operators L1 = σz ⊗ 1l and L2 = 1l ⊗ σz ,
3. and mixed two Lindblad operators L1 = σz ⊗ 1l and L2 = |0〉〈1| ⊗ 1l.

For all these open system noise models, nnDCP obtains efficiency above 90% for
γ1 = γ2 ≈ 0.01. However, this strength of noise is so small that also NCP obtains
similar efficiency.Therefore, the proposedmodel of the neural networkdoes not correct
NCP effectively, for incoherent types of noise.

Another important case in the context of quantum control is the robustness on the
random fluctuations. In our experiments, we tried to generate nnDCP which will be
robust for Gaussian fluctuations, i.e.

∀i ∈ {0, . . . , n − 1}, j ∈ {x, z} nnDCPi, j + δi, j , (14)

where δi, j ∼ N (0, σ ). The standard deviation we tested in two cases σ = 0.1 and
0.2, while the model of Hamiltonian drift was 0.4(σy ⊗ 1l).

During the training process, returned by ANN control pulses were copied ten times
and to each copy we added Gaussian fluctuations. Such disturbed nnDCPwere applied
to cost function Eq. (8), and next the average fidelity was calculated. Unfortunately,
after this training process artificial neural network does not produce nnDCP which
are more robust for random fluctuations. This failure might be caused by the fact that
training of artificial neural network is based on gradient descent. As we know from
[16], gradient-based algorithm does not give very good results. On the other hand, task
with which we try to face is slightly different from the one in [16], because we want
to generalize correction scheme over all target unitaries.

5 Concluding remarks

The primary objective of the presented work is to use artificial neural networks for
the purpose of approximating the structure of quantum systems. We propose to use
a bidirectional LSTM neural network. We argue that this type of artificial neural
network is suitable to capture time dependences present in quantum control pulses.
We have developed a method of reconstructing the relation between control pulses in
an idealized case and control pulses required to implement quantum computation in
the presence of undesirable dynamics. We argue that the proposed method can be a
useful tool to study the manifold of quantum control pulses in the noisy regime, and
to define new theoretical approaches to control noisy quantum systems.

Acknowledgements LB acknowledges support from the UK EPSRC Grant EP/K034480/1. MO acknowl-
edges support from Polish National Science Center scholarship 2018/28/T/ST6/00429. JAM acknowledges
support from Polish National Science Center Grant 2014/15/B/ST6/05204. Authors would like to thank
Daniel Burgarth for discussions about quantum control, Bartosz Grabowski and Wojciech Masarczyk for
discussions concerning thedetails ofLSTMarchitecture, and IzabelaMiszczak for reviewing themanuscript.
Numerical calculations were possible thanks to the support of PL-Grid Infrastructure.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,

123

http://creativecommons.org/licenses/by/4.0/


126 Page 12 of 13 M. Ostaszewski et al.

and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Dowling, J., Milburn, G.: Quantum technology: the second quantum revolution. Phil. Trans. R. Soc.
A 361, 1655 (2003)

2. d’Alessandro, D.: Introduction to Quantum Control and Tynamics. CRC Press, Boca Raton (2007)
3. Gough, J.E., Belavkin, V.P.: Quantum control and information processing. Quantum Inf. Process. 12,

1397 (2013)
4. Pawela, Ł., Puchała, Z.: Quantum control with spectral constraints. Quantum Inf. Process. 13, 227

(2014)
5. Viola, L., Lloyd, S.: Dynamical suppression of decoherence in two-state quantum systems. Phys. Rev.

A 58, 2733 (1998)
6. Ciliberto, C., Herbster,M., Ialongo,A.D., Pontil,M., Rocchetto,A., Severini, S.,Wossnig, L.: Quantum

machine learning: a classical perspective. In: Proc. R. Soc. A, Vol. 474. The Royal Society, p. 20170551
(2018)

7. Dunjko, V., Briegel, H.J.: Machine learning & artificial intelligence in the quantum domain: a review
of recent progress Rep. Prog. Phys. 81, 074001 (2018). https://doi.org/10.1088/1361-6633/aab406

8. Ostaszewski, M., Miszczak, J., Sadowski, P.: Geometrical versus time-series representation of data in
learning quantum control, arXiv:1803.05169

9. van Nieuwenburg, E., Bairey, E., Refael, G.: Learning phase transitions from dynamics. Phys. Rev. B
98, 060301 (2018)

10. Zahedinejad, E., Schirmer, S., Sanders, B.: Evolutionary algorithms for hard quantum control. Phys.
Rev. A 90, 032310 (2014)

11. August, M., Hernández-Lobato, J. M.: Taking gradients through experiments: LSTMs and memory
proximal policy optimization for black-box quantum control. arXiv preprint arXiv:1802.04063 (2018)

