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Abstract The one-way quantum deficit, a measure of quantum correlation,
can exhibit for X quantum states the regions (subdomains) with the phases ∆0

and ∆π/2 which are characterized by constant (i.e., universal) optimal mea-
surement angles, correspondingly, zero and π/2 with respect to the z-axis and
a third phase ∆ϑ with the variable (state-dependent) optimal measurement
angle ϑ. We build the complete phase diagram of one-way quantum deficit for
the XXZ subclass of symmetric X states. In contrast to the quantum discord
where the region for the phase with variable optimal measurement angle is
very tiny (more exactly, it is a very thin layer), the similar region ∆ϑ is large
and achieves the sizes comparable to those of regions ∆0 and ∆π/2. This in-
stils hope to detect the mysterious fraction of quantum correlation with the
variable optimal measurement angle experimentally.

Keywords X density matrix · One-way deficit function · Domain of
definition · Piecewise-defined function · Subdomains · Critical lines and
surfaces

1 Introduction

Quantum correlations play the key role in quantum information science. Many
kinds of quantum correlations have been introduced so far and now their prop-
erties are scrupulously analyzed. One of the most important places among such
correlations beyond quantum entanglement belongs to the quantum discord
and one-way quantum work (information) deficit [1,2,3,4,5,6,7,8,9]. In the
present paper we focus on the latter measure of quantum correlation. The
one-way deficit has operational interpretation in thermodynamics and is equal
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to a slightly different version of quantum discord [9] called in Ref. [1] as the
“thermal discord”; this term is also supported in the topical review [3].

Remarkably, both varieties of discord definition yield the same results for
the Bell-diagonal states and even for the X quantum states if one qubit of the
system is maximally mixed and the measurements are performed on this qubit
[10]. However, in spite of closeness of definitions, the quantum discord and
one-way quantum deficit may lead, generally speaking, to the quite different
quantitative and actually qualitative behavior of quantum correlation in more
general cases.

It is known [11,12,13,14] that the optimization of quantum discord as well
as one-way deficit for X states is reduced to a minimization only on one vari-
able, namely the polar angle θ ∈ [0, π/2] (the angle of deviation from the
z-axis of X state) whereas the azimuthal angle φ can be always eliminated by
local rotations around the z-axis. A minimization procedure for measurement-
dependent discord, Q(θ), and one-way deficit, ∆(θ), leads to the optimized
functions of discord Q = min{Q0, Qπ/2, Qθ∗} (subscripts 0, π/2, and θ∗ de-
noting the corresponding optimal measured angles for the quantum discord)
and one-way deficit ∆ = min{∆0, ∆π/2, ∆ϑ} in their domain of definition
are the piecewise-defined ones. In other words, the total domain of definition
consists of subdomains each one corresponding to the own branch (phase or
fraction - in physical language). Important problem is to separate all possible
phases of quantum correlation and find in fact the exhausted phase diagram.

Recently [15] the quantum discord for the symmetric XXZ subclass of X
states has been considered and the three-dimensional phase diagram for it has
been obtained. In this paper we perform calculations for the same subclass
but this time for the one-way quantum deficit. This allows us to compare
the behavior of both measures of quantum correlation and reveal differences
between them. One of the most surprising results is that the “anomalous”
subdomain with variable optimal measurement angle is essentially larger than
that for the quantum discord and its sizes achieve the values which make it
accessible for experimental investigations.

The reminder of this paper is organized as follows. In the next section we
discuss the possibility to create the complete phase diagram for the general
two-qubit X quantum state. The domain of definition of one-way deficit func-
tion for the symmetric XXZ quantum state is obtained in Sec. 3. All necessary
formulas for the branches of piecewise one-way deficit function are presented
in Sec. 4. Equations for the boundaries between different fractions of one-way
deficit are given in Sec. 5. In Sec. 6 we solve the equations for the boundaries
and discuss the results obtained. Concluding remarks and possible perspectives
are summarized in Sec. 7.
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2 General X state and atlas of phase diagrams

In the most general case, the X quantum state of two-qubit system AB can
be written as

ρAB = 4−1(1 + s1σz ⊗ 1 + s21⊗ σz + c1σx ⊗ σx + c2σy ⊗ σy + c12σx ⊗ σy

+ c21σy ⊗ σx + c3σz ⊗ σz), (1)

where σα (α = x, y, z) is the vector of the Pauli matrices. The density matrix
(1) contains seven real parameters s1, s2, c1, c2, c12, c21, and c3 which are
the unary and binary correlation functions, i.e., experimentally measurable
quantities:

s1 = 〈σ1
z〉 = Tr(ρABσz ⊗ 1), s2 = 〈σ2

z〉 = Tr(ρAB1⊗ σz),

c1 = 〈σ1
xσ

2
x〉 = Tr(ρABσx ⊗ σx), c2 = 〈σ1

yσ
2
y〉 = Tr(ρABσy ⊗ σy),

c12 = 〈σ1
xσ

2
y〉 = Tr(ρABσx ⊗ σy), c21 = 〈σ1

yσ
2
x〉 = Tr(ρABσy ⊗ σx), (2)

c3 = 〈σ1
zσ

2
z〉 = Tr(ρABσz ⊗ σz).

