Quantum coherence in mutually unbiased bases

Yao-Kun Wang, ^{1, 2} Li-Zhu Ge, ³ and Yuan-Hong Tao ⁴

¹College of Mathematics, Tonghua Normal University, Tonghua, Jilin 134001, China

²Research Center for Mathematics, College of Mathematics,

Tonghua Normal University, Tonghua, Jilin 134001, China

³The Branch Campus of Tonghua Normal University, Tonghua, Jilin 134001, China

⁴Department of Mathematics College of Sciences, Yanbian University, Yanji 133002, China

We investigate the l_1 norm of coherence of quantum states in mutually unbiased bases. We find that the sum of squared l_1 norm of coherence of the mixed state single qubit is less than two. We derive the l_1 norm of coherence of three classes of X states in nontrivial mutually unbiased bases for 4-dimensional Hilbert space is equal. We proposed "autotensor of mutually unbiased basis(AMUB)" by the tensor of mutually unbiased bases, and depict the level surface of constant the sum of the l_1 norm of coherence of Bell-diagonal states in AMUB. We find the l_1 norm of coherence of Werner states and isotropic states in AMUB is equal respectively.

I. INTRODUCTION

Quantum coherence is a special feature of quantum mechanic like entanglement and other quantum correlations. Quantum coherence is an essential factor in quantum information processing [1–3], quantum optics [4–6], quantum metrology [7–9], low-temperature thermodynamics [10–17] and quantum biology [18–23]. Recently, a structure to quantify coherence has been proposed [25], and various quantum coherence measures, such as the l_1 norm of coherence [25], trace norm of coherence [24], relative entropy of coherence [25], Tsallis relative α entropies [26] and Relative Rényi α monotones [27], have been defined. With the help of of the coherence measures, a variety of properties of quantum coherence, such as the relations between quantum correlations and quantum coherence [28–32], the freezing phenomenon of coherence [33, 34], have been studied.

Mutually unbiased bases are used in detection of quantum entanglement [35], quantum state reconstruction [36], quantum error correction [37, 38], and the mean kings problem [39, 40]. Many features of mutually unbiased bases are reviewed in reference [41]. When d is power of a prime number, maximal sets of d + 1 mutually unbiased bases have been built for the case. Maximal sets of MUBs are an open problem [41], when the dimensionality is another composite number. Entropic uncertainty relations for d + 1 mutually unbiased bases in d-dimensional Hilbert space were obtained in references [42, 43]. The fine-grained uncertainty relation for mutually unbiased bases is derived in [44]. The relation between mutually unbiased bases and unextendible maximally entangled is investigated in [45].

In this article, we investigate the l_1 norm of coherence of quantum states in mutually unbiased bases. We evaluate analytically the sum of squared l_1 norm of coherence of the mixed state single qubit. We derive the relation of the l_1 norm of coherence of three classes of X states in nontrivial mutually unbiased bases for 4-dimensional Hilbert space. We propose "autotensor of mutually unbiased basis(AMUB)" by the tensor of mutually unbiased bases, and depict the level surface [46] of constant the sum of the l_1 norm of coherence of Bell-diagonal states in AMUB. We obtain the relations of the l_1 norm of coherence of Werner states and isotropic states in AMUB respectively.

II. THE l_1 NORM OF COHERENCE OF QUANTUM STATES IN 2 DIMENSION MUTUALLY UNBIASED BASES

Under fixed reference basis, the l_1 norm of coherence of state ρ is defined by

$$C_{l_1}(\rho) = \sum_{i \neq j} |\rho_{i,j}|,\tag{1}$$

and the relative entropy of coherence is given by

$$C_r(\rho) = S(\rho_{diag}) - S(\rho), \tag{2}$$

where $S(\rho) = -Tr\rho \log \rho$ is von Neumann entropy.

A set of orthonormal bases $\{B_k\}$ for a Hilbert space $H=C^d$ where $\{B_k\}=\{|0_k\rangle,\cdots,|d-1_k\rangle$ is called mutually unbiased (MU) iff

$$|\langle i_k | j_l \rangle|^2 = \frac{1}{d}, \forall i, j \in \{0, \dots, d-1\},\tag{3}$$

holds for all basis vectors $|i_k\rangle$ and $|j_l\rangle$ that belong to different bases, i.e. $\forall k \neq l$.

In dimension d=2, a set of three mutually unbiased bases is readily obtained from the eigenvectors of the three Pauli matrices σ_z , σ_x and σ_y :

$$\begin{split} &\alpha_1 \ = \ \{\alpha_{11},\alpha_{12}\} = \{|0\rangle,|1\rangle\}, \\ &\alpha_2 \ = \ \{\alpha_{21},\alpha_{22}\} = \{\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle), \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)\}, \\ &\alpha_3 \ = \ \{\alpha_{31},\alpha_{32}\} = \{\frac{1}{\sqrt{2}}(|0\rangle + i|1\rangle), \frac{1}{\sqrt{2}}(|0\rangle - i|1\rangle)\}. \end{split}$$

