Skip to main content
Log in

Analysis of polarization coding for subcarrier multiplexing quantum key distribution

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, a polarization-coding scheme for subcarrier multiplexing quantum key distribution (SCM-QKD) is proposed, in which the overall QKD can be substantially increased by relying on parallel sideband channels. The polarization state of each sideband can be randomly and independently synthesized by controlling the phase difference of subcarriers. We derive the mathematical formulas of quantum bit error rate (QBER). Both the theoretical analysis and the numerical results show that an efficient implementation of BB84 protocol is feasible. By the proposed polarization coding in a parallel QKD system, without relying on dispersion compensation, a 6% performance gain in terms of correct bit rate over the conventional BB84 protocol (i.e., without polarization coding) is obtained. More importantly, the proposed polarization-coding-aided SCM-QKD can help achieve a long-distance QKD with a low QBER.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Here, we assume that the proposed system encodes the bits and forms a pair of conjugated bases required for implementing the BB84 protocol.

References

  1. Capmany, J., Fernandez-Pousa, C.R.: Impact of third-order intermodulation on the performance of subcarrier multiplexed quantum key distribution. J. Lightwave Technol. 29(20), 3061–3069 (2011)

    Article  ADS  Google Scholar 

  2. Gabay, M., Arnon, S.: Quantum key distribution by a free-space MIMO system. J. Lightwave Technol. 24(8), 3114–3120 (2006)

    Article  ADS  Google Scholar 

  3. Zhao, G., Zhao, S., Yao, Z., Hao, C., Meng, W., Wang, X., Zhu, Z., liu, F.: Analysis of polarization state in quantum key distribution via single-photon two-qubit states. Optik 125, 1522–1525 (2014)

    Article  ADS  Google Scholar 

  4. Djordjevic, I.B.: Integrated optics modules based proposal for quantum information processing, teleportation, QKD, and quantum error correction employing photon angular momentum. IEEE Photonics J. 8(1), 6600212-1–6600212-13 (2016)

    Article  MathSciNet  Google Scholar 

  5. Zhao, G., Zhao, S., Yao, Z., Meng, W., Wang, X., Zhu, Z., Liu, F.: Forward spectral filtering parallel quantum key distribution system. Opt. Commun. 298–299, 254–259 (2013)

    Article  ADS  Google Scholar 

  6. Fang, J., Huang, P., Zeng, G.H.: Multichannel parallel continuous-variable quantum key distribution with Gaussian modulation. Phys. Rev. A 89(2), 022315-1–022315-9 (2014)

    Article  ADS  Google Scholar 

  7. Nguyen, H.V., Trinh, P.V., Pham, A.T., Babar, Z., Alanis, D., Botsinis, P., Chandra, D., Ng, S.X., Hanzo, L.: Network coding aided cooperative quantum key distribution over free-space optical channels. IEEE Access 5, 12301–12317 (2017)

    Article  Google Scholar 

  8. Xiao, H., Zhang, Z.: Subcarrier multiplexing multiple-input multiple-output quantum key distribution scheme with orthogonal quantum states. Quantum Inf. Process. 16(13), 1–18 (2017)

    ADS  MATH  Google Scholar 

  9. Tang, Z., Wei, K., Bedroya, O., Qian, L., Lo, H.-K.: Experimental measurement-device-independent quantum key distribution with imperfect sources. Phys. Rev. A 93(4), 042308-1–042308-13 (2016)

    Article  ADS  Google Scholar 

  10. Capmany, J., Ortigosa-Blanch, A., Mora, J., Ruiz-Alba, A., Amaya, W., Martinez, A.: Analysis of subcarrier multiplexed quantum key distribution systems: signal, intermodulation, and quantum bit error rate. IEEE J. Sel. Top. Quantum Electron. 15(6), 1607–1621 (2009)

    Article  ADS  Google Scholar 

  11. Mora, J., Ruiz-Alba, A., Amaya, W., Capmany, J.: Dispersion supported BB84 quantum key distribution using phase modulated light. IEEE Photonics J. 3(3), 433–440 (2011)

    Article  ADS  Google Scholar 

  12. Merolla, J.M., Mazurenko, Y., Goedgebuer, J.P., Rhodes, W.T.: Single-photon interference in sidebands of phase-modulated light for quantum cryptography. Phys. Rev. Lett. 82, 1656–1659 (1999)