It is clear that

−1 ≤ s1, s2, c1, c2, c12, c21, c3 ≤ 1, (3)

hence in any case the parameters do not come out of the seven-dimensional
cube in the space R7.

The density matrix ρAB in open form reads

ρAB =
1

4

























1 + s1 + s2 + c3 0 0 c1 − c2
−i(c12 + c21)

0 1 + s1 − s2 − c3 c1 + c2 0
+i(c12 − c21)

0 c1 + c2 1− s1 + s2 − c3 0
−i(c12 − c21)

c1 − c2 0 0 1− s1 − s2 + c3
+i(c12 + c21)

























(4)
that demonstrates the obvious X structure.

Quantum correlations are invariant under the local unitary transformations
of density matrix [16]. Thanks to this fundamental property one can eliminate
the complex phases in the off-diagonal elements of density matrix (4) and
reduce it with the help of local rotations around the z-axis, exp(−iϕ1σz/2)⊗
exp(−iϕ2σz/2), to the real X form (see [1] and, e.g., [17,18]):

ρAB =
1

4









1 + s1 + s2 + c3 0 0 u
0 1 + s1 − s2 − c3 v 0
0 v 1− s1 + s2 − c3 0
u 0 0 1− s1 − s2 + c3









(5)
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with

u = [(c1 − c2)
2 + (c12 + c21)

2]1/2, v = [(c1 + c2)
2 + (c12 − c21)

2]1/2. (6)

This matrix contains five real parameters: s1, s2, c3, u, and v. All kinds of
quantum correlations in the state (5) are the same as in the original seven-
parameter state (1). Moreover, since off-diagonal entries are now non-negative,
this will allow us to set by optimization the azimuthal angle φ = 0 [11,13]. (In
fact, this nonnegativity is enough only for the product of off-diagonal entries,
uv ≥ 0.)

Return to the original density matrix (4). Due to the requirement of pos-
itive semidefiniteness for any density matrix, one obtains restrictions for the
model parameters

(1 + c3)
2 − (s1 + s2)

2 ≥ (c1 − c2)
2 + (c12 + c21)

2 = u2,

(1− c3)
2 − (s1 − s2)

2 ≥ (c1 + c2)
2 + (c12 − c21)

2 = v2. (7)

A body which is bounded by these two intersecting surfaces of second order is
the domain of definition for the arguments of quantum correlation functions.
Note that this domain lies in the seven-dimensional hypercube [−1, 1]×7.

Classification and construction of all possible phases of quantum correlation
in the whole seven-parameters space is an enormous task which as yet only
waits for its solution. One way to solve it is to build an atlas of maps [19], i.e.,
the collection of two- or three-dimensional phase diagrams. We now pass on
to the first, likely simplest but important “map” of such an atlas.

3 Density matrix for the symmetric XXZ model and domain of

definition

As for the quantum discord [15], in this paper we restrict ourselves by the
same three-dimensional space, i.e., set s1 = s2 (the mirror symmetry Cs of
two-qubit system), c12 = c21 = 0, and c1 = c2 [the axial spin symmetry U(1)].
In this case the density matrix is written as

ρAB = 4−1[1 + s1(σz ⊗ 1 + 1⊗ σz) + c1(σx ⊗ σx + σy ⊗ σy) + c3σz ⊗ σz]. (8)

We will call this state as the symmetric XXZ one — by analogy with the
well-known statistical-mechanical Hamiltonians [20,21]. Notice that the z-
component of total spin, Sz = (σz ⊗ 1+ 1⊗ σz)/2, commutes with the density
matrix (8); this is a sequence of inner symmetry U(1) = {exp(iϕSz)|ϕ ∈
[0, 2π]}. As a result, the full symmetry group is Cs × U(1).

In the open form the density matrix (8) is given by

ρAB =
1

4









1 + 2s1 + c3 0 0 0
0 1− c3 2c1 0
0 2c1 1− c3 0
0 0 0 1− 2s1 + c3









. (9)
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Fig. 1 Shaded tetrahedron T embedded in a three-dimensional cube (dotted lines) is the
domain of definition for the parameters (arguments) s1, c1, and c3

Three-parameter quantum states with such a block-diagonal structure are dis-
cussed in connection with the problem of maximally entangled mixed states
(MEMS) [22] (see also [23]).