In dimension d = 3, there are four mutually unbiased bases as fowllow:

$$\begin{split} \beta_1 &= \{\beta_{11}, \beta_{12}, \beta_{13}\} = \{|0\rangle, |1\rangle, |2\rangle\}, \\ \beta_2 &= \{\beta_{21}, \beta_{22}, \beta_{23}\} = \{\frac{1}{\sqrt{3}}(|0\rangle + |1\rangle + |2\rangle), \frac{1}{\sqrt{3}}(|0\rangle + \omega|1\rangle + \omega^2|2\rangle), \frac{1}{\sqrt{3}}(|0\rangle + \omega^2|1\rangle + \omega|2\rangle)\}, \\ \beta_3 &= \{\alpha_{31}, \alpha_{32}, \alpha_{33}\} = \{\frac{1}{\sqrt{3}}(|0\rangle + |1\rangle + \omega^2|2\rangle), \frac{1}{\sqrt{3}}(|0\rangle + \omega^2|1\rangle + |2\rangle), \frac{1}{\sqrt{3}}(|0\rangle + \omega|1\rangle + \omega|2\rangle)\}, \\ \beta_4 &= \{\alpha_{41}, \alpha_{42}, \alpha_{43}\} = \{\frac{1}{\sqrt{3}}(|0\rangle + |1\rangle + \omega|2\rangle), \frac{1}{\sqrt{3}}(|0\rangle + \omega|1\rangle + |2\rangle), \frac{1}{\sqrt{3}}(|0\rangle + \omega^2|1\rangle + \omega^2|2\rangle)\}, \end{split}$$

where $\omega = e^{i\frac{2\pi}{3}}$.

An arbitrary density matrix for a mixed state single qubit may be written as

$$\rho_s = \frac{I + \overrightarrow{r} \cdot \overrightarrow{\sigma}}{2}$$

where $\overrightarrow{r}=(x,y,z)$ is a real three-dimensional vector such that $x^2+y^2+z^2\leq 1$, and $\overrightarrow{\sigma}=(\sigma_x,\sigma_y,\sigma_z)$. In particular, ρ is pure if and only if $x^2+y^2+z^2=1$.

Next, we will consider the relation of the l_1 norm of coherence among ρ_s in three mutually unbiased bases $\alpha_1, \alpha_2, \alpha_3$.

The density matrix of mixed state single qubit ρ_s in base $\alpha_1 = \{\alpha_{11}, \alpha_{12}\} = \{|0\rangle, |1\rangle\}$ is

$$\rho_s = \frac{1}{2} \begin{pmatrix} 1+z & x-iy \\ x+iy & 1-z \end{pmatrix}
= \frac{1}{2} (1+z)|0\rangle\langle 0| + \frac{1}{2} (x-iy)|0\rangle\langle 1| + \frac{1}{2} (x+iy)|1\rangle\langle 0| + \frac{1}{2} (1-z)|1\rangle\langle 1|, \tag{4}$$

Using Eq. (1) directly, the l_1 norm of coherence of state ρ_s in base α_1 is

$$C_{l_1}(\rho_s)_{\alpha_1} = \left|\frac{1}{2}(x-iy)\right| + \left|\frac{1}{2}(x+iy)\right| = \sqrt{x^2 + y^2}.$$
 (5)

The density matrix of ρ_s in base $\alpha_2 = \{\alpha_{21}, \alpha_{22}\}$ is

$$\rho_{s} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}
= a_{11}\alpha_{21}\alpha_{21}^{\dagger} + a_{12}\alpha_{21}\alpha_{22}^{\dagger} + a_{21}\alpha_{22}\alpha_{21}^{\dagger} + a_{22}\alpha_{22}\alpha_{22}^{\dagger}
= \frac{1}{2}(a_{11} + a_{12} + a_{21} + a_{22})|0\rangle\langle 0| + \frac{1}{2}(a_{11} - a_{12} + a_{21} - a_{22})|0\rangle\langle 1|
+ \frac{1}{2}(a_{11} + a_{12} - a_{21} - a_{22})|1\rangle\langle 0| + \frac{1}{2}(a_{11} - a_{12} - a_{21} + a_{22})|1\rangle\langle 1|.$$
(6)

As ρ_s in Eq. (4) and Eq. (6) is the same, using the method of undeterminated coefficients, we obtain

$$\begin{cases} \frac{1}{2}(a_{11} + a_{12} + a_{21} + a_{22}) = \frac{1}{2}(1+z) \\ \frac{1}{2}(a_{11} - a_{12} + a_{21} - a_{22}) = \frac{1}{2}(x-iy) \\ \frac{1}{2}(a_{11} + a_{12} - a_{21} - a_{22}) = \frac{1}{2}(x+iy) \\ \frac{1}{2}(a_{11} - a_{12} - a_{21} + a_{22}) = \frac{1}{2}(1-z) \end{cases}$$

The solution of the equation is

$$\begin{cases}
 a_{11} = \frac{1+x}{2} \\
 a_{12} = \frac{z+iy}{2} \\
 a_{21} = \frac{z-iy}{2} \\
 a_{22} = \frac{1-x}{2}
\end{cases}$$
(7)

The l_1 norm of coherence of state ρ_s in base α_2 is

$$C_{l_1}(\rho_s)_{\alpha_2} = \left|\frac{1}{2}(z+iy)\right| + \left|\frac{1}{2}(z-iy)\right| = \sqrt{z^2 + y^2}.$$
 (8)