12. Las Heras, U., Alvarez-Rodriguez, U., Solano, E., Sanz, M.: Genetic algorithms for digital quantum
simulations. Phys. Rev. Lett. 116, 230504 (2016)

13. Banchi, L., Pancotti, N., Bose, S.: Quantum gate learning in qubit networks: Toffoli gate without
time-dependent control. NPJ Quantum Inf. 2, 16019 (2016). https://doi.org/10.1038/npjqi.2016.19

14. Sridharan, S., Gu, M., James, M.: Gate complexity using dynamic programming. Phys. Rev. A 78,
052327 (2008)

15. Bukov, M., Day, A., Sels, D., Weinberg, P., Polkovnikov, A., Mehta, P.: Machine learning meets
quantum state preparation. The Phase Diagram of Quantum Control (2017). arXiv:1705.00565

16. Niu, M. Y., Boixo, S., Smelyanskiy, V., Neven, H.: Universal quantum control through deep reinforce-
ment learning. arXiv preprint arXiv:1803.01857 (2018)

17. August, M., Ni, X.: Using recurrent neural networks to optimize dynamical decoupling for quantum
memory. Phys. Rev. A 95, 012335 (2017)

18. Swaddle, M., Noakes, L., Smallbone, H., Salter, L., Wang, J.: Generating three-qubit quantum circuits
with neural networks. Phys. Lett. A 381, 3391 (2017)

19. Fösel, T., Tighineanu, P., Weiss, T., Marquardt, F.: Reinforcement learning with neural networks for
quantum feedback. arXiv preprint arXiv:1802.05267 (2018)

20. Floether, F., de Fouquieres, P., Schirmer, S.: Robust quantumgates for open systems via optimal control:
Markovian versus non-Markovian dynamics. New J. Phys. 14(7), 073023 (2012)

21. Bishop, C.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1995)
22. Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y.: Deep Learning, vol. 1. MIT Press, Cambridge

(2016)
23. Koehn, P.: Statistical Machine Translation. Cambridge University Press, Cambridge (2009)
24. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate

(2014). arXiv:1409.0473
25. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9, 1735 (1997)
26. Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE Trans. Signal Process.

45(11), 2673–2681 (1997)

123

https://doi.org/10.1088/1361-6633/aab406
http://arxiv.org/abs/1803.05169
http://arxiv.org/abs/1802.04063
https://doi.org/10.1038/npjqi.2016.19
http://arxiv.org/abs/1705.00565
http://arxiv.org/abs/1803.01857
http://arxiv.org/abs/1802.05267
http://arxiv.org/abs/1409.0473


Approximation of quantum control correction scheme… Page 13 of 13 126

27. Graves, A., Fernández, S., Schmidhuber, J.: Bidirectional LSTM networks for improved phoneme
classification and recognition. In: International Conference onArtificial Neural Networks organization.
Springer, Berlin, pp. 799–804 (2005)

28. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving,
G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D., Steiner, B., Tucker, P.,
Vasudevan, V., Warden, P., Wicke, M., Yu, Y., Zheng, X.: In: 12th USENIX Symposium on Operating
Systems Design and Implementation, Vol. 16, pp. 265–283 (2016)

29. TensorFlow: An open-source machine learning framework for everyone. https://www.tensorflow.org/
30. Mezzadri, F.: How to generate random matrices from the classical compact groups. Not. AMS 54, 592

(2007)
31. Miszczak, J.: Generating and using truly random quantum states in Mathematica. Comput. Phys.

Commun. 183, 118 (2012)
32. Banchi, L., Burgarth, D., Kastoryano, M.J.: Driven quantum dynamics: will it blend? Phys. Rev. X 7,

041015 (2017)
33. Approximation of quantum control using lstm. https://github.com/ZKSI/qcontrol_lstm_approx
34. QuTiP—Quantum Toolbox in Python. http://qutip.org/ (2012)
35. Johansson, J., Nation, P., Nori, F.: QuTiP: an open-source Python framework for the dynamics of open

quantum systems. Comput. Phys. Commun. 183, 1760 (2012)
36. Johansson, J., Nation, P., Nori, F.: QuTiP 2: a Python framework for the dynamics of open quantum

systems. Comput. Phys. Commun. 184, 1234 (2013)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://www.tensorflow.org/
https://github.com/ZKSI/qcontrol_lstm_approx
http://qutip.org/

	Approximation of quantum control correction scheme using deep neural networks
	Abstract
	1 Introduction
	2 Methods: model and solution
	2.1 Model of quantum system
	2.2 Architecture of artificial neural network

	3 Results: experiments
	3.1 Performance of the neural network
	3.2 Utilization of the approximation

	4 Discussions
	5 Concluding remarks
	Acknowledgements
	References