Restrictions (7) are reduced here to the conditions

c3 ∈ [−1, 1], s1 ∈ [−(1 + c3)/2, (1 + c3)/2], c1 ∈ [−(1− c3)/2, (1− c3)/2]
(10)

which define a tetrahedron T (see Fig. 1). This tetrahedron is enclosed in
the three-dimensional cube [−1, 1]⊗3, has the vertices v1, v2, v3, and v4 and
isosceles triangle faces. Volume of tetrahedron T equals one sixth part of cube
volume (= 23). So, one may say that the one-way deficit ∆(s1, c1, c3) is a
function on the tetrahedron T .

Notice that the symmetric XXZ states (8) may be written in an equivalent
form which is important for the MEMS problem [24,25],

ρAB = q1|Ψ+〉〈Ψ+|+ q2|Ψ−〉〈Ψ−|+ q3|00〉〈00|+ q4|11〉〈11|, (11)

where q1 + q2 + q3 + q4 = 1,

q1,2 = (1± 2c1 − c3)/4, q3,4 = (1 ± 2s1 + c3)/4, (12)

|Ψ±〉 = (|01〉 ± |10〉)/
√
2 are the Bell states, and |00〉 and |11〉 are product-

states orthogonal to |Ψ±〉; they represent two “up” and “down” oriented spins
(or two horizontally and vertically polarized photons), respectively. One may
exchange |Ψ+〉 ↔ |Ψ−〉 and |00〉 ↔ |11〉 because they belong to the local
unitary transformations and therefore do not change the value of quantum
correlation. Quantities qi (i = 1, · · · , 4) are equal to the eigenvalues of density
matrix and therefore must be non-negative. Hence the domain of definition
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in the space (q1, q2, q3) is a three-dimensional corner restricted by four planes
and conditions: q1 ≥ 0, q2 ≥ 0, q3 ≥ 0, and q1 + q2 + q3 ≤ 1. Further, a
representation of Eq. (11) in Pauli matrices takes the form

ρAB =
1

4
{1 + (q1 + q2 + 2q3 − 1)(σz ⊗ 1 + 1⊗ σz)

+(q1 − q2)(σx ⊗ σx + σy ⊗ σy) + [1− 2(q1 + q2)]σz ⊗ σz}. (13)

By the local unitary transformations, the state (11) is reduced to [26,27]

ρAB = q′1|Φ+〉〈Φ+|+ q′2|Φ−〉〈Φ−|+ q′3|01〉〈01|+ q′4|10〉〈10|, (14)

where |Φ±〉 = (|00〉± |11〉)/
√
2 is the second pair of Bell states. The state (14)

contains as a special case the Horodecki state [28] which is a mixture of one
Bell state and separable states orthogonal to the Bell one. Last, the class of
maximally discordant mixed states (MDMS) having maximal quantum discord
versus classical correlations is given by [29]

ρAB = ǫ|Φ+〉〈Φ+|+ (1− ǫ)(m|01〉〈01|+ (1 −m)|10〉〈10|) (15)

(ǫ and m play a role of concentrations).

4 Formulas for branches

One-way quantum deficit for a bipartite state ρAB is defined as the minimal
increase of entropy after a von Neumann measurement on one party (without
loss of generality, say, B) [8] (see also, e.g., [1,5])

∆ = min
{Πk}

S(ρ̃AB)− S(ρAB), (16)

where S(·) means the von Neumann entropy and

ρ̃AB ≡
∑

k

pkρ
k
AB =

∑

k

(I ⊗Πk)ρAB(I ⊗Πk)
+ (17)

is the weighted average of post-measured states

ρkAB =
1

pk
(I ⊗Πk)ρAB(I ⊗Πk)

+ (18)

with the probabilities

pk = Tr(I ⊗Πk)ρAB(I ⊗Πk)
+. (19)

In Eq. (17), Πk (k = 0, 1) are the general orthogonal projectors

Πk = V πkV
+, (20)
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where πk = |k〉〈k| and transformations {V } belong to the special unitary group
SU(2). Rotations V may be parametrized by two angles θ and φ (polar and
azimuthal, respectively):

V =

(

cos(θ/2) −e−iφ sin(θ/2)
eiφ sin(θ/2) cos(θ/2)

)

(21)

with 0 ≤ θ ≤ π and 0 ≤ φ < 2π.
Eigenvalues of matrix (9) are equal to

λ1,2 = (1± 2s1 + c3)/4, λ3,4 = (1± 2c1 − c3)/4. (22)

Using these equations one gets the pre-measurement entropy function

S(s1, c1, c3) = h4((1+2s1+c3)/4, (1−2s1+c3)/4, (1+2c1−c3)/4, (1−2c1−c3)/4),
(23)

where h4(x1, x2, x3, x4) = −x1 log x1 − x2 log x2 − x3 log x3 − x4 log x4 with
condition x1 +x2+x3 +x4 = 1 is the quaternary entropy function. In explicit
form,

S(s1, c1, c3) = 2 ln 2

−1

4
[(1 + 2c1 − c3) ln(1 + 2c1 − c3) + (1− 2c1 − c3) ln(1− 2c1 − c3)