The density matrix of ρ_s in base $\alpha_3 = \{\alpha_{31}, \alpha_{32}\}$ by the above method is

$$\rho_s = \frac{1}{2} \begin{pmatrix} 1+y & z-ix \\ z+ix & 1-y \end{pmatrix} \tag{9}$$

The l_1 norm of coherence of state ρ_s in base α_3 is

$$C_{l_1}(\rho_s)_{\alpha_3} = \left|\frac{1}{2}(z-ix)\right| + \left|\frac{1}{2}(z+ix)\right| = \sqrt{z^2 + x^2}.$$
 (10)

As
$$x^2 + y^2 + z^2 \le 1$$
, $[C_{l_1}(\rho_s)_{\alpha_1}]^2 + [C_{l_1}(\rho_s)_{\alpha_2}]^2 + [C_{l_1}(\rho_s)_{\alpha_3}]^2 \le 2$.

III. THE l_1 NORM OF COHERENCE OF X STATES IN THE TENSOR OF 3 DIMENSION MUTUALLY UNBIASED BASES

For the three classes of X states in base $\beta_1 = \{\beta_{11}, \beta_{12}, \beta_{13}\} = \{|0\rangle, |1\rangle, |2\rangle\}$

$$\rho_X = \begin{pmatrix} x & 0 & z \\ 0 & 1 - x - y & 0 \\ z & o & y \end{pmatrix},\tag{11}$$

where x, y, z are all real number, we will consider the l_1 norm of coherence of ρ_X in the 3 dimension mutually unbiased bases $\beta_2, \beta_3, \beta_4$.

Let the density matrix of ρ_X in base $\beta_2 = \{\beta_{21}, \beta_{22}, \beta_{23}\}$ be

$$\rho_X = \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{pmatrix},$$
(12)

and $\rho_X = b_{11}\beta_{21}\beta_{21}^{\dagger} + b_{12}\beta_{21}\beta_{22}^{\dagger} + b_{13}\beta_{21}\beta_{23}^{\dagger} + b_{21}\beta_{22}\beta_{21}^{\dagger} + b_{22}\beta_{22}\beta_{22}^{\dagger} + b_{23}\beta_{22}\beta_{23}^{\dagger} + b_{31}\beta_{23}\beta_{21}^{\dagger} + b_{32}\beta_{23}\beta_{22}^{\dagger} + b_{33}\beta_{23}\beta_{23}^{\dagger}$. As ρ_X in Eq. (11) and Eq. (12) is the same, using the method of undeterminated coefficients, we obtain

$$\begin{cases}
\frac{1}{3}(b_{11} + b_{12} + b_{13} + b_{21} + b_{22} + b_{23} + b_{31} + b_{32} + b_{33}) = x \\
\frac{1}{3}(b_{11} + \omega^{2}b_{12} + \omega b_{13} + b_{21} + \omega^{2}b_{22} + \omega b_{23} + b_{31} + \omega^{2}b_{32} + \omega b_{33}) = 0 \\
\frac{1}{3}(b_{11} + \omega b_{12} + \omega^{2}b_{13} + b_{21} + \omega b_{22} + \omega^{2}b_{23} + b_{31} + \omega b_{32} + \omega^{2}b_{33}) = z \\
\frac{1}{3}(b_{11} + b_{12} + b_{13} + \omega b_{21} + \omega b_{22} + \omega b_{23} + \omega^{2}b_{31} + \omega^{2}b_{32} + \omega^{2}b_{33}) = 0 \\
\frac{1}{3}(b_{11} + \omega^{2}b_{12} + \omega b_{13} + \omega b_{21} + b_{22} + \omega^{2}b_{23} + \omega^{2}b_{31} + \omega b_{32} + b_{33}) = 1 - x - y \\
\frac{1}{3}(b_{11} + \omega b_{12} + \omega^{2}b_{13} + \omega b_{21} + \omega^{2}b_{22} + b_{23} + \omega^{2}b_{31} + b_{32} + \omega b_{33}) = 0 \\
\frac{1}{3}(b_{11} + b_{12} + b_{13} + \omega^{2}b_{21} + \omega^{2}b_{22} + \omega^{2}b_{23} + \omega b_{31} + \omega b_{32} + \omega b_{33}) = z \\
\frac{1}{3}(b_{11} + \omega^{2}b_{12} + \omega b_{13} + \omega^{2}b_{21} + \omega b_{22} + b_{23} + \omega b_{31} + b_{32} + \omega^{2}b_{33}) = 0 \\
\frac{1}{3}(b_{11} + \omega^{2}b_{12} + \omega b_{13} + \omega^{2}b_{21} + \omega b_{22} + b_{23} + \omega b_{31} + b_{32} + \omega^{2}b_{33}) = 0 \\
\frac{1}{3}(b_{11} + \omega^{2}b_{12} + \omega^{2}b_{13} + \omega^{2}b_{21} + b_{22} + \omega^{2}b_{23} + \omega b_{31} + \omega^{2}b_{32} + b_{33}) = y
\end{cases}$$