    Article  ADS  Google Scholar 

  13. Zueco, D., Mazo, J.J., Solano, E., Garcia-Ripoll, J.J.: Microwave photonics with Josephson junction arrays: negative refraction index and entanglement through disorder. Phys. Rev. B 86, 024503-1–024503-11 (2014)

    ADS  Google Scholar 

  14. Fang, J., Huang, P., Zeng, G.: Multichannel parallel continuous-variable quantum key distribution with Gaussian modulation. Phys. Rev. A 89, 022315-1–022315-9 (2014)

    Article  ADS  Google Scholar 

  15. Erkilinc, M.S., Li, Z., Pachnicke, S., Griesser, H., Thomsen, B.C., Bayvel, P., Killey, R.I.: Spectrally efficient WDM nyquist pulse-shaped 16-QAM subcarrier modulation transmission with direct detection. J. Lightwave Technol. 33(15), 3147–3155 (2015)

    Article  ADS  Google Scholar 

  16. Muga, N.J., Ferreira, M.F.S., Pinto, A.N.: QBER estimation in QKD systems with polarization encoding. J. Lightwave Technol. 29(3), 355–361 (2011)

    Article  ADS  Google Scholar 

  17. Lupo, C., Giovannetti, V., Pirandola, S., Mancini, S., Lloyd, S.: Single-photon interference in sidebands of phase-modulated light for quantum cryptography. Phys. Rev. A 84, 010303-1–010303-6 (2011)

    Article  ADS  Google Scholar 

  18. Zhu, Z., Zhao, S., Yao, Z., Tan, Q., Li, Y., Chu, X., Wang, X., Zhao, G.: Nonlinearly modeling of an on-board microwave photonics system based on Mach–Zehnder modulator. Optoelectron. Lett. 8(6), 441–444 (2012)

    Article  ADS  Google Scholar 

  19. Huang, L., Wang, P., Xiang, P., Chen, D., Zhang, Y., Tao, J., Pu, T., Chen, X.: Photonic generation of microwave frequency shift keying signals. IEEE Photonics Technol. Lett. 28(8), 1928–1931 (2016)

    Article  ADS  Google Scholar 

  20. Lutkenhaus, N.: Security against individual attacks for realistic quantum key distribution. Phys. Rev. A 61(5), 052304-1–052304-10 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  21. Sun, X., Djordjevic, I.B., Neifeld, M.A.: Secret key rates and optimization of BB84 and decoy state protocols over time-varying free-space optical channels. IEEE Photonics J. 8(3), 7904713-1–7904713-14 (2016)

    Google Scholar 

  22. Shen, J.T., Povinelli, M.L., Sandhu, S., Fan, S.: Stopping single photons in one-dimensional circuit quantum electrodynamics systems. Phys. Rev. B 75, 035320-1–035320-5 (2007)

    ADS  Google Scholar 

  23. Bachor, H.A., Ralph, T.C.: A Guide to Experiments in Quantum Optics, 2nd edn. Wiley, New York (2003)

    Google Scholar 

  24. Shapiro, J.H.: Near-field turbulence effects on quantum key distribution. Phys. Rev. A 67, 022309-1–022309-7 (2003)

    ADS  Google Scholar 

  25. Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283, 2050–2056 (1999)

    Article  ADS  Google Scholar 

  26. Lo, H.K., Curty, M., Qi, B.: Measurement device independent quantum key distribution. Phys. Rev. Lett. 108, 130503-1–130503-5 (2012)

    Article  ADS  Google Scholar 

  27. Lo, H.K., Chau, H.F., Ardehali, M.: Efficient quantum key distribution scheme and a proof of its unconditional security. J. Cryptol. 18, 133–165 (2005)

    Article  MathSciNet  Google Scholar 

  28. Gottesman, D., Lo, H.K., Tkenhaus, N.L., Preskill, J.: Security of quantum key distribution with imperfect devices. Quantum Inf. Comput. 4(5), 325–360 (2002)

    MathSciNet  MATH  Google Scholar 

  29. Hong, C.K., Ou, Z.Y., Mandel, L.: Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59(18), 2044–2046 (1987)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from the National Natural Science Foundation of China under Grants 61872406 and 61472094, Guangxi Natural Science Foundation under Grants 2014GXNSFGA118007 and Key Research and Development Plan Project of Zhejiang Province (No. 2018C01059).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hailin Xiao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, H., Ouyang, S. & Chronopoulos, A.T. Analysis of polarization coding for subcarrier multiplexing quantum key distribution. Quantum Inf Process 18, 130 (2019). https://doi.org/10.1007/s11128-019-2245-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2245-2

Keywords

Navigation