+(1 + 2s1 + c3) ln(1 + 2s1 + c3) + (1− 2s1 + c3) ln(1− 2s1 + c3)]. (24)

The quantum state (9) after measurements Πk (k = 0, 1) and averaging in
accordance with Eq. (17) takes the form

ρ̃AB =
1

4





































1 + s1 + (s1 • • •
+c3) cos

2θ

1
2 (s1 + c3)e

iφ sin2θ 1− c3 + (s1 • •
+c3) sin

2θ

1
2c1e

iφ sin2θ c1 sin
2θ 1− c3 − (s1 •

−c3) sin2θ

c1e
2iφ sin2θ − 1

2c1e
iφ sin2θ 1

2 (s1 − c3)e
iφ sin2θ 1− s1 − (s1

−c3) cos2θ





































(25)
(for the sake of simplicity, the bold points are put instead of corresponding
complex conjugated matrix elements of the Hermitian matrix ρ̃AB).

We used the Mathematica software to extract the eigenvalues of matrix
(25). First of all we established that the secular equation for the given matrix is
factorized into product of two polynomials of second orders. In proving this key
property, the following trick turned out useful. Namely, we first transformed
the matrix elements to the exponential form (the command TrigToExp), found
the secular equation, factorized it, then returned by applying the command
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ExpToTrig to the trigonometric expressions and finally simplified the result
using the command FullSimplify. As a result, we arrived at the eigenvalues of
post-measurement state (25),

Λ1,2 =
1

4
[[1 + s1 cos θ ± {(s1 + c3 cos θ)

2 + c21 sin
2θ}1/2]],

(26)

Λ3,4 =
1

4
[[1 − s1 cos θ ± {(s1 − c3 cos θ)

2 + c21 sin
2θ}1/2]].

It is seen that the azimuthal angle φ has dropped out from the given expres-
sions. This is a general property and occurs every time when only one of the
off-diagonals of the density matrix is non-zero [12,30]. Hence, the optimization
reduces to that in a single variable θ.

Using Eqs. (26) we find the post-measured entropy (entropy after measure-
ment)

S̃(θ) ≡ S(ρ̃AB) = h4(Λ1, Λ2, Λ3, Λ4), (27)

where h4(·) is again the quaternary entropy function. The function S̃ of ar-
gument θ is invariant under the transformation θ → π − θ therefore it is
enough to restrict oneself by values of θ ∈ [0, π/2]. Moreover, the pre- and
post-measured entropies S and S̃, as functions of s1 and c1, are symmetric
under the reflections s1 → −s1 and c1 → −c1.

Notice the following. The post-measument entropy S̃ is related to the con-
ditional entropy Scond [see Eqs. (25)-(26) in Ref. [15]] by equation (see [31]
and also Appendix in Ref. [15])

S̃(θ) = Scond(θ) + h((1 + s1 cos θ)/2), (28)

with h(x) = −x lnx−(1−x) ln(1−x) being Shennon’s binary entropy function.
The first derivative of h-term with respect to θ equals zero at both endpoints
θ = 0 and π/2. Hence if the first derivative of Scond(θ) with respect to θ
vanishes at θ = 0 and π/2 then the same takes place for the post-measured
entropy S̃(θ) and vice versa. Moreover, in accordance with Eq. (28), the non-
optimized one-way deficit can be written as

∆(θ) = h((1 + s1 cos θ)/2)− S(ρAB) + Scond(θ). (29)

On the other hand, the measurement-dependent quantum discord can be pre-
sented as

Q(θ) = h((1 + s1 cos θ)/2)|θ=0 − S(ρAB) + Scond(θ) (30)

because h((1 + s1 cos θ)/2)|θ=0 = S(ρB), where ρB = TrAρAB. So, Eqs. (29)
and (30) show a very close mathematical relation between both measures of
quantum correlation: the only difference is either we take h-term with arbitrary
θ or set θ = 0. This relation is valid for general X states.
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From Eqs. (26) and (27), one gets an expression for the post-measurement
entropy:

S̃(θ; s1, c1, c3) = 2 ln 2

−1

4

2
∑

m,n=1

(

1 + (−1)ms1 cos θ + (−1)n
√

(s1 + (−1)mc3 cos θ)2 + c21 sin
2 θ

)

× ln

(

1 + (−1)ms1 cos θ + (−1)n
√

(s1 + (−1)mc3 cos θ)2 + c21 sin
2 θ

)

. (31)

In the following analysis, this function will serve us to probe and identify the
types of subregions in phase diagrams. The function S̃(θ; s1, c1, c3) is differen-
tiable at any point θ and, in full conferment with the statement made in the
Introduction, its first derivatives with respect to θ identically equal zero for
∀ s1, c1, c3 ∈ T at both ends of the interval [0, π/2].