The solution of the equation is

$$\begin{cases}
b_{11} = \frac{1+2z}{3}, b_{12} = \frac{(3x+z-1)-\sqrt{3}(x+2y+z-1)i}{6}, b_{13} = \frac{(3x+z-1)+\sqrt{3}(x+2y+z-1)i}{6}, \\
b_{21} = \overline{b_{12}}, b_{22} = \frac{1-z}{3}, b_{23} = \frac{(3x-2z-1)-\sqrt{3}(x+2y-2z-1)i}{6}, \\
b_{31} = \overline{b_{13}}, b_{32} = \overline{b_{23}}, b_{33} = \frac{1-3z}{3}.
\end{cases} (14)$$

The l_1 norm of coherence of state ρ_X in base β_2 is

$$C_{l_1}(\rho_X)_{\beta_2} = 2(|b_{12}| + |b_{13}| + |b_{23}|).$$
 (15)

Similarly, the density matrix of ρ_X in base β_3 is

$$\rho_X = \begin{pmatrix} b_{22} & \overline{b_{12}} & b_{23} \\ \frac{b_{12}}{b_{23}} & \frac{b_{11}}{b_{13}} & b_{13} \\ \overline{b_{23}} & \overline{b_{13}} & b_{33} \end{pmatrix}, \tag{16}$$

The l_1 norm of coherence of state ρ_X in base β_3 is

$$C_{l_1}(\rho_X)_{\beta_3} = 2(|b_{12}| + |b_{13}| + |b_{23}|). \tag{17}$$

The density matrix of ρ_X in base β_4 is

$$\rho_X = \begin{pmatrix} \frac{b_{22}}{b_{12}} & b_{12} & \frac{\overline{b_{23}}}{b_{13}} \\ b_{23} & b_{13} & b_{33} \end{pmatrix},\tag{18}$$

The l_1 norm of coherence of state ρ_X in base β_4 is

$$C_{l_1}(\rho_X)_{\beta_4} = 2(|b_{12}| + |b_{13}| + |b_{23}|).$$
 (19)

At last, we find that the l_1 norm of coherence of state ρ_X in base $\beta_2, \beta_3, \beta_4$ is equal, i.e

$$C_{l_1}(\rho_X)_{\beta_2} = C_{l_1}(\rho_X)_{\beta_3} = C_{l_1}(\rho_X)_{\beta_4}.$$
(20)

Furthermore, let

$$\rho_{\Delta} = \begin{pmatrix} 1 - x - y & 0 & 0 \\ 0 & x & z \\ 0 & z & y \end{pmatrix},\tag{21}$$

and

$$\rho_{\nabla} = \begin{pmatrix} x & z & 0 \\ z & y & 0 \\ 0 & 0 & 1 - x - y \end{pmatrix},\tag{22}$$

where x, y, z are all real number, using above method, we can find that the l_1 norm of coherence of state ρ_{Δ} and ρ_{∇} in base $\beta_2, \beta_3, \beta_4$ is also equal respectively.

IV. THE l_1 NORM OF COHERENCE OF BELL-DIAGONAL STATES IN THE TENSOR OF 2 DIMENSION MUTUALLY UNBIASED BASES

In this section, we extend the concept of mutually unbiased basis by the tensor.

Definition. For the set of mutually unbiased bases $\{B_k\}$ for a Hilbert space $H=C^d$ where $\{B_k\}=\{|0_k\rangle,\cdots,|d-1_k\rangle\}$, we call the set $\{\gamma_k\}=\{|i\rangle_k\otimes|i\rangle_k|\forall i,j\in\{0,\cdots,d-1\}\}$ autotensor of mutually unbiased basis (AMUB) if

$$|(\langle i|_k \otimes \langle j|_k)(|m\rangle_l \otimes |n\rangle_l)| = \frac{1}{d},\tag{23}$$

where $k \neq l$. Furthermore, we can construct a set of AMUB by d = 2 dimension mutually unbiased bases. For example, let

$$\begin{split} \gamma_1 &= \{\gamma_{11}, \gamma_{12}, \gamma_{13}, \gamma_{14}\} = \{\alpha_{11} \otimes \alpha_{11}, \alpha_{11} \otimes \alpha_{12}, \alpha_{12} \otimes \alpha_{11}, \alpha_{12} \otimes \alpha_{12}\}, \\ \gamma_2 &= \{\gamma_{21}, \gamma_{22}, \gamma_{23}, \gamma_{24}\} = \{\alpha_{21} \otimes \alpha_{21}, \alpha_{21} \otimes \alpha_{22}, \alpha_{22} \otimes \alpha_{21}, \alpha_{22} \otimes \alpha_{22}\}, \\ \gamma_3 &= \{\gamma_{31}, \gamma_{32}, \gamma_{33}, \gamma_{34}\} = \{\alpha_{31} \otimes \alpha_{31}, \alpha_{31} \otimes \alpha_{32}, \alpha_{32} \otimes \alpha_{31}, \alpha_{32} \otimes \alpha_{32}\}. \end{split}$$

Next, we will consider the relation of the coherence of quantum states in above AMUB.

A two-qubit Bell-diagonal states can be written as

$$\rho_B = \frac{1}{4} (I \otimes I + \sum_{i=1}^3 c_i \sigma_i \otimes \sigma_i), \tag{24}$$

where $\{\sigma_i\}_{i=1}^3$ are the Pauli matrices, and $c_1, c_2, c_3 \in [-1, 1]$. The density matrix of ρ_B in base $\gamma_1 = \{\gamma_{11}, \gamma_{12}, \gamma_{13}, \gamma_{14}\} = \{|00\rangle, |01\rangle, |10\rangle, |11\rangle\}$ is:

$$\rho_B = \frac{1}{4} \begin{pmatrix} 1 + c_3 & 0 & 0 & c_1 - c_2 \\ 0 & 1 - c_3 & c_1 + c_2 & 0 \\ 0 & c_1 + c_2 & 1 - c_3 & 0 \\ c_1 - c_2 & 0 & 0 & 1 + c_3 \end{pmatrix}$$
 (25)

The l_1 norm of coherence of state ρ_B in base γ_1 is

$$C_{l_1}(\rho_B)_{\gamma_1} = 2(\left|\frac{1}{4}(c_1 - c_2)\right| + \left|\frac{1}{4}(c_1 + c_2)\right|) = \frac{1}{2}(\left|(c_1 - c_2)\right| + \left|(c_1 + c_2)\right|). \tag{26}$$

Let the density matrix of ρ_B in base $\gamma_2 = \{\gamma_{21}, \gamma_{22}, \gamma_{23}, \gamma_{24}\}$ is

$$\rho_B = \begin{pmatrix} d_{11} & d_{12} & d_{13} & d_{14} \\ d_{21} & d_{22} & d_{23} & d_{24} \\ d_{31} & d_{32} & d_{33} & d_{34} \\ d_{41} & d_{42} & d_{43} & d_{44} \end{pmatrix},$$
(27)

and $\rho_B = d_{11}\gamma_{21}\gamma_{21}^{\dagger} + d_{12}\gamma_{21}\gamma_{22}^{\dagger} + d_{13}\gamma_{21}\gamma_{23}^{\dagger} + d_{14}\gamma_{21}\gamma_{24}^{\dagger} + d_{21}\gamma_{22}\gamma_{21}^{\dagger} + d_{22}\gamma_{22}\gamma_{22}^{\dagger} + d_{23}\gamma_{22}\gamma_{23}^{\dagger} + d_{24}\gamma_{22}\gamma_{24}^{\dagger} + d_{31}\gamma_{23}\gamma_{21}^{\dagger} + d_{32}\gamma_{23}\gamma_{22}^{\dagger} + d_{33}\gamma_{23}\gamma_{23}^{\dagger} + d_{34}\gamma_{23}\gamma_{24}^{\dagger} + d_{41}\gamma_{24}\gamma_{21}^{\dagger} + d_{42}\gamma_{24}\gamma_{22}^{\dagger} + d_{43}\gamma_{24}\gamma_{23}^{\dagger} + d_{44}\gamma_{24}\gamma_{24}^{\dagger}$. As ρ_B in Eq. (25) and Eq. (27) is the same, using the method of undeterminated coefficients, we obtain

$$\begin{cases} d_{11} + d_{12} + d_{13} + d_{14} + d_{21} + d_{22} + d_{23} + d_{24} + d_{31} + d_{32} + d_{33} + d_{34} + d_{41} + d_{42} + d_{43} + d_{44} = 1 + c_3 \\ d_{11} - d_{12} + d_{13} - d_{14} + d_{21} - d_{22} + d_{23} - d_{24} + d_{31} - d_{32} + d_{33} - d_{34} + d_{41} - d_{42} + d_{43} - d_{44} = 0 \end{cases} \\ d_{11} + d_{12} - d_{13} - d_{14} + d_{21} + d_{22} - d_{23} - d_{24} + d_{31} + d_{32} - d_{33} - d_{34} + d_{41} + d_{42} - d_{43} - d_{44} = 0 \end{cases} \\ d_{11} - d_{12} - d_{13} + d_{14} + d_{21} - d_{22} - d_{23} + d_{24} + d_{31} - d_{32} - d_{33} + d_{34} + d_{41} - d_{42} - d_{43} + d_{44} = c_1 - c_2 \\ d_{11} + d_{12} + d_{13} + d_{14} - d_{21} - d_{22} - d_{23} - d_{24} + d_{31} + d_{32} + d_{33} + d_{34} - d_{41} - d_{42} - d_{43} + d_{44} = 0 \end{cases} \\ d_{11} - d_{12} + d_{13} - d_{14} - d_{21} + d_{22} - d_{23} + d_{24} + d_{31} - d_{32} + d_{33} - d_{34} - d_{41} - d_{42} - d_{43} + d_{44} = 1 - c_3 \\ d_{11} - d_{12} + d_{13} - d_{14} - d_{21} + d_{22} + d_{23} + d_{24} + d_{31} - d_{32} + d_{33} - d_{34} - d_{41} + d_{42} - d_{43} + d_{44} = 1 - c_3 \\ d_{11} - d_{12} - d_{13} + d_{14} - d_{21} + d_{22} + d_{23} - d_{24} + d_{31} - d_{32} - d_{33} + d_{34} - d_{41} + d_{42} + d_{43} - d_{44} = 0 \\ d_{11} - d_{12} + d_{13} + d_{14} + d_{21} + d_{22} + d_{23} - d_{24} + d_{31} - d_{32} - d_{33} + d_{34} - d_{41} + d_{42} + d_{43} - d_{44} = 0 \\ d_{11} - d_{12} + d_{13} - d_{14} + d_{21} + d_{22} + d_{23} - d_{24} - d_{31} + d_{32} - d_{33} + d_{34} - d_{41} + d_{42} - d_{43} + d_{44} = c_1 + c_2 \\ d_{11} - d_{12} - d_{13} - d_{14} + d_{21} + d_{22} - d_{23} - d_{24} - d_{31} + d_{32} + d_{33} + d_{34} - d_{41} + d_{42} + d_{43} + d_{44} = 1 - c_3 \\ d_{11} - d_{12} - d_{13} + d_{14} + d_{21} - d_{22} - d_{23} + d_{24} - d_{31} + d_{32} + d_{33} + d_{34} - d_{41} + d_{42} + d_{43} + d_{44} = 1 - c_2 \\ d_{11} - d_{12} - d_{13} + d_{14} - d_{21} - d_{22} - d_{23} + d_{24} - d_{31} - d_{32} - d_{33} - d_{34} + d_{41} + d_{42} + d_{43} - d_{44} = 0 \\ d_{11} + d_{12} - d_{13} - d_{14} - d_{21} + d_{22} - d_{23} + d_{$$