The post-measurement entropy at the endpoint θ = 0 is given as

S̃0 ≡ S̃(0) = 2 ln 2− 1

2
(1− c3) ln(1 − c3)

−1

4
[(1 + 2s1 + c3) ln(1 + 2s1 + c3) + (1− 2s1 + c3) ln(1− 2s1 + c3)] (32)

and at the endpoint θ = π/2:

S̃π/2 ≡ S̃(π/2) = 2 ln 2− 1

2

[(

1 +
√

s21 + c21

)

ln

(

1 +
√

s21 + c21

)

+

(

1−
√

s21 + c21

)

ln

(

1−
√

s21 + c21

)]

. (33)

Equations (23),(26), and (27) define the measurement-dependent one-way
deficit function

∆(θ) = S̃(θ)− S. (34)

In the wake of S̃(θ), the first derivative of ∆(θ) with respect to θ is identically
equal to zero at both endpoints θ = 0 and θ = π/2:

S̃′(0) = ∆′(0) ≡ 0, S̃′(π/2) = ∆′(π/2) ≡ 0. (35)

By analogy with the quantum discord [17,18,30,32] (see also [15]), the
one-way quantum deficit may be written as almost closed analytical formula
[33]

∆ = min{∆0,∆π/2,∆ϑ}. (36)

Thus, it can consist of three branches. However, it should be noted that in
general these branches may further out split into new subbranches.

Using the above equations one obtains the expression for the 0-branch:

∆0(s1, c1, c3) = −
1

2
(1− c3) ln(1− c3)

+
1

4
[(1 + 2c1 − c3) ln(1 + 2c1 − c3) + (1− 2c1 − c3) ln(1− 2c1 − c3)].(37)
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Surprisingly, this branch is identical to the similar branch of discord Q0 [15],
i.e., ∆0 = Q0. Moreover the function ∆0 is symmetric under the reflection
c1 → −c1 and does not depend on s1.

For the branch ∆π/2 with the π/2 optimal measured angle, we have

∆π/2(s1, c1, c3) = −
1

2

[(

1 +
√

s21 + c21

)

ln

(

1 +
√

s21 + c21

)

+

(

1−
√

s21 + c21

)

ln

(

1−
√

s21 + c21

)]

+
1

4
[(1 + 2c1 − c3) ln(1 + 2c1 − c3) + (1− 2c1 − c3) ln(1− 2c1 − c3)

+(1 + 2s1 + c3) ln(1 + 2s1 + c3) + (1− 2s1 + c3) ln(1− 2s1 + c3)]. (38)

This function is symmetric both on s1 and c1.
The third and last branch ∆ϑ is obtained by numerically solving the one-

dimensional optimization problem for the function S̃(θ).
We turn now to the discussion of boundaries distinguishing the phases of

quantum correlation.

5 Equations for boundaries

The problem of phases and boundaries between them is well known in ther-
modynamics and statistical physics [20,34] as well as in other fields of science.
Classification of phases depends on characteristic features which are put in its
ground. Therefore it is not surprising that, e.g., one discovers more and more
new phases for water.

Quantum correlations are piecewise-defined functions. A choice of a cer-
tain branch in the given point of parameter space is dictated by a minimum
condition like (36). But how to decompose the whole domain of definition of
quantum correlation function into subdomains? The answer to this question
was firstly given in Refs. [17,18] (see also [30,32]) with the quantum discord.

Applying those ideas to the one-way quantum deficit, one may say the
following. On the one hand, the boundary between the phases with zero and
π/2 optimal measurement angles is controlled by the equilibrium condition

S̃0 = S̃π/2 or ∆0 = ∆π/2. (39)

When crossing this boundary, the optimal measurement angle experiences the
jump ∆ϑ = π/2.

On the other hand, the transitions from the ϑ-phase to the 0- or π/2-
one can occur via a bifurcation of minimum of the post-measurement entropy
function at the endpoints θ = 0 and π/2. In these cases the equations for the
boundaries are reduced to a requirement of vanishing the second derivatives
of post-measurement entropy or measurement-dependent one-way deficit with
respect to θ at corresponding endpoints [14,33]

S̃′′(0) = 0 or ∆′′(0) = 0 (40)
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for the 0-boundary and

S̃′′(π/2) = 0 or ∆′′(π/2) = 0 (41)

for the π/2-one. Here the optimal measurement angle jumps equal ∆ϑ = 0.
For the quantum states under discussion the second derivatives at end-

points follow from Eq. (31) and equal

S̃′′(0) =
1

4

{

s1 ln
1 + 2s1 + c3
1− 2s1 + c3

+ c3 ln
(1 + 2s1 + c3)(1 − 2s1 + c3)

(1− c3)2

−c21
[

1

s1 + c3
ln

1 + 2s1 + c3
1− c3

+
1

s1 − c3
ln

1− c3
1− 2s1 + c3

]}

(42)

and

S̃′′(π/2) = c21
s21 + c21 − c23

2r3
ln

1 + r

1− r
− 1

2
s21

(

(1 + c3/r)
2

1 + r
+

(1− c3/r)
2

1− r

)

(43)

with r =
√

s21 + c21.
Equations (39), (40), and (41) together with expressions (32), (33), (37),

(38), (42), and (43) are transcendental and they can be solved numerically by
the bisection method.