The solution of the equation is

$$\begin{cases}
d_{11} = \frac{1+c_1}{4}, d_{12} = 0, d_{13} = 0, d_{14} = \frac{c_3 - c_2}{4}, \\
d_{21} = 0, d_{22} = \frac{1-c_1}{4}, d_{23} = \frac{c_3 + c_2}{4}, d_{24} = 0, \\
d_{31} = 0, d_{32} = \frac{c_3 + c_2}{4}, d_{23} = \frac{1-c_1}{4}, d_{24} = 0, \\
d_{41} = \frac{c_3 - c_2}{4}, d_{42} = 0, d_{43} = 0, d_{44} = \frac{1+c_1}{4}.
\end{cases}$$
(29)

So, the density matrix of ρ_B in base $\gamma_2 = \{\gamma_{21}, \gamma_{22}, \gamma_{23}, \gamma_{24}\}$ is

$$\rho_B = \frac{1}{4} \begin{pmatrix} 1 + c_1 & 0 & 0 & c_3 - c_2 \\ 0 & 1 - c_1 & c_3 + c_2 & 0 \\ 0 & c_3 + c_2 & 1 - c_1 & 0 \\ c_3 - c_2 & 0 & 0 & 1 + c_1 \end{pmatrix}.$$

$$(30)$$

The l_1 norm of coherence of state ρ_B in base γ_2 is

$$C_{l_1}(\rho_B)_{\gamma_2} = 2(\left|\frac{1}{4}(c_3 - c_2)\right| + \left|\frac{1}{4}(c_3 + c_2)\right|) = \frac{1}{2}(\left|(c_3 - c_2)\right| + \left|(c_3 + c_2)\right|). \tag{31}$$

Similarly, the density matrix of ρ_B in base $\gamma_3 = \{\gamma_{31}, \gamma_{32}, \gamma_{33}, \gamma_{34}\}$ is

$$\rho_B = \frac{1}{4} \begin{pmatrix} 1 + c_2 & 0 & 0 & c_3 - c_1 \\ 0 & 1 - c_2 & c_3 + c_1 & 0 \\ 0 & c_3 + c_1 & 1 - c_2 & 0 \\ c_3 - c_1 & 0 & 0 & 1 + c_2 \end{pmatrix}.$$
(32)

The l_1 norm of coherence of state ρ_B in base γ_3 is

$$C_{l_1}(\rho_B)_{\gamma_3} = 2(\left|\frac{1}{4}(c_3 - c_1)\right| + \left|\frac{1}{4}(c_3 + c_1)\right|) = \frac{1}{2}(\left|(c_3 - c_1)\right| + \left|(c_3 + c_1)\right|). \tag{33}$$

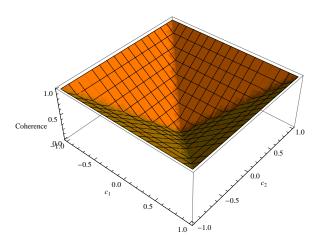


FIG. 1: (Color online) The l_1 norm of coherence of Bell-diagonal states ρ_B in base γ_1 as a function of c_1 and c_2 .

In Fig. 1, the l_1 norm of coherence of Bell-diagonal states ρ_B in base γ_1 as a function of c_1 and c_2 is depicted. When $c_1 = c_2 = 0$, the coherence reach minimal value 0. As $|c_1|$ and $|c_2|$ increase, the coherence increase. When $|c_1| = 1$ or $|c_2| = 1$, the coherence obtain maximum value. Similar situation also appear in the coherence in bases γ_2 and γ_3 .