The above mechanism of arising the boundaries between phases is con-
firmed for the cases when the post-measurement entropy function is unimodal.
However, most recently [33] a bimodal behavior for the post-measurement en-
tropy function has been found and a new important equation has been added
to the collection of boundary equations, namely

S̃0 = S̃ϑ or ∆0 = ∆ϑ. (44)

These conditions reflect a jump (sudden change) of optimal measurement angle
from zero to a finite step ∆ϑ > 0 but ∆ϑ 6= π/2. For definiteness, we will call
such a boundary as the 0′-one.

Generally speaking the jumps between the endpoint θ = π/2 and global
interior minimum are possible theoretically but up to the present they were
not met in our practice.

Note for a reference that we solved the equations (44) for the 0′-boundary
also by the bisection method with searching the interior minimum of post-
measurement entropy or measurement-dependent one-way quantum deficit at
every step of iteration procedure by the golden section method.

The above classification of phases is based on the type of optimal mea-
surement angle. But in general such an approach does not exhaust all possible
branches of piecewise-defined function. New subbranches can appear from the
splitting of some original branches. For instance, such a phenomenon was pre-
viously observed for the π/2-branch of discord, Qπ/2, which decays into two

subbranches Q
(1)
π/2 and Q

(2)
π/2 in the limit of Bell-diagonal states (see Fig. 7b in

Ref. [32] and Sec. 2.1 in Ref. [15]). The reason is simple: when s1 = s2 = 0, the
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function Qπ/2(c1, c2, c3) by |c1| 6= |c2| contains inside itself the piecewise func-
tions like |c1−c2|. In similar situations, the additional boundaries are revealed
from the detection of fracture points, i.e., from the condition of discontinuity
for the first derivatives with respect to the parameters of the model:

∆′
x(x− 0) 6= ∆′

x(x+ 0), x ∈ {s1, c1, c3}. (45)

However, we did not observe such cases in the present paper because c1 = c2.

6 Phase diagram for the symmetric XXZ state

The task now is to separate the body T by using boundary equations into sub-
domains each one corresponding to a certain branch according to the minimum
condition (36). Our strategy is reduced to the following. We will take different
two-dimensional sections of tetrahedron T , solve the equations for boundaries,
and then visually analyze the shapes of curves S̃(θ) or ∆(θ). The position of
global minimum of these curves will give us the answer to the question about
the type of branch in the given part of section.

The one-way deficit function ∆(s1, c1, c3) is invariant under the transfor-
mations s1 → −s1 and c1 → −c1. Hence the body T with all subdomains is
symmetric relative to the mirror reflections in the planes s1 = 0 and c1 = 0.
Owing to this, it is enough to study the phases only in a quarter of tetrahedron
T .

6.1 Phase diagrams on faces

We begin the analysis with the faces of tetrahedron T . Due to the mirror
symmetry, it is enough to study the phases only on two adjacent semi-faces.
Without loss of generality, we consider the faces v1v2v4 and v1v3v4 (see Fig. 1).
Both halves of these two adjacent faces are shown in Fig. 2 in an unfolded form.

Consider first the upper triangle. Here c1 = −(1− c3)/2. Solution of equa-
tions from the previous section leads to the curves labeled in Fig. 2 by symbols
0 and 1 which correspond to the 0- and π/2-boundaries, respectively. Testing
the different parts of triangle by the shape of curve S̃(θ) allows to identify
the types of separate subdomains; they are marked in Fig. 2 by corresponding
names of branches. Three found types of post-measurement entropy shapes
(monotonically decreasing, unimodal, and monotonically increasing) are illus-
trated in Fig. 3. More complicated shapes of S̃(θ) are absent on this face.

Phase diagram on the lower triangle part of Fig. 2 [here s1 = (1+c3)/2] cor-
responds to the case which has been considered in Ref. [33] (Fig. 7 there); the
only difference is the coordinates (c1, c3) instead (q1, q2). Here the bimodal be-
havior of S̃(θ) takes place and, correspondingly, the 0′-boundary on which the
optimal measurement angle discontinuously changes its value exists between
the points “a” and “c”. The curve 0′ is a line of continuously varying ∆ϑ in
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Fig. 2 Phase diagram of one-way quantum deficit on the faces of tetrahedron T . The
diagonal dotted line v1v4 dividing the figure area in two triangle parts is the corresponding
edge of the tetrahedron. The upper triangle is a half of the face v1v2v4 while the lower
one is a half of the face v1v3v4. (The latter represents the phase diagram [33] in new
variables.) The points “a” and “b” lie on the diagonal v1v4, their coordinates (c1, c3) being
equal (−0.5, 0) and (−0.675151,−0.350302), respectively, whereas the point “c” is located
at (−0.709723,−0.538191)

the limits from 0 to π/2 (see Table 1 in [33]). The critical line 2 corresponds
to the boundary when ∆0 = ∆π/2.

It is interesting to compare the location of phases ∆0, ∆π/2, and ∆ϑ in the
tetrahedron T with that of similar discord phases Q0, Qπ/2, and Qθ∗ found
earlier for the same quantum states [15]. One can see the phases of one-way
deficit and discord on faces of T in Fig. 4. Because the one-way quantum
deficit must be identical to the quantum discord for the Bell-diagonal states,
we satisfy ourselves that really ∆ = Q in the case s1 = 0. More and above, we
observe that, due to the equality∆0 = Q0, the one-way deficit ∆ and discordQ
are equal when the∆0 andQ0 regions coincide. This circumstance considerably
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Fig. 3 Evolution of post-measurement entropy shapes by pass along the line c3 = 0.15
on the face v1v2v4 [i.e, when c1 = (1 − c3)/2)] for s1 = 0.2 (a), 0.406975 (b), 0.44 (c),
and 0.483997 (c). Cases (b) and (d) correspond to the moments of bifurcations of minimum
which occur on the boundary curves 1 and 0, respectively

enlarges the common part of total domain T , where both measures of quantum
correlation yield the same result.

6.2 Phase diagrams inside the tetrahedron T

Consider now the phase structure in the interior of tetrahedron. The study
will be performed by scanning the body T by taking cross-sections with planes
c3 = const. We will go from the top to the bottom of the tetrahedron.

When c3 = 1, i.e., on the edge v1v2, all quantum correlations vanish because
here c1 = 0 and the system is purely classical.

In the subsequent investigation it will be convenient to consider five sepa-
rate intervals for c3 taking into account the variation of phases in longitudinal
direction (see Fig. 2).

First of all the calculations show that the one-way deficit equals ∆ = ∆0

in the band 1/3 ≤ c3 ≤ 1.
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Fig. 4 (Color online) An outward appearance of tetrahedron T for the one-way deficit (left,
see also Fig. 2) and discord (right). The regions ∆0 and Q0 are shown by the blue color
while the ∆π/2 and Qπ/2 ones are shown by the green color. The region ∆ϑ is yellow-colored
and because the region Qθ∗ lies inside the tetrahedron it is not seen
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Fig. 5 Phase diagrams of one-way deficit (a) and discord (b) by c3 = 0.1. Subregions
∆ϑ lie between the pairs of solid lines in a graph (a). Similar subregions for the quantum
discord, Qθ∗ , are thin too and therefore their locations are shown only schematically by
double solid-dotted lines in a graph (b) (see also Fig. 3 in [15])

By c3 < 1/3, the other two phases appear in the slices. Typical phase
diagram for the one-way deficit in the interval of c3 from 1/3 to 0 is shown in
Fig. 5a for the cross-section c3 = 0.1. Phase diagram for the discord is shown
in Fig. 5b for a comparison. One sees the significant differences between both
measures of quantum correlation. However they are the same on the line s1 = 0
(Bell’s case) and in common parts of regions ∆0 and Q0.

Because the phase diagrams in cross-sections are symmetric about the s1
and c1 axes, one may only focus on a quarter of the diagram. Moreover, as
calculations show, the boundaries between phases of one-way deficit lie in
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Fig. 6 Fragments of phase diagrams in the sections c3 = 0.1 (on the left) and c3 = 0 (on
the right). The curves 0 represent the 0-boundaries while the lines 1 are the π/2-ones

the regions c1 ≥ |c3| therefore it is enough to restrict oneself by the strips
|c3| ≤ c1 ≤ (1 − c3)/2. Left part of Fig. 6 shows the subregion by c3 = 0.1 in
detail. The boundaries 1 and 0 end on the upper edge of cross-section rectangle
at the points with abscissas s1 = 0.416297 and 0.502469, respectively. The area
of the ∆ϑ segment equals 0.008639 in the absolute units. Hence the relative
area of the whole ∆ϑ region to the area of cross-section rectangle is 3.5%.
The similar area for the discord Qθ∗ equals 5.5×10−5% only. So, one may
ascertain that the region with state-dependent optimal measurement angle is
experimentally accessible for the one-way deficit but not for the discord.

Phase diagram in the cross-section c3 = 0 is also depicted in Fig. 6. The
boundary 0 has reached here the right upper corner of the cross-section rect-
angle, i.e., the vertex with coordinates (0.5, 0.5). As follow from Eqs. (40) and
(42), the 0-boundary is reduced here to the straight lines c1 = s1. The endpoint
of π/2-boundary lies at s1 = 0.415037 on the upper edge of the cross-section
rectangle. The relative area of the fraction ∆ϑ achieves now 4.2%.