Next, we denote the sum of the l_1 norm of coherence of Bell-diagonal states ρ_B in bases γ_1 , γ_2 , γ_3 by $C_{l_1}(\rho_B)_{\gamma}$, i. e

$$C_{l_1}(\rho_B)_{\gamma} = C_{l_1}(\rho_B)_{\gamma_1} + C_{l_1}(\rho_B)_{\gamma_2} + C_{l_1}(\rho_B)_{\gamma_3}. \tag{34}$$

In Fig. 2, we plot the surfaces [46] of the sum of the l_1 norm of coherence $C_{l_1}(\rho_B)_{\gamma}$ of Bell-diagonal states ρ_B in bases γ_1 , γ_2 , γ_3 in (a), (b), and (c). It show that the surface of the sum of the coherence is tetrahexahedron. As the sum increase, its volume expand, i. e. $|c_1|$, $|c_2|$, $|c_3|$ increase simultaneously.

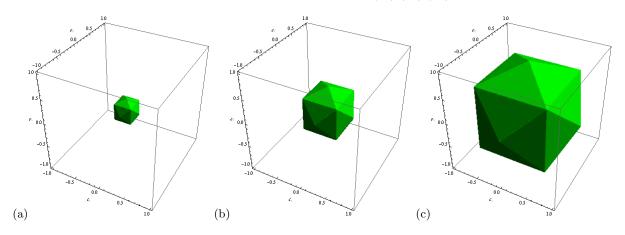


FIG. 2: Surfaces of constant of the sum of the l_1 norm of coherence $C_{l_1}(\rho_B)_{\gamma}$ for Bell-diagonal states ρ_B in bases $\gamma_1, \gamma_2, \gamma_3$: (a) $C_{l_1}(\rho_B)_{\gamma} = 0.5$; (b) $C_{l_1}(\rho_B)_{\gamma} = 1$; $C_{l_1}(\rho_B)_{\gamma} = 2$.

In Eq. (25), let $c_1 = c_2 = c_3 = \frac{4p}{3} - 1$, where $0 \le p \le 1$, Bell-diagonal states ρ_B turn into Werner state

$$\rho_W = \begin{pmatrix} \frac{p}{3} & 0 & 0 & 0\\ 0 & -\frac{p}{3} + \frac{1}{2} & \frac{2p}{3} - \frac{1}{2} & 0\\ 0 & \frac{2p}{3} - \frac{1}{2} & -\frac{p}{3} + \frac{1}{2} & 0\\ 0 & 0 & 0 & \frac{p}{3} \end{pmatrix}.$$
(35)

We denoted the l_1 norm of coherence of Werner states ρ_W in bases $\gamma_1, \gamma_2, \gamma_3$ by $C_{l_1}(\rho_W)_{\gamma_1}, C_{l_1}(\rho_W)_{\gamma_2}, C_{l_1}(\rho_W)_{\gamma_3}$ respectively. By Eqs. (26), (31), (33), we find that $C_{l_1}(\rho_W)_{\gamma_1} = C_{l_1}(\rho_W)_{\gamma_2} = C_{l_1}(\rho_W)_{\gamma_3} = |\frac{4p}{3} - 1|$.

In Eq. (25), let $c_1 = \frac{4F-1}{3}$, $c_2 = -\frac{4F-1}{3}$, $c_3 = \frac{4F-1}{3}$, where $0 \le F \le 1$, Bell-diagonal states ρ_B turn into isotropic state

$$\rho_{iso} = \begin{pmatrix}
\frac{F}{3} + \frac{1}{6} & 0 & 0 & \frac{2F}{3} - \frac{1}{6} \\
0 & \frac{1}{3} - \frac{F}{3} & 0 & 0 \\
0 & 0 & \frac{1}{3} - \frac{F}{3} & 0 \\
\frac{2F}{3} - \frac{1}{6} & 0 & 0 & \frac{F}{3} + \frac{1}{6}
\end{pmatrix}.$$
(36)

We denoted the l_1 norm of coherence of isotropic states ρ_{iso} in bases $\gamma_1, \gamma_2, \gamma_3$ by $C_{l_1}(\rho_{iso})_{\gamma_1}, C_{l_1}(\rho_{iso})_{\gamma_2}, C_{l_1}(\rho_{iso})_{\gamma_3}$ respectively. By Eqs. (26), (31), (33), we find that $C_{l_1}(\rho_{iso})_{\gamma_1} = C_{l_1}(\rho_{iso})_{\gamma_2} = C_{l_1}(\rho_{iso})_{\gamma_3} = \left|\frac{4F-1}{3}\right|$.

V. SUMMARY

In this work, we studied the l_1 norm of coherence of quantum states in mutually unbiased bases. We have found the sum of squared l_1 norm of coherence of the mixed state single qubit is less than two. We have obtained the l_1 norm of coherence of three classes of X states in nontrivial mutually unbiased bases for 4-dimensional Hilbert space is equal. We have proposed "autotensor of mutually unbiased basis(AMUB)" by the tensor of mutually unbiased bases, and given the level surface [46] of constant the sum of the l_1 norm of coherence of Bell-diagonal states in AMUB. We have found the l_1 norm of coherence of Werner states and isotropic states in AMUB is equal respectively.

P. K. Jha, M. Mrejen, J. Kim, C. Wu, Y. Wang, Y. V. Rostovtsev, and X. Zhang, Phys. Rev. Lett. 116, 165502 (2016).

^[2] E. Bagan, J. A. Bergou, S. S. Cottrell, and M. Hillery, Phys. Rev. Lett. 116, 160406 (2016).

^[3] P. Kammerlander and J. Anders, Sci. Rep. 6, 22174 (2016).