The third interval of c3 ranges from c3 = 0 to c3 = −0.350302, i.e., up
to the point when the π/2-boundary reaches the vertex of section rectangle
(this corresponds to a segment from the point “a” to the point “b” in Fig. 2).
Characteristic phase diagram in these transverse slices is drawn in Fig. 7. Near
the vertical edge of section rectangle, the 0-boundary is here replaced by 0′-
boundary, i.e., instead of the appearance of interior minimum via bifurcation,
there is now observed a bimodal behavior of curve S̃(θ) (see Fig. 8) that is
accompanied with the discontinuous change of optimal measurement angle on
the critical line 0′. Figure 8a fixes the moment when the interior minimum
achieves the value of post-measurement entropy at the angle θ = 0. Between
the lines 0 and 0′ the interior minimum is lower than the minimum at θ = 0
as shown in Fig. 8b; hence the fraction ∆ϑ exists here.

The next interval −0.538191 < c3 < −0.350302 corresponds to a part of
tetrahedron between the points “b” and “c” shown in Fig. 2. Phase diagram
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Fig. 8 Post-measurement entropy S̃ vs θ by c3 = −0.2, c1 = 0.576208, and s1 = 0.4 (a)
and 0.39995 (b). Both dependencies exhibit the bimodal behavior

by c3 = −0.4 is presented in Fig. 9. As c3 reaches the value of −0.538191, the
endpoints of curves 1 and 0′ meet each other on the side s1 = (1 + c3)/2.

By further decreasing the value of c3, the π/2- and 0′-lines intersect inside
the body T and the boundary ∆0 = ∆π/2 appears (see Fig. 10). The post-
measured entropy curve near the critical line 2 has the interior maximum.

In the limit c3 → −1, i.e., on the edge v3v4 of tetrahedron T , the value
of parameter s1 vanishes, the region ∆ϑ disappears, and the quantum state
transforms into the Bell-diagonal one. On this edge the optimized one-way
deficit and discord coincide and are given by

∆ = Q =
1

2
[(1 + c1) ln(1 + c1) + (1− c1) ln(1− c1)]. (46)

In the middle of the edge, c1 = 0, the quantum correlation is zero while at the
vertecies v3 and v4 (c1 = ±1) it is, vice versa, maximal and equals 1 bit.
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7 Conclusions and outlook

In this paper we have investigated the three-dimensional phase diagram of
one-way quantum deficit for the XXZ family of symmetric X quantum states.
The set of Figs. 2, 4, 5, 6, 7, 9, and 10 provides insight into a complete picture
of all typical features in the phase diagram. It is probable that an application
of technologies like holography or virtual reality would be suitable for the
visualization of such 3D diagrams.

It has been established that there are three branches of one-way deficit
function and hence three different subdomains corresponding them. Two of
which, ∆0 and ∆π/2, are characterized by constant measurement angles —
zero and π/2, respectively. At the same time, the third region ∆ϑ is charac-



Phase diagram for the one-way quantum deficit of two-qubit X states 19

terized by non-universal behavior of optimal measurement angle ϑ because it
continuously varies with the parameters of density matrix.

We have found that three possible regions of one-way deficit can be sepa-
rated by four kinds of boundaries: 0 or 0′ which divide the ∆0 and ∆ϑ frac-
tions, π/2 that exists between ∆π/2 and ∆ϑ phases, and lastly the ∆0 = ∆π/2

boundary between regions ∆0 and ∆π/2. The optimal measurement angle ϑ is
continuous when crossing the 0- and π/2-boundaries, whereas it experiences
the jump ∆ϑ = π/2 by going across the ∆0 = ∆π/2 boundary and varies in
the limits from zero to π/2 on the critical line 0′.

A comparison of behavior of the one-way quantum deficit and discord
shows quantitative and qualitative difference between those measures of quan-
tum correlation in general. However they are identical for the Bell-diagonal
states, i.e., in the plane s1 = 0. Moreover, we have established that both mea-
sures of quantum correlation coincide in the intersection of regions ∆0 and Q0

(∆0 ∩Q0). (This result is valid for general X states.) But quite a difference in
other cases allows to say that the named quantities represent different kinds of
quantum correlation. This situation is similar to the one taking place for the
mean value of numbers and its various types: the arithmetic mean, harmonic
mean, and so on. By this, each kind of mean has its own application.

We have discovered that the region with variable optimal measurement
angle is in several orders larger for the one-way quantum deficit in comparison
with the quantum discord.

It should be noted that all quantum correlations are certain functions of
ordinary statistical correlations (2) [see, e.g., Eqs. (37) or (38)]. This is a
sequence of the fact that any quantum correlation is defined by the system
density matrix but its entries are expressed through the statistical correlation
functions.

We have restricted ourselves only by one phase diagram of full atlas. The
work started here should be continued to cover by separate diagrams the total
seven-dimensional space of X-state parameters.

Acknowledgment I am grateful to Dr. A. I. Zenchuk for his valuable remarks.
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