^[4] R. J. Glauber, Phys. Rev. 131, 2766 (1963).

^[5] E. C. G. Sudarshan, Phys. Rev. Lett. 10, 277 (1963).

^[6] L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, UK, 1995).

^[7] V. Giovannetti, S. Lloyd, and L. Maccone, Science 306, 1330 (2004).

^[8] R. Demkowicz-Dobrzański and L. Maccone, Phys. Rev. Lett. 113, 250801 (2014).

^[9] V. Giovannetti, S. Lloyd, and L. Maccone, Nat. Photonics 5, 222 (2011).

^[10] M. Lostaglio, D. Jennings, and T. Rudolph, Nat. Commun. 6, 6383 (2015).

M. Lostaglio, K. Korzekwa, D. Jennings, and T. Rudolph, Phys. Rev. X 5, 021001 (2015).

^[12] H. Vazquez, R. Skouta, S. Schneebeli, M. Kamenetska, R. Breslow, L. Venkataraman, and M. S. Hybertsen, Nat. Nanotechnol. 7, 663 (2012).

^[13] O. Karlström, H. Linke, G. Karlström, and A. Wacker, Phys. Rev. B 84, 113415 (2011).

^[14] A. Misra, U. Singh, S. Bhattacharya, and A. K. Pati, Phys. Rev. A 93, 052335 (2016).

- [15] J. Aberg, Phys. Rev. Lett. 113, 150402 (2014).
- [16] V. Narasimhachar and G. Gour, Nat. Commun. 6, 7689 (2015).
- [17] P. Ćwikliński, M. Studziński, M. Horodecki, and J. Oppenheim, Phys. Rev. Lett. 115, 210403 (2015).
- [18] S. Lloyd, J. Phys: Conf. Ser. **302**, 012037 (2011).
- [19] C.-M. Li, N. Lambert, Y.-N. Chen, G.-Y. Chen, and F. Nori, Sci. Rep. 2, 885 (2012).
- [20] S. F. Huelga and M. B. Plenio, Contemp. Phys. 54, 181 (2013).
- [21] F. Levi, and F. Mintert, New J. Phys. 16, 033007 (2014).
- [22] M. B. Plenio and S. F. Huelga, New J. Phys. 10, 113019 (2008).
- [23] P. Rebentrost, M. Mohseni, and A. Aspuru-Guzik, J. Phys. Chem. B 113, 9942 (2009).
- [24] L.-H. Shao, Z. Xi, H. Fan and Y. Li, Phys. Rev. A 91 042120 (2015).
- [25] T. Baumgratz, M. Cramer, and M. B. Plenio, Phys. Rev. Lett. 113, 140401 (2014).
- [26] A. E. Rastegin, Phys. Rev. A 93 032136 (2016).
- [27] E. Chitambar and G. Gour, Phys. Rev. A **94** 052336 (2016).
- [28] J. Ma, B. Yadin, D. Girolami, V. Vedral, and M. Gu, Phys. Rev. Lett. 116, 160407 (2016).
- [29] A. Streltsov, U. Singh, H. S. Dhar, M. N. Bera, and G. Adesso, Phys. Rev. Lett. 115, 020403 (2015).
- [30] C. Radhakrishnan, M. Parthasarathy, S. Jambulingam, and T. Byrnes, Phys. Rev. Lett. 116, 150504 (2016).
- [31] Y. Yao, X. Xiao, L. Ge, and C. P. Sun, Phys. Rev. A 92, 022112 (2015).
- [32] Z. Xi, Y. Li, and H. Fan, Sci. Rep. 5, 10922 (2015).
- [33] T. R. Bromley, M. Cianciaruso, and G. Adesso, Phys. Rev. Lett. 114, 210401 (2015).
- [34] X.-D. Yu, D.-J. Zhang, C. L. Liu, and D. M. Tong, Phys. Rev. A 93, 060303 (2016).
- [35] C. Spengler, M. Huber, S. Brierley, T. Adaktylos, B. C. Hiesmayr, Phys. Rev. A 86, 022311 (2012).
- 36 W. K. Wootters, B. D Fields, Ann. Phys. 191, 363 (1989).
- [37] D. Gottesman, Phys. Rev. A 54, 1862 (1996).
- [38] A. R. Calderbank, E. M. Rains, P.W. Shor, N. J. A. Sloane, Phys. Rev. Lett. 78, 405 (1997).
- [39] L. Vaidman, Y. Aharonov, D. Z. Albert, Phys. Rev. Lett. 58, 1385 (1987).
- [40] B.-G. Englert, Y. Aharonov, Phys. Lett. A **284**, 1 (2001).
- [41] T. Durt, B.-G. Englert, I. Bengtsson, K. Zyczkowski, Int. J. Quantum Inf. 8, 535 (2010).
- [42] I. D. Ivanovic, J. Phys. A: Math. Gen. 25, L363 (1995).
- [43] J. Sánchez, Phys. Lett. A 173, 233 (1993).
- [44] L-. H Ren, H. Fan, Phys. Rev. A 90, 052110 (2016).
- [45] B. Chen, S.-M. Fei, Phys. Rev. A 88, 034301 (2013).
- [46] M. D. Lang and C. M. Caves, Phys. Rev. Lett. 105, 15051 (2010).